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Abstract

While it is important to digitize heritage sites ‘as is’,
building 3D models of damaged archaeological structures
can be visually unpleasant due to the presence of large miss-
ing regions. This work addresses intensity filling-in, or in-
tensity inpainting, of such large damaged regions post ge-
ometric reconstruction. Assuming a Lambertian image for-
mation model, we first establish that patches corresponding
to arbitrarily oriented planar regions found in internet im-
ages of several archaeological structures with possibly dif-
ferent albedo and observed under varied and uncontrolled
illumination lie in a low-dimensional subspace. These are
then used for inpainting by modeling the missing region as
gross pixel corruptions. The performance of the proposed
method along with comparisons are shown on synthetic as
well as real data.

1. Introduction

The importance of digitization of heritage, present in the

form of archaeological sites, museums showcasing histori-

cal artifacts and famous paintings, etc. is well-documented

in UNESCO’s draft charter on the preservation of digital

heritage [1]. Almost in parallel, a large-scale interest in her-

itage digitization arose in the vision, graphics, virtual reality

and related research communities with the advent of efforts

such as The Digital Michelangelo Project [14] and Google

Art Project. In addition to preservation, such projects aim

to provide a capability to perform a virtual walk-through,

enabling internet-based access of rich ‘common’ heritage

from across the world.

Due to numerous forces of degradation (natural and man-

made) at work, several of these archaeological structures

tend to have large damaged or broken regions. The above

mentioned projects, in the current state, would show such

a naturally existing large missing region ‘as is’. Thus, a

natural addition to such heritage visualization applications

would be the ability to geometrically and photometrically

Figure 1. The geometric and photometric hole reconstruction

pipeline. (a) Original 3D model, (b) geometrically reconstructed

model using [20], (c) patch showing both known and unknown

intensity regions, and (d) intensity inpainted 3D model.

reconstruct large missing regions in the rendered 3D mod-

els (Fig. 1). Geometric reconstruction of such damaged re-

gions from self-similar examples has been proposed in [20].

However, for a visually pleasing reconstruction and seam-

less incorporation into such 3D visualization applications,

texture filling-in for the reconstructed region is an important

module in the missing-region-reconstruction pipeline. Due

to the possibility of wide texture variations, such a photo-

metric completion task is by no means trivial.

While [11] attempts to solve a somewhat related problem

of shape and texture reconstruction using examples, the re-

strictive requirements of custom background, illumination

and a reference object during image acquisition are difficult

to mimic for archaeological data. In contrast, the work de-

scribed in this paper does away with any such restrictions.

Following the nomenclature introduced in [10], this pa-

per deals with ‘intensity hallucination’ of the geometri-

2013 IEEE Conference on Computer Vision and Pattern Recognition Workshops

978-0-7695-4990-3/13 $26.00 © 2013 IEEE

DOI 10.1109/CVPRW.2013.70

421

2013 IEEE Conference on Computer Vision and Pattern Recognition Workshops

978-0-7695-4990-3/13 $26.00 © 2013 IEEE

DOI 10.1109/CVPRW.2013.70

421

2013 IEEE Conference on Computer Vision and Pattern Recognition Workshops

978-0-7695-4990-3/13 $26.00 © 2013 IEEE

DOI 10.1109/CVPRW.2013.70

421

2013 IEEE Conference on Computer Vision and Pattern Recognition Workshops

978-0-7695-4990-3/13 $26.00 © 2013 IEEE

DOI 10.1109/CVPRW.2013.70

421



cally hole-filled regions in damaged 3D models. In our ap-

proach, we first establish that a corpus of image patches

corresponding to arbitrarily oriented planar regions found

locally in several Lambertian surfaces, with varied albedo

and illumination conditions, exhibit a low-rank structure.

A reliable set of such exemplars is easily created using lo-

cal patches from internet images of popular archaeological

structures. These tend to have a large number of publicly

shared images taken by people from across the globe, with

text searches like ‘archaeology’, ‘archaeology travel’ and

‘archaeology close up’ returning approximately 38527 and

395000 results on Flickr and Google Image Search, respec-

tively. Modeling the missing region in a patch P (Fig. 1

(c)) as gross pixel corruptions, we show that it is possi-

ble to simultaneously recover this low-rank subspace and

the sparse error matrix using advanced convex optimization

techniques introduced in [23], [27]. The recovered low-

dimensional subspace inherently performs filling-in of the

missing region in patch P . Recovering low-rank matrices,

corrupted by gross pixel errors, has been proposed in [17],

[23], [27] in which applications such as recovering back-

ground from a scene with dynamic foreground, and remov-

ing specularity from face images were dealt with. These

works make use of the inherent spatial correlation in multi-

ple images of the same object or scene to justify the use of

the low-rank matrix model.

