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Abstract
Compared to security surveillance and military appli-

cations, where automated action analysis is prevalent, the
sports domain is extremely under-served. Most existing
software packages for sports video analysis require man-
ual annotation of important events in the video. Ameri-
can football is the most popular sport in the United States,
however most game analysis is still done manually. Line
of scrimmage and offensive team formation recognition are
two statistics that must be tagged by American Football
coaches when watching and evaluating past play video
clips, a process which takes many man hours per week.
These two statistics are also the building blocks for more
high-level analysis such as play strategy inference and auto-
matic statistic generation. In this paper, we propose a novel
framework where given an American football play clip, we
automatically identify the video frame in which the offensive
team lines in formation (formation frame), the line of scrim-
mage for that play, and the type of player formation the of-
fensive team takes on. The proposed framework achieves
95% accuracy in detecting the formation frame, 98% accu-
racy in detecting the line of scrimmage, and up to 67% ac-
curacy in classifying the offensive team’s formation. To val-
idate our framework, we compiled a large dataset compris-
ing more than 800 play-clips of standard and high definition
resolution from real-world football games. This dataset will
be made publicly available for future comparison.

1. Introduction

Sports coaches and analysts often analyze large collec-

tions of video to extract patterns and develop strategies in

their respective sport. Before any extensive video analysis

can be conducted, these sports experts must annotate the

video data to provide context to the video clips. It is quite

natural for humans to commit errors during annotation due

to the high visual similarity, repetitive nature, and sheer vol-

ume of video data. If they have the budget, which few do,

American Football (hereafter referred to as ‘football’) teams

employ highly experienced staff (video coaches) specifi-

cally for video annotation. Even dedicated video coaches

are prone to error when manually annotating football clips

and extracting important details from them.

In football, there are two general football play types: of-

fense/defense (o/d) and special teams. In this paper, we con-

centrate on two important details which must be recorded

in every o/d play, namely the line of scrimmage and offen-

sive formation type. The line of scrimmage is an imagi-

nary line along the width of the field, upon which the ball

is placed before the beginning of each play. A formation is

defined as the spatial configuration of a team’s players be-

fore a play starts. Before each play starts, the players go to

a pre-determined place on the field on their side of the line

of scrimmage. This is when a team is said to be in ‘for-
mation’. The play begins when a player lifts the ball off

the ground (‘snaps’) and ends when the player with the ball

either scores or is brought to the ground (‘tackled’). Au-

tomatically detecting the line of scrimmage in a play clip

is a challenging computer vision problem primarily due to

high player occlusion and appearance similarity. Automat-

ically detecting the offense formation in a play clip is diffi-

cult primarily due to significant occlusion, intra-class varia-

tion, inter-class similarity, and player appearance similarity.

Detecting the line of scrimmage and the offensive team

formation are two fundamental building blocks without

which any future action recognition and play understand-

ing work is incomplete. The results of this solution can be

used for more extensive analysis of football games such as

offensive and defensive personnel detection, play detection,

and ultimately playbook inference.

In this paper, we propose a novel framework to automat-

ically identify the line of scrimmage and offensive team for-

mation in football (refer to Figure 1). The proposed frame-

work uses the gradient information of the video frames pro-

jected onto the field using the method proposed in [7]. Pro-
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Figure 1. The goal of our work is to automatically recognize and

label offensive team formation that occur at the beginning of an

American Football play.

jecting the frames not only removes camera motion but also

allows player locations to be normalized on to the field of

play irrespective of the view recorded by the camera. This

solution is robust enough to identify features from any video

as it is agnostic to colour information.

Our proposed framework has four stages described as

follows: (1) we automatically identify the frame in which

the formation occurs, (2) we use the identified formation

frame to automatically estimate the line of scrimmage, (3)

we use the estimated line of scrimmage to differentiate play-

ers from the two teams and automatically identify which

team is on offense, and (4) we use features extracted from

the offensive side of the line of scrimmage to classify the

offensive team’s formation in the play clip.

The rest of the paper is organized as follows. We briefly

discuss some existing work in football play analysis and for-

mation detection. In Section 3, we illustrate our proposed

framework and describe each of the framework modules in

detail. In Section 4, we validate our framework by exten-

sively testing our methods on different American football

play datasets.

2. Related Work
Most of the work on American football video analysis

has been on recognizing and classifying the different types

of plays[12, 13, 11]. Little work has been done in automated

offensive team formation recognition. Given a formation

image, Hess et al. [10, 9] used a mixture-of-parts pictorial

structure model (MoPPS) to localize and identify football

players in order to recognize the formation in the image.

