

Abstract

A typical digital signal processor (DSP) uses
hierarchical memory to handle the trade-off between cost
and speed. It has a fast on-chip memory with data-access
rates similar to the DSP’s processing rate but it is not
large enough to hold the entire Image data. Image buffers
typically reside in the larger external memory like DDR
whose data access rate is ~4-6X slower than the processor
rate. Cache or direct memory access (DMA) mechanisms
are used to improve the slow access rate of external
memory using the internal memory. Optimizing an
embedded processing application to be efficient for such
hierarchical memory systems requires block-based
algorithm design. This is usually accomplished by
manually re-designing the code. This effort requires
several man months and DSP expertise. In this paper, we
automate this process and demonstrate a performance
improvement of ~2-4X over conventional frame level
processing. We believe that the proposed solution is novel
in the sense that it is fully automated and scalable to any
memory size and speed. We use a compiler assisted parser
to extract the relevant function parameters and use them
to re-target the code to be block-based and handle
memory management automatically. This is an offline
code generation process with self-verification. We have
implemented and tested the parser for Texas Instruments
(TI) C6000 DSPs but the method is generic to work with
any processor core.

1. Introduction
DSP uses hierarchical memory to handle the trade-off

between cost and speed. Image data typically resides in
the cheap and large external memory like DDR whose
data access rate is ~6X slower than what the processor can
process. The DSP contains on-chip memory such as L1
which is small, expensive and with data rate similar to the
DSP’s data rate. For example, the clock-rate of C6000 TI
DSP processor is 600 Mhz and the external memory access
rate is 100 Mhz as shown in Figure 1. Optimizing an
image/vision processing application to be efficient for
such hierarchical systems requires re-design of the

algorithm flow which requires both systems and
algorithms expertise and takes several man months for
engineers and requires support from the Silicon vendor.
The proposed code-parser which generates functionally
equivalent block-based code from frame-level code. The
code parser should ideally be included in the compiler or it
can be also used as a stand-alone code generator tool.

Conventionally the frame to block level design is
addressed in two ways namely manual re-implementation
of the code and using a framework to handle block
allocation. Manual reimplementation of code requires
several man-months of effort and requires special skills
[6]. Framework requires effort to wrap the code to the
framework format and it also introduces performance
overheads. A block based algorithm can be optimized for
superior performance and low power when compared to a
frame based algorithm. This is mainly because of the fact
that block based algorithms can be designed to process
smaller blocks of images that can utilize the internal
memory of the CPU. Further, this design will also reduce
the amount of power because of the optimal usage of
available resources on the SoC. There are two notions of
optimality: performance and power consumed. For
performance, it is sufficient to hide the memory traffic
behind processing times. For power consumption,
repetition of bringing in the same data has to be avoided.
Typically the latter covers performance too.

In this work, we propose a code parser based automatic
solution to generate block-based versions of the algorithm.
We automate this process and demonstrate a performance
improvement of ~2-4X over conventional frame level
processing. We use a compiler assisted parser to extract
the relevant function parameters and use them to re-design
the code to be block-based and handle memory
management automatically. This is an offline code
generation process with self-verification. We believe that
the proposed solution is novel in the sense that it is fully
automated and scalable to any memory size and speed.
The proposed method was implemented and tested on the
Texas Instruments (TI) C6000 DSPs. Our approach is
scalable to different processor cores such as GPU and does

Scalable Frame to Block based Automatic Converter for efficient

Embedded Vision Processing

Senthil Kumar Yogamani
Texas Instruments
Dallas, TX, USA

ysenthilece@gmail.com

B H Pawan Prasad
Samsung Research
Bangalore, India

mail4pawan2003loud@gmail.com

Rajesh Narasimha
Metaio

Dallas, TX, USA
rajesh.narasimha@gmail.com

2013 IEEE Conference on Computer Vision and Pattern Recognition Workshops

978-0-7695-4990-3/13 $26.00 © 2013 IEEE

DOI 10.1109/CVPRW.2013.89

586

2013 IEEE Conference on Computer Vision and Pattern Recognition Workshops

978-0-7695-4990-3/13 $26.00 © 2013 IEEE

DOI 10.1109/CVPRW.2013.89

586

2013 IEEE Conference on Computer Vision and Pattern Recognition Workshops

978-0-7695-4990-3/13 $26.00 © 2013 IEEE

DOI 10.1109/CVPRW.2013.89

586

2013 IEEE Conference on Computer Vision and Pattern Recognition Workshops

978-0-7695-4990-3/13 $26.00 © 2013 IEEE

DOI 10.1109/CVPRW.2013.89

592

Figure 1: Illustration of Hierarchical Memory in a TI C6000 DSP

Processor [2]

not require source code modification of the algorithm nor
does it introduce overheads.