The main contributions of this work are:

• showing that image patches corresponding to arbitrar-

ily oriented planar regions found locally in several
Lambertian surfaces, with varied albedo and lighting

conditions, exhibit a low-rank structure.

• providing a framework for intensity inpainting of ge-

ometrically filled-in missing regions (obtained using

[20]) using the learned compact subspace.

• introducing context-based inpainting as against [6], [8]

which fill-in the missing region using the best match-

ing neighbouring patch.

2. Related Work

Inpainting of missing data is an active research topic, ex-

plored mainly along two strategies - the first one considers

the image space itself to constrain the span of the data in the

missing region, while the second line of research assumes

that the missing region belongs to the space of images of

the same scene or semantically similar scene.

PDE-based techniques such as [3] perform structure in-

painting by assuming local smoothness and interpolating

the available data along the hole boundary into the hole. It

was used successfully to fill-in small geometric holes with

no texture. Non-parametric sampling based methods like

[9] have shown success in inpainting repeating texture pat-

terns. Building upon these methods, [6], [7], [8] combined

geometry and texture inpainting by treating them separately

and finally fusing them together. For the inpainting step, ex-

emplar patches from the neighbourhood of the same image

were used to constrain the appearance space of the missing

region. The work in [25] improved upon [8] and modeled a

patch containing damaged pixels as belonging to a span of

a sparse set of atoms from an image dictionary, built us-

ing exemplars from the known regions of the image. In

[12], Tensor Voting (TV)-based image segmentation is pro-

posed to yield boundaries dividing salient regions followed

by TV-based colour inference in each salient region over-

lapping the missing region. Inpainting local repetitive struc-

tures by promoting blockwise low-rankness is proposed in

[16]. Multiscale graph cuts-based inpainting [15] formu-

late the problem as that of discrete global energy minimiza-

tion to enforce structure and texture consistency. In [13], a

search for best matching patch is employed in the feature

space. However, all these methods restrict the missing re-

gion data to lie in the image space itself, and as noted in

[10], an image space can not span the large dimensionality

of all possible missing textures. This can lead to artifacts in

the resulting image.

The second line of research mentioned earlier benefits

from easy availability of plenty of images of famous tourist

spots and monuments on several image sharing websites.

These methods have been shown to work quite well even-

though the exemplar images may not be at the same scale

or of the same illumination as the damaged image. In

[10], filling-in of the missing region is performed using best

matching patches from across the set of semantically simi-

lar scenes. Though inherently context-based because of the

use of scene matching descriptors, the seamlessly blended

results produced may not be true to the actual scene as no

constraints are put on the type of scene exemplars used.

The work in [22] used images of the same scene to accu-

rately fill-in the missing region by finding a set of homo-

graphies that geometrically and photometrically register the

damaged image and its exemplars.

3. Methodology
Following the second line of research, in this paper, we

propose intensity filling-in for large damaged regions found

in 3D models of archaeological structures using exemplar

patches derived from internet images of other archaeologi-

cal structures. The missing region is modeled as gross pixel

corruption and filling-in of this region is performed using a

learned low-dimensional subspace.

We would like to add that geometric reconstruction of

large holes in damaged 3D models has already been shown

in [20]. The resulting geometrically inpainted 3D models

are used as an input for our work.
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3.1. A low-rank matrix model

Claim: Image patches corresponding to arbitrarily ori-
ented planar regions, found locally in several Lambertian
surfaces, with possibly different albedo and uncontrolled
lighting conditions, lie in a low-dimensional subspace.

Proof: Consider a set of images {Ii}, i = {1, 2, ...k},
corresponding to k 3D surfaces {Xi}, where the number of

pixels in each Ii equals m. Let vec(Ii) represent an opera-

tion that lexicographically orders Ii. Rearranging {vec(Ii)}
as column vectors of a matrix A, we have

A =
[
vec(I1) vec(I2) · · · vec(Ik)

]
(1)

=

⎡
⎢⎢⎢⎣

I1 (1 ) I2 (1 ) · · · Ik (1 )
I1 (2 ) I2 (2 ) · · · Ik (2 )

...
...

. . .
...