Their work was tested on a limited dataset, the learning

method for MoPPS model was computationally expensive

and parameters of the model were hand-coded. In addition,

their work assumes that the formation image is given, how-

ever in most cases, video coaches work with play clips, and

would have to go through the whole play clip to find the

formation image. Our work automatically finds the forma-

tion frame in the play clip, identifies the line of scrimmage,

and labels the formation in the detected formation frame.

Related work on soccer team formations [2, 1, 14] are not

directly applicable to the American football domain as soc-

cer tends to be more fluid and dynamic, changing over the

course of the game, while American football games tend to

be more structured and inherently repetitive.

3. Proposed Framework
Our proposed solution aims to identify the formation of

the team playing offense in a game of football. Figure 2

shows the block diagram of our overall proposed frame-

work. The input to our framework is a single football video

play clip. The proposed approach consists of two major

modules: pre-processing of the play video clip and forma-
tion recognition of the offensive team in the play clip. This

paper focuses on the formation recognition module.

Given a registered play clip, the framework will first

identify the frame in which the two teams are lined up in

formation. Once this frame is detected, the field line that

separates the two teams at formation time (otherwise known

as the line of scrimmage) is determined in the formation

frame. We utilize the spatial distribution of the two teams

to identify the offensive team. Finally, we extract features

from the offense region to train a linear SVM to classify the

different offensive formations.

3.1. Pre-processing
Pre-processing of a given play clip includes regis-

tering the video to the reference field image and fore-

ground/background identification. We use the robust reg-

istration method in [7] to map each frame of each play clip

to the field image (refer to Figure 2). Since camera mo-

tion (zoom, pan and tilt) and viewpoint vary between plays

and within the same play, registering frames unto the same

coordinate system (the overhead field image) is crucial for

formation recognition. The registration method matches en-

tire images or image patches. The matching process com-

putes an optimal homography between every pair of frames

in the play clip by assuming that outlier pixels are suffi-

ciently sparse in each frame. For a given play clip, an

overhead view of the playing field is not necessarily given,

which precludes matching any frame of the clip to the ref-

erence. In this case, user interaction is required to register

a single frame to the reference, whereby the user selects

at least four corresponding pairs of points between the two

images. Coupling this homography with the homographies

computed between consecutive frames of the clip, we can

register the entire play clip unto the reference field image.

Note that user interaction is only required once for each dif-

ferent field.

After registering the clip to the field, we proceed to

discriminate and extract the foreground (players) from the

background (e.g. field patterns such as markers, lines, and

logos). One way this can be done is through player detec-

tion and classification (as in [3]), where a classifier’s confi-

dence at each region of each frame designates the likelihood

that a player exists at that region. However, this process

requires training samples for players from different teams

and from different camera viewpoints. Also, since the video

frames are captured from far-field, the player resolution is
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Figure 2. Overall framework for automatic offensive team formation recognition in American Football play.

usually low, so learning appearance-based classifiers leads

to substantial false positives, especially at markers and mid-

field logos. So, to avoid view dependent classification from

far-field, we resort to background subtraction after all the

frames of a play clip are registered to the same field image.

This process can also be viewed as video stitching, where

the panoramic generated by the stitch is the background

with the rest constituting the foreground. Although many

background subtraction methods exist in the literature (e.g.

[6, 5]), the majority assumes that the camera to be static

and thus do not address the problem of camera motion. In

our case, since frames are registered in the same coordinate

system, conventional background subtraction methods can

be applied; however, special care has to be taken because

not all pixels are necessarily visible in all frames. Instead,

we proceed to extend the robust registration work in [7] to

allow for robust video stitching in the presence of incom-

plete data and sparse error. This sparse error corresponds to

pixels that do not satisfy the homography mapping, specifi-

cally pixels belonging to players on the field. Sparsity here

is a valid assumption, since the frames are imaged in the

far-field and players generally constitute a small fraction of

the pixels in a frame.
Robust Video Stitching To mathematically formalize the

stitching problem, we are given a set of F frames of a play

clip registered to the field image. The projection of the kth

frame into the reference frame is denoted as �ik ∈ R
M .

As such, each of the mapped frames into the reference

cover a subset of the whole panoramic view of the field.