Ko et al model block-based DSP systems in [1] and
discuss automated buffer management in [8] in the context
of architecture/tools exploration and not in context of code
generation. The reference guide [3] is a documentation of
a commercial product which addresses a similar problem.
It uses manual parameterization and wrapping of APIs.
The details of the implementation are not disclosed in the
reference guide [3]. In comparison the proposed method
attempts to automate parameterization and does not
require wrapping of APIs.

Section 2 introduces the background of the problem and
discusses relevant concepts. Section 3 provides the
problem description, proposed solution and performance
improvements. In Section 4, we discuss a specific use case
namely Canny Edge Detection and provide practical sizes
of buffer involved in real application.

2. Background
In this section, we provide a description of hierarchical

memory systems and discuss the concept of ping-pong
buffering.

2.1. Hierarchical memory in Embedded Systems
A “memory hierarchy” in computer storage

distinguishes each level in the “hierarchy” by speed, size
and cost of memory. For example, in Figure 1, the clock-
rate of C6000 TI DSP processor is 600 Mhz. The internal
memory (on-chip memory) access rates are 600 Mhz (L1)
and 300 Mhz (L2) respectively whereas the external
memory access rate is 100 Mhz. Internal memories are
faster and smaller in physical size but expensive whereas
the external memory is cheaper but larger in physical size
and lower in speed.

Figure 2: Ping-Pong Buffering. 1. External memory to internal
memory data transfer, 2.DSP processing data from input and

writing to the output and 3. Internal memory to external memory
data transfer.

In this paper, we focus on systems having internal

memories that are addressable (not just a cache) which is
not possible on ARM cores and external memories. Most
of the current generation embedded DSPs fall under this
category. Fig 1 shows the memory hierarchy in TI DSP
[2].

2.2 Ping-Pong Buffering
Ping-Pong buffering is a programming technique that

uses two buffers to speed up a computer that can overlap
I/O with processing. Data in one buffer is being processed
while the next set of data is read into the other buffer using
a separate engine called the DMA. In streaming media
applications, the data in one buffer is being sent to the
sound card and/or display adapter, while the other buffer is
being filled with more data from the source (Internet, local
server, etc.). When video is displayed on screen, the data
in one buffer is being filled while the data in the other is
being displayed. Full-motion video is speeded up when the
function of moving the data between buffers is
implemented in a hardware circuit rather than being
performed by software. In one instance, the DSP is
controlling the input ping buffer and after processing the
data writes into the output ping buffer. In parallel, the data
from external memory is read into the input pong and
simultaneously data is written into external memory from
the output pong using the DMA controller. In the next
instance the ping and pong buffer exchange their roles.
This process is depicted in Figure 2.

Input and output data traffic can be skewed due to the

difference in buffer sizes and dedicated DMA channels are
used for transferring data as shown in Figure 2. The data
involving DMA channels leads to significant power
consumption relative to internal memory accesses. Power

587587587593

consumption can be minimized by bringing in sufficient
data that can be processed and executing as many kernels
processing as possible. This process of making use of
multiple kernels at the block level is called chaining which
is discussed in the later section.

3. Proposed Solution
In this section, we describe the problem and explain the

parameters involved for automatic conversion. The
required parameters are extracted from the data-flow
graph generated by the compiler. From the parameters, we
illustrate how the block-based version of the code is
generated and performance benchmarks are shown to
illustrate the improvements.

3.1. Problem Description
Input/output to the Tool: Input to the tool is an Image
processing application consisting of a set of kernels
operating on an Image frame. Output is an equivalent
Block-based version generated from the input which is
optimized in terms of performance and power dissipation.
The generated code contains prolog and steady-state code.
Steady-state code assumes previous set of inputs are
available. For the first iteration, the input buffers are
empty and there is no re-use. This step is called prolog.

System Parameters: These parameters are hardware
(HW) dependent factors which can be encoded in the tool
or it might be already encoded in a HW specific compiler.
They correspond to processor clock rate, internal memory
size, external memory size and DMA data transfer rate.

Kernel Parameters: These parameters are specific to
each Image processing function. Kernel block size refers
to the size of the window size required for generating one
output pixel. It is the most important parameter based on
which the internal buffer sizes are determined. The other
buffer size parameters are input buffer size which captures
the number and size of the input buffers and output buffer
size which captures the number and size of the output
buffers. The last attribute is a flag to denote whether the
function is block-based or not.