I1 (m) I2 (m) · · · Ik (m)

⎤
⎥⎥⎥⎦ (2)

where A ∈ R
m×k and Ii(j) is the jth element of

vec(Ii), j = {1, 2, ...m}. Assuming Lambertian image

formation model, the intensity at Ii(j) corresponding to a

surface point p = [x y z]T on Xi is given by

Ii(j) = ρijn
T
ijsi (3)

where ρij and nij ∈ R
3 are the albedo and normal direction

at p, respectively, and si ∈ R
3 is the direction of a distant

source of light. The assumption of a single distant source

of light is for the sake of simplicity. This constraint will be

relaxed subsequently. Substituting (3) in (2), we get

A =

⎡
⎢⎢⎢⎢⎣

ρ11n
T
11s1 ρ21n

T
21s2 · · · ρk1n

T
k1sk

ρ12n
T
12s1 ρ22n

T
22s2 · · · ρk2n

T
k2sk

...
...

. . .
...

ρ1mnT
1ms1 ρ2mnT

2ms2 · · · ρkmnT
kmsk

⎤
⎥⎥⎥⎥⎦

(4)

Equivalently, we can write

ρijn
T
ijsi = ρij(Rinj)

T si = ρijn
T
j R

T
i si, ∀ i, j

i.e., if a surface with lexicographically ordered set of nor-

mals given by [n1 n2 · · · nm]T is chosen as a reference,

Ri is the rotation matrix that maps [n1 n2 · · · nm]T to the

lexicographically ordered set of normals corresponding to

an arbitrary rotation of such a surface. Let {Ii} be the im-

ages of such surfaces taken from several images. Thus, we

obtain

A =

⎡
⎢⎢⎢⎢⎣

ρ11n
T
1 R

T
1 s1 ρ21n

T
1 R

T
2 s2 · · · ρk1n

T
1 R

T
k sk

ρ12n
T
2 R

T
1 s1 ρ22n

T
2 R

T
2 s2 · · · ρk2n

T
2 R

T
k sk

...
...

. . .
...

ρ1mnT
mRT

1 s1 ρ2mnT
mRT

2 s2 · · · ρkmnT
mRT

k sk

⎤
⎥⎥⎥⎥⎦

(5)

If the images of the surfaces considered are of a sufficiently

local region, the albedo in such a region can be assumed to

be constant, i.e., ρij = ρi, ∀ i, j. Such an assumption holds

for the appearance space of monolithic stone carvings. Let

us collect the normals and albedo terms into large sparse

matrices N and D respectively, such that

N =

⎡
⎢⎢⎢⎣

nT
1 · · ·

nT
2 · · ·

...
...

. . .
...

· · · nT
m

⎤
⎥⎥⎥⎦ , D =

⎡
⎢⎢⎢⎣

ρ1 · · ·
ρ2 · · ·

...
...

. . .
...

· · · ρk

⎤
⎥⎥⎥⎦

Consequently, we can factorize A in (5) as

A = N

⎡
⎢⎢⎢⎣

RT
1 s1 RT

2 s2 · · · RT
k sk

RT
1 s1 RT

2 s2 · · · RT
k sk

· · · · · · . . . · · ·
RT

1 s1 RT
2 s2 · · · RT

k sk

⎤
⎥⎥⎥⎦ D (6)

= N S D

where D ∈ R
k×k, N ∈ R

m×3m, and S ∈ R
3m×k. Since S

is of a form such that the first three rows are repeated (m−
1) times, S has atmost 3 linearly independent rows, while

D and N are full rank matrices. Analyzing the rank of the

matrix A, given that m is the number of pixels considered in

each Ii, k is the number of exemplars used and 3 < m < k,

we get

rank(A) = min{rank(N), rank(S), rank(D)}
= min{m, rank(S), k}

Therefore, rank(A) ≤ 3 (7)

If we consider arbitrarily rotated locally planar regions as

the underlying surfaces in the above analysis, only the ma-

trix N changes (n1 = n2 = · · · = nm), while the bound

on rank(A) remains the same. Image patches from planar

surface regions with no geometry (for example, walls of ar-

chaeological structures) serve as ideal candidates to provide

such an exemplar, and can easily be found in several internet

images of archaeological structures.

