
 

 
Abstract 

A typical digital signal processor (DSP) uses 
hierarchical memory to handle the trade-off between cost 
and speed. It has a fast on-chip memory with data-access 
rates similar to the DSP’s processing rate but it is not 
large enough to hold the entire Image data. Image buffers 
typically reside in the larger external memory like DDR 
whose data access rate is ~4-6X slower than the processor 
rate. Cache or direct memory access (DMA) mechanisms 
are used to improve the slow access rate of external 
memory using the internal memory. Optimizing an 
embedded processing application to be efficient for such 
hierarchical memory systems requires block-based 
algorithm design. This is usually accomplished by 
manually re-designing the code. This effort requires 
several man months and DSP expertise. In this paper, we 
automate this process and demonstrate a performance 
improvement of ~2-4X over conventional frame level 
processing. We believe that the proposed solution is novel 
in the sense that it is fully automated and scalable to any 
memory size and speed. We use a compiler assisted parser 
to extract the relevant function parameters and use them 
to re-target the code to be block-based and handle 
memory management automatically. This is an offline 
code generation process with self-verification. We have 
implemented and tested the parser for Texas Instruments 
(TI) C6000 DSPs but the method is generic to work with 
any processor core. 
 

1. Introduction 
DSP uses hierarchical memory to handle the trade-off 

between cost and speed.  Image data typically resides in 
the cheap and large external memory like DDR whose 
data access rate is ~6X slower than what the processor can 
process.  The DSP contains on-chip memory such as L1 
which is small, expensive and with data rate similar to the 
DSP’s data rate. For example, the clock-rate of C6000 TI 
DSP processor is 600 Mhz and the external memory access 
rate is 100 Mhz as shown in Figure 1. Optimizing an 
image/vision processing application to be efficient for 
such hierarchical systems requires re-design of the 

algorithm flow which requires both systems and 
algorithms expertise and takes several man months for 
engineers and requires support from the Silicon vendor.  
The proposed code-parser which generates functionally 
equivalent block-based code from frame-level code. The 
code parser should ideally be included in the compiler or it 
can be also used as a stand-alone code generator tool. 

Conventionally the frame to block level design is 
addressed in two ways namely manual re-implementation 
of the code and using a framework to handle block 
allocation. Manual reimplementation of code requires 
several man-months of effort and requires special skills 
[6]. Framework requires effort to wrap the code to the 
framework format and it also introduces performance 
overheads. A block based algorithm can be optimized for 
superior performance and low power when compared to a 
frame based algorithm. This is mainly because of the fact 
that block based algorithms can be designed to process 
smaller blocks of images that can utilize the internal 
memory of the CPU. Further, this design will also reduce 
the amount of power because of the optimal usage of 
available resources on the SoC. There are two notions of 
optimality: performance and power consumed. For 
performance, it is sufficient to hide the memory traffic 
behind processing times. For power consumption, 
repetition of bringing in the same data has to be avoided. 
Typically the latter covers performance too. 

In this work, we propose a code parser based automatic 
solution to generate block-based versions of the algorithm. 
We automate this process and demonstrate a performance 
improvement of ~2-4X over conventional frame level 
processing. We use a compiler assisted parser to extract 
the relevant function parameters and use them to re-design 
the code to be block-based and handle memory 
management automatically. This is an offline code 
generation process with self-verification. We believe that 
the proposed solution is novel in the sense that it is fully 
automated and scalable to any memory size and speed. 
The proposed method was implemented and tested on the 
Texas Instruments (TI) C6000 DSPs. Our approach is 
scalable to different processor cores such as GPU and does  
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Figure 1: Illustration of Hierarchical Memory in a TI C6000 DSP 

Processor [2] 
 

not require source code modification of the algorithm nor 
does it introduce overheads. 

Ko et al model block-based DSP systems in [1] and 
discuss automated buffer management in [8] in the context 
of architecture/tools exploration and not in context of code 
generation. The reference guide [3] is a documentation of 
a commercial product which addresses a similar problem. 
It uses manual parameterization and wrapping of APIs. 
The details of the implementation are not disclosed in the 
reference guide [3]. In comparison the proposed method 
attempts to automate parameterization and does not 
require wrapping of APIs.  