3.1. Compiler assisted Code Parser for extraction
of Kernel Parameters

In this section, we describe the methodology to extract
the kernel parameters for each kernel present in the image
processing application. An optimizing compiler analyzes
each kernel and builds a data flow graph (DFG). A simple
data flow graph for a dot product kernel is shown in
Figure 4. It consists of two inputs that are loaded into
internal memory, followed by multiplication and
accumulation

Figure 3: Data-Flow Graph (DFG) generated by TI

C6000 compiler

operations. A typical DSP compiler generates software
pipeline information using which the DFG data structure is
generated. Graphical representation of this DFG is shown
in Figure 3.

From the DFG, the appropriate input and output
pointers and their sizes can be inferred in a straight
forward manner. The source nodes form the inputs and the
sink nodes form the output. To find the kernel size we
make following assumptions. Kernel size is assumed to be
small and their corresponding loops are collapsed so that
two nested loops are obtained for traversing rows and
columns or a merged version with one single loop. Next,
all the input pointer offsets corresponding to one output
pixel is collected. The vertical and horizontal lengths of
the offsets provide the kernel size parameter. For example,
the offsets of a 3x3 Sobel filter are 0, 1, 2, w, w+2, 2*w,
2*w+1, 2*w+2 (where w is the width of the image). The
vertical and horizontal lengths are 3 and 3 respectively
which correspond to the kernel parameter.

Finally the characteristic of a particular kernel being
block based or non block based is determined by the
pointer increment used by the DFG. If the pointer
increments are bounded constants, then the kernel is
considered to be block based, otherwise it is considered as
non block based. Once all the kernel parameters for each
kernel are extracted, the frame level image processing
application is converted to block level application kernel
in a sequential manner. This is followed by validation for
bit exactness for each kernel. Optionally the user can also
add these parameters are pragmas to assist the code parser.

3.2. Local Optimization – One Kernel Approach
The simplest approach to convert a frame based image

processing application to a block based application is to
convert each kernel one at a time without chaining the
consecutive kernels together. This approach does not have
any data dependency acros s multiple kernels in the
application. We call this approach as the local

588588588594

optimization approach where the performance is optimized
locally specific to individual kernels.

To aid the understanding of the discussion in the next
few sections, let us first define two terminologies namely
compute bound and data bound. A particular kernel is
considered to be compute bound if the processing time on
the CPU is much larger compared to the data transfer
times of the DMA engine to bring data from external DDR
memory into internal CPU memory (L1/L2). Otherwise,
the kernel is considered to I/O bound. The primary goal
during the optimization of any image processing
application is to make the application compute bound.

Given the kernel and the relevant kernel parameters
such as input and output buffer sizes, kernel block size,
block based characteristic, we first try to compute the
remaining memory parameters namely compute time and
data transfer time that is very crucial to achieve the
compute bound criteria for the kernel under consideration.
The compute time for a kernel can be calculated using a
cycle accurate device simulator that models without any
memory overheads for that kernel. The data transfer times
can be inferred from the platform support package and the
buffer sizes. To provide a simple example, let us consider
a simple Sobel 3x3 edge filter kernel. The input buffer size
is say 640x480 and the output buffer size is 640x478. This
means that given 10 lines of input, the filter generated 8
lines of output with a shrinking factor of 2. The shrinking
factor gives the difference between the input and the
output lines. If the time taken to process these 10 lines
input is say 100 cycles and the time taken for the DMA to
copy 10 lines of data from external DDR to internal L1/L2
is 200 cycles, then the operation is I/O bound. Hence the
compiler parser reiterates by bringing in a larger block of
input data (say 20 lines). The compute time for this block
of 20 lines to generate 18 lines of output is say 150 cycles
and the data transfer time for 20 lines of input is say 250
cycles, then unfortunately the kernel is still I/O bound.
The code parser again reiterates with larger blocks of data
in steps to converge on a solution such that the kernel
under consideration is compute bound.
 Finally, the each frame level kernel is replaced with an
equivalent block level kernel. The input image is split into
smaller block of data, the optimum size of which is
calculated at convergence to achieve compute bound
operation. Block accesses are performed by the CPU using
memory copy (memcpy) function to copy data from
external memory to internal memory. Later the memcpy
functions are replaced by equivalent DMA APIs with
ping/pong buffering. The local optimization is
summarized in Figure 4 in which the chaining of kernels
(Global optimization) is absent. The trivial extension to
this local optimization approach is to perform global
optimization of all kernels present in the application. This
is discussed in the next section.