This panoramic image contains M pixels. We denote this

panoramic image (sometimes known as the intrinsic im-

age) in vector form as �v. The goal of our analysis is to

reconstruct the panoramic �v in the presence of sparse error

and frame-to-frame global illumination change, modeled by

�u ∈ R
F
+. To solve for �v, we formulate the video stitching

problem as a rank-1 matrix completion problem with sparse

error. This problem is stated in Eq. (1), where I ∈ R
F×M

is the concatenation of all the mapped frames (refer to Fig-

ure 3 for an illustration), W ∈ R
F×M is the concatenation

of pixel weights (weighted observable supports) for all the

mapped images in the reference image, and E ∈ R
F×M

is the sparse error matrix. Here, we denote W ◦ I as the

Hadamard product between the two sparse matrices W and

I. In the simplest case W is a sampling matrix, where each

element is a binary value indicating whether or not the pixel

is visible in that frame. More generally, W can be con-

sidered a weighting matrix for each frame or even for each

pixel of each frame in the clip.

min
�u,�v,E

‖E‖1,1 (1)

subject to: W ◦ I = W ◦ (�u�vT +E
)

In fact, Eq. (1) can be viewed as the rank-1 version of ro-

bust PCA (RPCA [4]). Apart from being a valid assumption

for video, where frame-to-frame lighting variations are not

significant, the rank-1 model for W ◦ I precludes the com-

putational infeasibility of RPCA on such large scale data,

especially since RPCA involves expensive SVD operations.

To put this in context, F is usually on the order of hundreds

of frames, while M is in the order of 105-106 pixels. Eq.

(1) is non-convex due to the non-convex equality constraint.

In this way, the formulated optimization problem is similar

to GRASTA [8], except there is no tracking of an orthonor-

mal subspace basis. Ideally, without illumination change

972980987993



Figure 3. Robust video stitching for foreground/background estimation. Each frame in the play clip is projected into the overhead field

reference using the registration method in [7]. The projection of frame j (j th row of I) constitutes a small part of the panoramic image �v
and contributes sparse error (j th row of E). The visible pixels of the panoramic in each frame of the clip are defined in a binary matrix W.

The global illumination variation in the clip is addressed by the positive coefficients �u.

due to camera settings, we have �u = �1. Therefore, to solve

Eq. (1), we resort to an alternating descent approach, which

alternates between fixing �u and updating �E and �v via the

inexact augmented Lagrangian method (IALM) and fixing

�v and �E and updating �u using a similar method. Although

in general, this strategy does not guarantee the global solu-

tion (and a local solution at best); however, for most cases

when the image sequences are captured by the same camera

over time, the local solution that is obtained by initializ-

ing �u = �1 leads to a reasonable solution. For the case of

spatially varying illumination change from image to image,

there is a need to produce a higher rank approximation to

the error-less I, which can be approximated greedily by re-

cursively solving Eq. (1) with I replaced by I − �u�vT . We

do this to keep the computational complexity of the stitch-

ing process at a minimum. It is easly shown that each IALM

iteration only involves simple and highly parallelizable ma-

trix operations (e.g. matrix subtraction and addition) and no
SVD operations are needed. We provide all the optimiza-

tion details of this method in the supplementary material.
As compared to RPCA, one interesting property of this so-

lution is that it can be executed both in batch (all frames

together) and incremental (e.g. one frame at a time) modes.

In Figure 4, we show an example of applying robust

video stitching to a football play clip, where the different

frames are stitched together to generate the panorama and

their respective sparse errors. Clearly, the error values are

high at player locations and low in the background. As a re-

sult, the video stitching method is able to weigh each pixel

in a frame as either background or foreground, thus essen-

tially identifying only the moving objects or players in the

play clip. This is especially useful for removing large mid-

field logos and field markers, which tend to be misclassi-

fied as moving players. It is worthwhile to note that the

background is separated from the foreground even though

the foreground is static for many frames, especially at the

beginning of the play. As such, the output of the registra-

tio/stitching module is subsequently used in the formation

recognition module described next.