Section 2 introduces the background of the problem and 
discusses relevant concepts. Section 3 provides the 
problem description, proposed solution and performance 
improvements. In Section 4, we discuss a specific use case 
namely Canny Edge Detection and provide practical sizes  
of buffer involved in real application.  

2. Background 
In this section, we provide a description of hierarchical 

memory systems and discuss the concept of ping-pong 
buffering. 

2.1. Hierarchical memory in Embedded Systems 
A “memory hierarchy” in computer storage 

distinguishes each level in the “hierarchy” by speed, size 
and cost of memory. For example, in Figure 1, the clock-
rate of C6000 TI DSP processor is 600 Mhz. The internal 
memory (on-chip memory) access rates are 600 Mhz (L1) 
and 300 Mhz (L2) respectively whereas the external 
memory access rate is 100 Mhz. Internal memories are 
faster and smaller in physical size but expensive whereas 
the external memory is cheaper but larger in physical size 
and lower in speed. 

 
Figure 2: Ping-Pong Buffering. 1. External memory to internal 
memory data transfer, 2.DSP processing data from input and 

writing to the output and 3. Internal memory to external memory 
data transfer. 

 
In this paper, we focus on systems having internal 

memories that are addressable (not just a cache) which is 
not possible on ARM cores and external memories. Most 
of the current generation embedded DSPs fall under this 
category. Fig 1 shows the memory hierarchy in TI DSP 
[2]. 

2.2 Ping-Pong Buffering 
Ping-Pong buffering is a programming technique that 

uses two buffers to speed up a computer that can overlap 
I/O with processing. Data in one buffer is being processed 
while the next set of data is read into the other buffer using 
a separate engine called the DMA. In streaming media 
applications, the data in one buffer is being sent to the 
sound card and/or display adapter, while the other buffer is 
being filled with more data from the source (Internet, local 
server, etc.). When video is displayed on screen, the data 
in one buffer is being filled while the data in the other is 
being displayed. Full-motion video is speeded up when the 
function of moving the data between buffers is 
implemented in a hardware circuit rather than being 
performed by software. In one instance, the DSP is 
controlling the input ping buffer and after processing the 
data writes into the output ping buffer. In parallel, the data 
from external memory is read into the input pong and 
simultaneously data is written into external memory from 
the output pong using the DMA controller. In the next 
instance the ping and pong buffer exchange their roles. 
This process is depicted in Figure 2.   

 
Input and output data traffic can be skewed due to the 

difference in buffer sizes and dedicated DMA channels are 
used for transferring data as shown in Figure 2. The data 
involving DMA channels leads to significant power 
consumption relative to internal memory accesses. Power 
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consumption can be minimized by bringing in sufficient 
data that can be processed and executing as many kernels 
processing as possible. This process of making use of 
multiple kernels at the block level is called chaining which 
is discussed in the later section. 

3. Proposed Solution 
In this section, we describe the problem and explain the 

parameters involved for automatic conversion. The 
required parameters are extracted from the data-flow 
graph generated by the compiler. From the parameters, we 
illustrate how the block-based version of the code is 
generated and performance benchmarks are shown to 
illustrate the improvements.  

3.1. Problem Description 
Input/output to the Tool: Input to the tool is an Image 
processing application consisting of a set of kernels 
operating on an Image frame. Output is an equivalent 
Block-based version generated from the input which is 
optimized in terms of performance and power dissipation. 
The generated code contains prolog and steady-state code.  
Steady-state code assumes previous set of inputs are 
available. For the first iteration, the input buffers are 
empty and there is no re-use. This step is called prolog. 
 
System Parameters: These parameters are hardware 
(HW) dependent factors which can be encoded in the tool 
or it might be already encoded in a HW specific compiler. 
They correspond to processor clock rate, internal memory 
size, external memory size and DMA data transfer rate. 
 
Kernel Parameters: These parameters are specific to 
each Image processing function. Kernel block size refers 
to the size of the window size required for generating one 
output pixel. It is the most important parameter based on 
which the internal buffer sizes are determined. The other 
buffer size parameters are input buffer size which captures 
the number and size of the input buffers and output buffer 
size which captures the number and size of the output 
buffers. The last attribute is a flag to denote whether the 
function is block-based or not. 