Figure 4: High Level Block Diagram of the code generation

process

3.3. Global Optimization – Chaining of Kernels
Some frameworks try to reconstruct a dependency

graph across kernels and build a graph and then exploit the
parallelism. These approaches are useful for
heterogeneous multi-core parallelization, but the same has
limitations for single core algorithm acceleration. The
implementation explicitly defines a linear sequence of
kernels and chaining is defined as the partition of the
whole set into subsets which will be executed with one
DMA transfer.

A greedy approach is used to chain several kernels
especially the ones which are bottlenecked by data-
transfer. Finally the set of kernels is split into ordered
disjoint sets which would be executed together on one
access to the memory. As this process is offline and the set
of kernels is typically small, finding an optimal partition
using all possible combinations is feasible.

The algorithm to chain kernels is explained below.
Because of the offline nature of the problem and small
cardinality of kernels, a brute force approach is followed.
The complete methodology of code generation process is
summarized in Figure 4 and the flow graph of the
algorithm is shown in Figure 5.
Algorithm:
Step 1: Determine Kernel parameters and memory
parameters for each kernel in the application. This is
obtained from the code parser and the cycle accurate
simulator
Step 2: If the kernel x already chained go to Step 10
otherwise go to Step 3
Step 3: If the kernel x is block based, then go to Step 4,
otherwise disable chaining of this kernel and go to Step 2
for testing the next kernel
Step 4: If the kernel x is I/O bound, then go to Step 8,
otherwise go to Step 5

589589589595

Figure 5: Flow diagram of the Algorithm

Step 5: Chain kernels x and x-1 and name the new kernel
as x and re-compute the kernel parameters and memory
parameters
Step 6: If the new kernel x is I/O bound then go to Step 8,
otherwise go to Step 7
Step 7: If all the kernels are exhausted, go to Step 10,
otherwise go to Step 2
Step 8: Chain kernels x and x-1 and re-compute all
parameters and determine whether this new chained kernel
is compute bound or I/O bound. If compute bound, go to
Step 5 for testing next kernel, otherwise go to Step 9
Step 9: Chain kernels x and x+1 and recompute all
parameters and determine whether this new chained kernel
is compute bound or I/O bound. If compute bound, go to
Step 5 for testing next kernel, otherwise go to Step 10
Step 10: Repeat chaining of successive kernels until all
the kernels are exhausted. If a schedule is obtained, then
update the parameters and go to Step 2 for testing the
remaining kernels, otherwise go to Step 11
Step 11: Validate the generated code for bit exactness and
publish results

3.4. Determining Buffer Sizes
Consider K kernels with shrinking factors

}....,,{ 321 kssssS = , where is is a positive integer. The
shrinking factor is the difference between the number of
lines on the input and the number of lines on the output.
The shrinking factor aids in data reuse across multiple
iterations of the kernels, thereby reducing the amount of
data needed to be transferred from external memory to
internal memory. Let the number of lines in the internal
local memory be M, where each line can be considered to

be of N pixels length. M can be calculated as �
=

=
k

i
isM

1

.

Let the kernel computation time of K kernels be
}....,,{ 321 kccccC = , and the data transfer times for these

kernels be }....,,{ 321 kddddD = . Hence, a kernel 1k is
chained with kernel 2k when 11 dc < and

)()(2121 ddcc +<+ , under the condition that chaining

2k and 3k is not providing significant improvement. Once
the kernels 1k and 2k are chained together, 1k and 2k are
treated as a single kernel and the data transfer time is
reduced from (d1 + d2) to d1 and the same algorithm is
repeated for the remaining kernels. This way an optimal
chaining is reached to achieve best possible performance.
More details of the algorithm are discussed in Algorithm 1
and the block diagram is provided in Figure 4. The
number of lines L that can be processed in one iteration
when kernels }....,,{ 321 kkkkk are chained together is
calculated using the following relation.

 SILLlw i

k

i
i −=+++�

=

)1(*2)(
1

 (1)

where wi = weighting factor that depends on element size,
li = kernel block size of kernel i,
L = number of minimum lines that should be processed to
achieve maximum optimization
I = available internal memory on CPU (L1/L2) in bytes
S = scratch pad memory required for state variables, look
up tables, etc in bytes

4. Case Study – Canny Edge Detection
Canny edge detection comprises of 4 steps namely

Gaussian smoothing, gradient filtering, non-maxima
suppression and edge relaxation. The tool determines that
edge relaxation is not a block-based function and is
ignored. Appropriate kernel parameters from the other
three functions are parsed and suitable buffers are
allocated as shown in Figure 6. As part of Prolog all the
listed buffers are filled with the output data and in steady
state, each step provides equal number of output lines. As
illustrated in Figure 5, we show one line of output being
produced. From the seven lines of input, we obtain five
lines of Gaussian smoothed output, three lines of Gradient
filtered output and one line of non-maximum suppressed
output.