3.2. Formation Frame Detection
The first task in the formation recognition module is to

identify the frame in which the teams position themselves

in a predefined formation before the start of play. Intu-

itively, the formation frame is the frame with the least player

motion. At this frame, the frame-to-frame pixel displace-

ment in the formation frame has the least motion magnitude

among all other frames in the play. Given that the video

frames are registered to a reference field image, the frame

with the least motion magnitude is easily identified by cal-

culating the frame-to-frame mean-squared error (MSE) for

all pixels across the entire video sequence followed by a 5
tap median filter. We identify the formation frame as the

last frame after which the MSE values are substantial and
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Figure 4. Robust video stitching for foreground/background esti-

mation. The top row shows the stitched panoramic �v (or back-

ground) computed by solving Eq. (1). A frame in the play clip

and its corresponding error (or foreground) are shown in the bot-

tom row. Colder colors designate smaller error values.

monotonically increasing. This is done to ensure that the

motion of players in the frames is due to all players mov-

ing and not due to man-in-motion events that may occur

before the actual start of the play. To formalize, we build

an SVM classifier on the MSE differences between frames

of a play and learn its parameters using a small set of for-

mation frames labelled by a sports expert. In Figure 5(a),

we plot MSE values of all the frames in a given play clip.

The index of the formation frame is marked by the red line.

Figure 5(b) & (c) show the detected formation frame in the

clip and its projection on the field respectively. In what fol-

lows, the detected formation frame is used to detect the line

of scrimmage and recognize the play formation of the of-

fensive team.

3.3. Line of scrimmage detection
By reducing the effect of background pixels including

the logos on the field, player (foreground) density is high-

est at the line of scrimmage relative to any other area in

the projected formation frame. We exploit this information

to identify the line of scrimmage. Colour can be seen as

a feature for identifying players on offense, since the two

teams wear different colored jerseys. A possible way to

identify the team on offense would be to require the user

to label at least one offensive player per play clip. How-

ever, most standard techniques for identifying players using

colour models such as hue and saturation would fail to iden-

tify the players alone, owing to the fact that hue and satu-

ration values also exist on the field leading to a number of

false positives. Over and above that, opposing teams wear

complementary colours such as a black jersey with white

shorts and white jersey with black shorts making even semi-

supervised methods ineffective in identifying players on of-

Figure 5. Formation frame detection. MSE values of all frames

in a sample play clip are plotted in the top row. The index of

the formation frame is designated in red. The detected formation

frame and its projection are shown in the bottom row.

fense. In this paper, we take a color agnostic approach and

exploit the fact that the line of scrimmage is the region of

the field in the formation frame that has the highest player

density. In our case, this means that the line of scrimmage

is the region where the image gradient density of the fore-

ground is highest. Figure 6 shows the gradient intensity of

the projected formation frame, weighted by the foreground

(error) values obtained in the pre-processing step. Note that

we only use the gradient information in the y-(vertical) di-

rection as this would avoid including the gradient informa-

tion from vertical lines such as that of yard lines. A sliding

window approach is used to find the region with the highest

density in the gradient image.

Figure 6. Example of a formation frame (left) and its correspond-

ing weighted gradient information (right).

After each play, the ball is placed somewhere in the mid-

dle of the width of the field closest to where the previous

play ended. As such, to account for the variation in the of-

fensive team position at the beginning of a play, we use a

sliding window. The window’s size was set to cover the

offensive team and changes according to the size of the

field image. For our experiments on the standard defini-

tion dataset, we set the window size to be 20 × 160 pixels
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Figure 7. A sliding window (shown in red on the left) is used to

calculate the density of gradient intensity. The corresponding de-

tected line of scrimmage is marked in red on the right.

respectively for field size image of 800 × 400. The win-

dow slides across the entire length of the projected forma-

tion frame region, not across the whole field. We calculate

the sum of gradient intensities in each window in Eq (2)

and determine the line of scrimmage in Eq (3). Figure 7(a)

shows an example of the sliding window, while Figure 7(b)

shows the detected line of scrimmage marked in red.

Dens(y) =

Mw∑

i=1

Nw∑

j=1

∣∣∣∣
∂Iw
∂x

∣∣∣∣ (2)

line-of-scrimmage = argmaxy Dens(y) (3)

3.4. Offensive Team Identification
Football presents many technical hurdles for analysis.

This is especially due to frequent and substantial player oc-

clusion. However, football is highly repetitive and struc-

tured in nature. We exploit this repetition to distinguish of-

fense from defense. The offensive team tends to be com-

pactly positioned at the line of the scrimmage when in for-

mation. There are at least five offensive players near the ball

(‘offensive line’) in close proximity in front of the quar-

terback. The defense on the other hand, is usually more

spread out, especially along the line of scrimmage. There-

fore, the team on offense is determined as the side of the

line of scrimmage (left or right) where the spatial distribu-

tion of players (foreground) on that side has minimum vari-

ance. The foreground distribution on either side of the line

of scrimmage is estimated by a spatial pmf as shown in Eq

(4). Here, we model the probability that a player exists at

pixel (x, y) as a function of the gradient intensity and fore-

ground (error) value at (x, y).

p(x, y|d) = ∂I(x, y)/∂x∑
(x,y)∈d ∂I(x, y)/∂x

; [d ∈ {left, right}]
(4)

The side d with the minimum variance is determined to be

offense.

o = argmin
d∈{left,right}

σ (p(x, y|d)) (5)

3.5. Formation Classification
At this stage, the formation frame, line of scrimmage,

and the offensive team of each play clip have been extracted.