3.1. Compiler assisted Code Parser for extraction 
of Kernel Parameters 

In this section, we describe the methodology to extract 
the kernel parameters for each kernel present in the image 
processing application. An optimizing compiler analyzes 
each kernel and builds a data flow graph (DFG). A simple 
data flow graph for a dot product kernel is shown in 
Figure 4. It consists of two inputs that are loaded into 
internal memory, followed by multiplication and 
accumulation  

 
Figure 3: Data-Flow Graph (DFG) generated by TI 

C6000 compiler 

operations. A typical DSP compiler generates software 
pipeline information using which the DFG data structure is 
generated. Graphical representation of this DFG is shown 
in Figure 3. 

From the DFG, the appropriate input and output 
pointers and their sizes can be inferred in a straight 
forward manner. The source nodes form the inputs and the 
sink nodes form the output. To find the kernel size we 
make following assumptions. Kernel size is assumed to be 
small and their corresponding loops are collapsed so that 
two nested loops are obtained for traversing rows and 
columns or a merged version with one single loop. Next, 
all the input pointer offsets corresponding to one output 
pixel is collected. The vertical and horizontal lengths of 
the offsets provide the kernel size parameter. For example, 
the offsets of a 3x3 Sobel filter are 0, 1, 2, w, w+2, 2*w, 
2*w+1, 2*w+2 (where w is the width of the image). The 
vertical and horizontal lengths are 3 and 3 respectively 
which correspond to the kernel parameter. 

Finally the characteristic of a particular kernel being 
block based or non block based is determined by the 
pointer increment used by the DFG. If the pointer 
increments are bounded constants, then the kernel is 
considered to be block based, otherwise it is considered as 
non block based.  Once all the kernel parameters for each 
kernel are extracted, the frame level image processing 
application is converted to block level application kernel 
in a sequential manner. This is followed by validation for 
bit exactness for each kernel. Optionally the user can also 
add these parameters are pragmas to assist the code parser. 

3.2. Local Optimization – One Kernel Approach 
The simplest approach to convert a frame based image 

processing application to a block based application is to 
convert each kernel one at a time without chaining the 
consecutive kernels together. This approach does not have 
any data dependency acros s multiple kernels in the 
application. We call this approach as the local 
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optimization approach where the performance is optimized 
locally specific to individual kernels.  

To aid the understanding of the discussion in the next 
few sections, let us first define two terminologies namely 
compute bound and data bound. A particular kernel is 
considered to be compute bound if the processing time on 
the CPU is much larger compared to the data transfer 
times of the DMA engine to bring data from external DDR 
memory into internal CPU memory (L1/L2). Otherwise, 
the kernel is considered to I/O bound. The primary goal 
during the optimization of any image processing 
application is to make the application compute bound.  

Given the kernel and the relevant kernel parameters 
such as input and output buffer sizes, kernel block size, 
block based characteristic, we first try to compute the 
remaining memory parameters namely compute time and 
data transfer time that is very crucial to achieve the 
compute bound criteria for the kernel under consideration. 
The compute time for a kernel can be calculated using a 
cycle accurate device simulator that models without any 
memory overheads for that kernel. The data transfer times 
can be inferred from the platform support package and the 
buffer sizes. To provide a simple example, let us consider 
a simple Sobel 3x3 edge filter kernel. The input buffer size 
is say 640x480 and the output buffer size is 640x478. This 
means that given 10 lines of input, the filter generated 8 
lines of output with a shrinking factor of 2. The shrinking 
factor gives the difference between the input and the 
output lines. If the time taken to process these 10 lines 
input is say 100 cycles and the time taken for the DMA to 
copy 10 lines of data from external DDR to internal L1/L2 
is 200 cycles, then the operation is I/O bound. Hence the 
compiler parser reiterates by bringing in a larger block of 
input data (say 20 lines). The compute time for this block 
of 20 lines to generate 18 lines of output is say 150 cycles 
and the data transfer time for 20 lines of input is say 250 
cycles, then unfortunately the kernel is still I/O bound. 
The code parser again reiterates with larger blocks of data 
in steps to converge on a solution such that the kernel 
under consideration is compute bound.  
 Finally, the each frame level kernel is replaced with an 
equivalent block level kernel. The input image is split into 
smaller block of data, the optimum size of which is 
calculated at convergence to achieve compute bound 
operation. Block accesses are performed by the CPU using 
memory copy (memcpy) function to copy data from 
external memory to internal memory. Later the memcpy 
functions are replaced by equivalent DMA APIs with 
ping/pong buffering. The local optimization is 
summarized in Figure 4 in which the chaining of kernels 
(Global optimization) is absent. The trivial extension to 
this local optimization approach is to perform global 
optimization of all kernels present in the application. This 
is discussed in the next section. 