For the computation of a new output line, we discard
the first line, re-use the remaining lines and bring in a new
line. This can be efficiently implemented using a circular
buffer. Some processors support circular addressing in
HW, otherwise it can be implemented easily using modulo
arithmetic addressing. Ping-pong buffers are used only for
the first input buffer and the las t output buffer.

Based on the equation 1, the number of lines to be
brought into internal memory is calculated. Once this is
calculated, the appropriate buffers are allocated in the

590590590596

internal memory and an equivalent code for the chained
block-based version is generated.

Figure 5: Buffer Allocation

Table 1: Performance comparison between cache based

mode and DMA based model

5. Results and Discussion
We provide the comparison of the performance
benchmarks with and without use of our proposed
algorithm. Performance improvement depends on the
compute cycles and number of input/output buffers.
Larger the number of buffers larger the cache misses and
memory overheads and hence better the performance
improvement. Table 1 below summarizes the performance
speedup. It is interesting to note that the Edge relaxation
function cannot be done using block based method. Hence
there is no improvement obtained for this kernel. The
implementation of these algorithms are based on the DSP
optimized Vision Library VLIB [7].

The current implementation of the parser handles C
code only. It also assumes certain structure in the
implementation so that it is easier to parse and identify the
kernels. One such assumption is that each kernel should be
a separate function or an easily identifiable loop segment.
These challenges are related to compiler and parser
technologies which are beyond the scope of this paper.
The proposed algorithm was able to handle most of the
low-level computer vision algorithms [4]. There is also
limited support for connectivity-based image processing

algorithms [5]. There were instances of failures due to the
nature of the implementation and limitation of the current
implementation of the parser. This was caught in the
verification stage and the original code was restored.

6. Conclusion
In this paper, we discussed a novel automated parser

which generates memory efficient block based code from
a frame based code at compile time. The performance
improvement achieved using this scheme is of the order of
~2-4X, and the power dissipation is also reduced by about
40-50 percent. The proposed scheme does not require any
code involvement of the programmer since every memory
optimization is performed by the proposed solution
automatically. This tool is expected to provide a
significant performance improvement irrespective of the
platform that is being used to develop applications. Our
method addresses typical vision/image processing
algorithms. As part of future work, a parser for linear
connectivity based algorithms will be dealt with.

References
[1] Ko, D. I., & Bhattacharyya, S. S. Modeling of block-based

DSP systems. The Journal of VLSI Signal Processing,
40(3), 289-299, 2005.

[2] TMS320C6000 DSP Cache User's Guide. TI Technical
Report, SPRU656A, 2003.

[3] Data Parallelizing Framework Reference Guide. Uncanny
Vision Documentation, 2013.

[4] Kisacanin, B, Examples of low-level computer vision on
media processors. In Computer Vision and Pattern
Recognition-Workshops, 2005. CVPR Workshops. IEEE
Computer Society Conference on (pp. 135-135). IEEE.

[5] Kiran, B. R., Anoop, K. P., & Kumar, Y. S. Parallelizing
connectivity-based image processing operators in a multi-
core environment. In Communications and Signal
Processing (ICCSP), 2011 International Conference on (pp.
221-223). IEEE.

[6] S.K. Yogamani. A Tutorial on Optimizing Vision
Algorithms on TI DSPs. Texas Instruments Application
Report, SPNA165, 2012.

[7] Vision Library API Reference Guide, Texas Instruments
Documentation, 2012.

[8] Ko, D. I., Won, N., & Bhattacharyya, S. S. Buffer
management for multi-application image processing on
multi-core platforms: Analysis and case study. In Acoustics
Speech and Signal Processing (ICASSP), 2010 IEEE
International Conference on (pp. 1662-1665). IEEE.

[9] UncannyDP: Data Parallelizing Framework Reference
Guide. Uncanny Vision Documentation, 2013
http://www.uncannyvision.com/uncannydp/

Application/Function
Conventional

(cycles/
pixel)

Proposed
(cycles/
pixel)

Speed
Up

Gaussian Filter 7x7 6.55 2.2 2.97
Gradient and Mag 3.4 1.0 3.4

NMS 7x7 7.2 2.4 3.0
Double Thresholding 8.5 3.0 2.83

Edge Relaxation 3.0 3.0 1.0
Sobel Filter 3x3 4.5 1.7 2.6

Canny Edge
Detection

84 35 2.4

Lane Departure
Warning 31.5 13.2 2.38

591591591597