We proceed to learn a discriminative model to classify a

play clip as one of five major formation types for offense.

These formation types (classes) and the ground truth label-

ing of a play clip dataset are obtained from a football expert.

We distinguish between the five formation classes by learn-

ing a multi-class linear SVM classifier on a training subset

of the play clip dataset. The feature used to learn the SVM

is the spatial distribution of gradient intensity for the offen-

sive side of the line of scrimmage. Since the location of an

offensive team can vary on the field, we make the feature

translation invariant by centering the spatial distribution at

the field pixel (on the offensive side) with maximum gradi-

ent intensity. Note that we reflect the formation frame about

the line of scrimmage to ensure that the offensive team is al-

ways on the left side of the line of scrimmage. The SVM

classifier parameters are learned using a popular and pub-

licly available SVM solver. Results of this classification are

presented in the next section.

4. Experimental Results
In this section, we present experimental results that val-

idate the effectiveness of our formation recognition frame-

work. We tested our approach on three separate datasets.

4.1. Datasets
We evaluate the performance of our detection and clas-

sification framework by applying it to real-world football

videos. There is no publicly available dataset that accurately

represents video captured and used by American Football

teams. Typically, a football coach would segment the video

of a whole game into single play clips, identify their respec-

tive formation frames, and then classify the formation type.

So to evaluate our framework, we test it on three separate

datasets, two of which we compiled ourselves and plan to

make publicly accessible. To the best of our knowledge, our

dataset is the largest dataset for American football plays.

The two datasets we compiled are denoted SD dataset

and HD dataset. They comprise 274 and 541 distinct of-

fensive plays respectively. In both cases, the football game

videos were collected from several colleges and show the

sideline view of the game. The videos were manually seg-

mented such that each clip shows a single play. In dataset

SD (standard definition), play clips are standard resolution

640 × 480. In dataset HD, they are high-definition 1440 ×
1080 resolution. All play clips were registered to the foot-

ball field reference image using the video registration and

stitching method discussed in Section 3.1. The groundtruth

data for the formation frame, line of scrimmage, and for-

mation label were annotated by a sports domain expert

with more than 6 years of experience in studying and an-

alyzing football games. The third dataset, denoted OSU

dataset, was obtained from the Oregon State University Dig-

ital Scout Project [10]. This dataset consists of 51 formation

frame images and their corresponding homography matri-

ces for projection to the reference field image.

There exist more than a hundred known formation types
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(classes) in the sport of football. However, due to the lim-

ited amount of data available, we categorize the plays in

each dataset into two different levels of categorization. Ta-

ble 1 shows the hierarchy of the formation classes. At

the coarse level of classification, the plays were classi-

fied into three different categories: Ace, IForm, or Shot-
Gun. These top labels in the taxonomy were determined

by the location of the quarterback (QB) and running backs

(RB). Ace formation means there is one running back di-

rectly behind the quarterback, who is very close to the

ball. IForm is similar to Ace, except there are two running

backs directly behind the quarterback instead of one. In

Shotgun formation, the quarterback is several yards away

from the ball at the start of the play. At the second

level, the classes were determined by the number of run-

ning backs (RB) and wide receivers (WR). The Ace for-

mation consists of one subclass: Ace.3WR. The IForm
class is subdivided into IForm.2WR and IForm.3WR, while

the ShotGun formation consists of five subclasses: Shot-

gun.2WR, Shotgun.3WR.1RB, Shotgun.3WR.2RB, Shot-

gun.4WR.1RB, and Shotgun.5WR. The small inter-class

variability in the datasets makes formation classification a

challenging problem. Figure 8 shows examples of the dif-

ferent formations.

4.2. Quantitative Results
We tested and evaluated each of the modules in our

framework separately.