 
Figure 4: High Level Block Diagram of the code generation 

process 

3.3. Global Optimization – Chaining of Kernels 
Some frameworks try to reconstruct a dependency 

graph across kernels and build a graph and then exploit the 
parallelism. These approaches are useful for 
heterogeneous multi-core parallelization, but the same has 
limitations for single core algorithm acceleration. The 
implementation explicitly defines a linear sequence of 
kernels and chaining is defined as the partition of the 
whole set into subsets which will be executed with one 
DMA transfer. 

A greedy approach is used to chain several kernels 
especially the ones which are bottlenecked by data-
transfer. Finally the set of kernels is split into ordered 
disjoint sets which would be executed together on one 
access to the memory. As this process is offline and the set 
of kernels is typically small, finding an optimal partition 
using all possible combinations is feasible.  
 

The algorithm to chain kernels is explained below. 
Because of the offline nature of the problem and small 
cardinality of kernels, a brute force approach is followed. 
The complete methodology of code generation process is 
summarized in Figure 4 and the flow graph of the 
algorithm is shown in Figure 5. 
Algorithm: 
Step 1: Determine Kernel parameters and memory 
parameters for each kernel in the application. This is 
obtained from the code parser and the cycle accurate 
simulator 
Step 2: If the kernel x already chained go to Step 10 
otherwise go to Step 3 
Step 3: If the kernel x is block based, then go to Step 4, 
otherwise disable chaining of this kernel and go to Step 2 
for testing the next kernel 
Step 4: If the kernel x is I/O bound, then go to Step 8, 
otherwise go to Step 5 
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Figure 5: Flow diagram of the Algorithm 

 
Step 5:  Chain kernels x and x-1 and name the new kernel 
as x and re-compute the kernel parameters and memory 
parameters 
Step 6: If the new kernel x is I/O bound then go to Step 8, 
otherwise go to Step 7 
Step 7: If all the kernels are exhausted, go to Step 10, 
otherwise go to Step 2 
Step 8: Chain kernels x and x-1 and re-compute all 
parameters and determine whether this new chained kernel 
is compute bound or I/O bound. If compute bound, go to 
Step 5 for testing next kernel, otherwise go to Step 9 
Step 9: Chain kernels x and x+1 and recompute all 
parameters and determine whether this new chained kernel 
is compute bound or I/O bound. If compute bound, go to 
Step 5 for testing next kernel, otherwise go to Step 10 
Step 10: Repeat chaining of successive kernels until all 
the kernels are exhausted. If a schedule is obtained, then 
update the parameters and go to Step 2 for testing the 
remaining kernels, otherwise go to Step 11 
Step 11: Validate the generated code for bit exactness and 
publish results 

3.4. Determining Buffer Sizes 
Consider K kernels with shrinking factors 

}....,,{ 321 kssssS = , where is  is a positive integer. The 
shrinking factor is the difference between the number of 
lines on the input and the number of lines on the output. 
The shrinking factor aids in data reuse across multiple 
iterations of the kernels, thereby reducing the amount of 
data needed to be transferred from external memory to 
internal memory. Let the number of lines in the internal 
local memory be M, where each line can be considered to 

be of N pixels length. M can be calculated as �
=

=
k

i
isM

1

. 

Let the kernel computation time of K kernels be 
}....,,{ 321 kccccC = , and the data transfer times for these 

kernels be }....,,{ 321 kddddD = . Hence, a kernel 1k  is 
chained with kernel 2k  when 11 dc <  and 

)()( 2121 ddcc +<+ , under the condition that chaining 

2k  and 3k  is not providing significant improvement. Once 
the kernels 1k  and 2k  are chained together, 1k and 2k are 
treated as a single kernel and the data transfer time is 
reduced from (d1 + d2) to d1 and the same algorithm is 
repeated for the remaining kernels. This way an optimal 
chaining is reached to achieve best possible performance. 
More details of the algorithm are discussed in Algorithm 1 
and the block diagram is provided in Figure 4.  The 
number of lines L that can be processed in one iteration 
when kernels }....,,{ 321 kkkkk  are chained together is 
calculated using the following relation. 

                   SILLlw i

k

i
i −=+++�

=

)1(*2)(
1

                (1) 

where wi = weighting factor that depends on element size, 
li = kernel block size of kernel i,  
L = number of minimum lines that should be processed to 
achieve maximum optimization  
I = available internal memory on CPU (L1/L2) in bytes 
S = scratch pad memory required for state variables, look 
up tables, etc in bytes 

4. Case Study – Canny Edge Detection 
Canny edge detection comprises of 4 steps namely 

Gaussian smoothing, gradient filtering, non-maxima 
suppression and edge relaxation. The tool determines that 
edge relaxation is not a block-based function and is 
ignored. Appropriate kernel parameters from the other 
three functions are parsed and suitable buffers are 
allocated as shown in Figure 6. As part of Prolog all the 
listed buffers are filled with the output data and in steady 
state, each step provides equal number of output lines. As 
illustrated in Figure 5, we show one line of output being 
produced. From the seven lines of input, we obtain five 
lines of Gaussian smoothed output, three lines of Gradient 
filtered output and one line of non-maximum suppressed 
output.  

For the computation of a new output line, we discard 
the first line, re-use the remaining lines and bring in a new 
line. This can be efficiently implemented using a circular 
buffer. Some processors support circular addressing in 
HW, otherwise it can be implemented easily using modulo 
arithmetic addressing. Ping-pong buffers are used only for 
the first input buffer and the las t output buffer.  

Based on the equation 1, the number of lines to be 
brought into internal memory is calculated. Once this is 
calculated, the appropriate buffers are allocated in the 
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internal memory and an equivalent code for the chained 
block-based version is generated.  

 
Figure 5: Buffer Allocation 

 

 
Table 1: Performance comparison between cache based 

mode and DMA based model 

5. Results and Discussion 
We provide the comparison of the performance 
benchmarks with and without use of our proposed 
algorithm. Performance improvement depends on the 
compute cycles and number of input/output buffers. 
Larger the number of buffers larger the cache misses and 
memory overheads and hence better the performance 
improvement. Table 1 below summarizes the performance 
speedup. It is interesting to note that the Edge relaxation 
function cannot be done using block based method. Hence 
there is no improvement obtained for this kernel. The 
implementation of these algorithms are based on the DSP 
optimized Vision Library VLIB [7].  

The current implementation of the parser handles C 
code only. It also assumes certain structure in the 
implementation so that it is easier to parse and identify the 
kernels. One such assumption is that each kernel should be 
a separate function or an easily identifiable loop segment. 
These challenges are related to compiler and parser 
technologies which are beyond the scope of this paper. 
The proposed algorithm was able to handle most of the 
low-level computer vision algorithms [4]. There is also 
limited support for connectivity-based image processing 

algorithms [5]. There were instances of failures due to the 
nature of the implementation and limitation of the current 
implementation of the parser. This was caught in the 
verification stage and the original code was restored. 

6. Conclusion 
In this paper, we discussed a novel automated parser 

which generates memory efficient block based code from 
a frame based code at compile time. The performance 
improvement achieved using this scheme is of the order of 
~2-4X, and the power dissipation is also reduced by about 
40-50 percent. The proposed scheme does not require any 
code involvement of the programmer since every memory 
optimization is performed by the proposed solution 
automatically. This tool is expected to provide a 
significant performance improvement irrespective of the 
platform that is being used to develop applications. Our 
method addresses typical vision/image processing 
algorithms. As part of future work, a parser for linear 
connectivity based algorithms will be dealt with. 
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Application/Function 
Conventional 

(cycles/   
pixel) 

Proposed 
(cycles/ 
pixel) 

Speed 
Up 

Gaussian Filter 7x7 6.55 2.2 2.97 
Gradient and Mag 3.4 1.0 3.4 

NMS 7x7 7.2 2.4 3.0 
Double Thresholding 8.5 3.0 2.83 

Edge Relaxation 3.0 3.0 1.0 
Sobel Filter 3x3 4.5 1.7 2.6 

Canny Edge 
Detection 

84 35 2.4 

Lane Departure 
Warning 31.5 13.2 2.38 
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