Formation Frame Detection: To measure the perfor-

mance of our formation frame detection method in Sec-

tion 3.2, a formation frame is accurately labelled if the de-

tected formation frame is within 1 second (30 frames) of

the groundtruth formation frame index. This evaluation cri-

terion was deemed acceptable by the sports expert. In this

setup, the formation frame was accurately detected 94.53%

of the time on the SD dataset with 274 play clips. We could

not test this module on the OSU dataset as the dataset con-

sists only of frame images and not play video clips.

Line of Scrimmage Detection: After identifying the for-

mation frame, we use the foreground (error) values for each

pixel in the projected formation frame (as described in Sec-

tion 3.1) as well as the gradient intensity to automatically

detect the line of scrimmage, as described in Section 3.3.

In fact, weighting the pixels of the formation frame with the

foreground values significantly reduces false positive detec-

tion arising from regions of high gradient density such as

field logos or markers.

To test our automatic line of scrimmage detection

method, we use the groundtruth formation frame in the

datasets. For the SD dataset, we achieve 97.5% accuracy

in detecting the line of scrimmage within 10 pixels of its

actual location on the field. This translates to within a yard

accuracy. The detection results improve significantly on the

HD dataset, where we achieve a 97.9% detection accuracy

Table 1. Hierarchy of the formation classes in the dataset.

Top level label Second level label # instances

Ace Ace.3WR 30

IForm
IForm.2WR 40

IForm.3WR 19

Shotgun

Shotgun.2WR.1RB 21

Shotgun.3WR.1RB 110

Shotgun.3WR.2RB 85

Shotgun.4WR.1RB 106

Shotgun.5WR 26

within 3 pixels on an HD reference field. This translates to

a 6 inch accuracy on the physical field. As mentioned ear-

lier, the OSU dataset only contains formation images and

no play clips. Hence, we could not directly apply the robust

registration/stitching method in Section 3.1 to obtain the

per-pixel foreground values in the formation frame. Instead,

we apply the video stitching method on the given formation

frames in the dataset to generate an overhead panoramic

stitching of the field. The resulting panoramic image of

the OSU field is shown in Figure 4(top). This image is

subtracted from each of the projected formation frames to

produce the foreground error values (i.e. background sub-

traction). By learning a multi-class linear SVM classifier,

we achieve an accuracy of 90.2% on the OSU dataset.

Formation Classification: To validate our formation

classification method (described in Sections 3.4&3.5), we

test on the union of the three datasets. Special care has to

be taken because of the imbalance in the combined dataset.

We adopt the oversampling paradigm to alleviate this im-

balance. The hierarchy of the classes and the number of

instances in each class are reported in Table 1.

All classification model training and testing are per-

formed using 5-fold cross validation. We perform two lev-

els of classification. For top level classification, we train

a classifier to classify formations into one of three super

classes: Ace, IForm, and ShotGun. The classification rate

for the top level classification is 67.1%. At the next level of

classification, we train two classifiers, one each for labeling

the IForm and ShotGun formations into their subclass labels

respectively. The classification rate for labeling IForm for-

mations into two subclasses, IForm.2WR and IForm.3WR,

is 65.01%, while the classification rate for classifying Shot-

Gun formations into the 5 different subclasses is 36.43%.

Figure 9 shows the confusion matrix for classification of the

ShotGun formations into the subclasses. The classification

rate is lower compared to the classification of the IForm for-

mation because the differences between the subclasses are

very subtle with the distinction being just the placement of

one player in the formation. We also compared the perfor-

mance of the hierarchical classifier to a simple multi-class

classifier. When using a flat multi-class classifier, we ob-

tained an overall classification accuracy of 31.1%. The con-
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Figure 8. Examples of 5 offensive team formation classes (red bounding box). It can be seen that the inter-class variation between the

different formations is very small, making the classification problem a challenging task.

fusion matrix is shown in Figure 10. Again the confusion

mainly occurs within the ShotGun formation as the differ-

ence between the classes is very subtle.

Figure 9. Confusion matrix for classification of ShotGun forma-

tions into five subclasses.

Figure 10. Confusion matrix for simple multi-class classification

using all 8 formation classes.

5. Conclusion
In this paper, we propose a framework for automatic

recognition of offensive team formation in American foot-

ball plays. We show promising results that our method is

able to automatically label formations on three different

datasets. The framework that we have developed serves

as a building block that is part of our tool prototype for

automatic analysis of American football games. Future

work utilizing this formation classification framework in-

clude automatic personnel identification or identifying all

players that are on the field, automatic play classification,

and strategical playbook inference of a team.
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