3.1.1 Complex lighting scenario

We now extend the low-rank result derived in the section 3.1

to the situation of multiple light sources. It is well-known

that the appearance space of a single Lambertian surface

lies in a 9D space [5], [19]. Using the forward rendering

model of [18], the irradiance E(n) at a surface point p with

surface normal n = [nx ny nz]
T is given by

E(n) = c1L22(n
2
x − n2

y) + c3L20n
2
z + c4L00 − c5L20

+ 2c1(L2−2nxny + L21nxnz + L2−1nynz

+ 2c2(L11nx + L1−1ny + L10nz) (8)

where Llm (l = {0, 1, 2} and − l ≤ m ≤ l) are the first 9

spherical harmonic co-efficients and cj , j = {1, 2, ...5} are

423423423423



constants as defined in [18]. The image intensity at a pixel

j corresponding to a surface point p is given by

Ii(j) = ρijE(nij) (9)

Rearranging (8) into dot-product form by collecting the

spherical harmonic co-efficients into Li and the remaining

terms into the vector cij , and substituting in (9) yields

Ii(j) = ρijc
T
ijLi (10)

Since (3) and (10) are of the same form, the proof in section

3.1 can be repeated by making appropriate changes to the

matrices N , S and D, the rank of which now changes to m,

9 and k respectively. Again, from (7) it follows that

rank(A) = min{m, rank(S), k}
Therefore, rank(A) ≤ 9 (11)

Thus, regardless of the choice of simple (single light source)

or complex (multiple light sources) lighting model, we have

shown that a set of local planar patches taken from differ-

ent Lambertian surfaces indeed lies in a low-dimensional

subspace.

3.1.2 Differences with [5], [19] and [24]

Our proof for (7) begins by assuming the well-known Lam-

bertian image formation model, for which it has been shown

in [5], [19] and [24] that the image space for a single 3D

surface observed under varied lighting conditions lies in a

compact subspace. Building upon that inference, this pa-

per proposes an interesting and hitherto unknown conclu-

sion that even local patches corresponding to arbitrarily ori-

ented planar underlying geometry, with different albedo and

illumination conditions, taken from images of several 3D

surfaces also exhibit a low-rank matrix structure. A similar

inference is neither implicitly obvious using the formulation

of [5], [19] or [24] nor has it been explicitly established in

the literature. Furthermore, deviating from the factorization

used in [24], neither of the matrices N , S or D need to be

known. Also the low-rank matrix result (7), (11) is used to

inpaint missing regions in local patches as against surface

normal estimation performed in [24].

3.2. Inpainting holes using the low-rank model

Let us assume the availability of (k − 1) images {Ii}
of arbitrarily oriented planar surfaces with different albedos

and illumination conditions as explained in section 3.1. The

goal now is to estimate the missing regions in a locally pla-

nar patch P (Fig. 1(c)), which is of a size equal to that of

Ii, and which partially overlaps with both the broken and

undamaged regions. From (7) and (11), such a patch would

form a low-rank matrix model along with the other (k − 1)
images.

Modeling the pixels in the missing region of the patch

as gross pixel corruptions, and these corruptions as additive

error, the corrupted matrix Aobs can be decomposed as

Aobs = A+ E (12)

where Aobs is the matrix of the above k images arranged as

column vectors, A is the required low-rank matrix, and E
is the matrix containing additive errors. Since only the kth

column in Aobs is corrupted, E turns out to be sparse. Thus,

the problem reduces to estimating the following

{Â, Ê} = arg
A,E

min (rank(A) + γ‖E‖0)
s.t. Aobs = A+ E (13)

where rank(.) is a function that calculates the rank of the

given matrix and ‖.‖0 finds the l0-norm. Recent works in

rank minimization based on convex optimization techniques

[23], [24], [26], [27] have made it possible to robustly re-

cover low-rank matrices even in the presence of significant

amounts of corruption. These works state that when both

the rank of the matrix to be recovered (A) and the num-

ber of errors in E are not too high, the rank(.) function

and ‖.‖0 function in (13) can be replaced by the nuclear

norm (i.e., the sum of the singular values) and l1-norm (i.e.,

the ‖.‖1 function), respectively. To solve (13), we use the

Augmented Lagrange Multiplier (ALM) method, the source

code of which has been made available by the authors of

[27]. This optimization procedure enables search for the ro-

bust bases, a linear combination of which best explains the

missing entries in the kth column of Aobs to yield the low

rank matrix A.

Algorithm 1 Intensity inpainting of large missing regions

Input: (a) 3D model with geometrically inpainted dam-

aged region, (b) database of (k − 1) exemplars {Xi}
Output: Intensity inpainted hole region of the 3D model

1: Aobs = [vec(X1) | vec(X2) | ... | vec(Xk−1)]
2: masked hole region

3: while hole exists do
4: {hj} ← current boundary of the hole region

5: for j = 1 to No. of elements in {hj} do
6: {P} ← overlapping patches containing hj

7: Append vec(P ) as kth column of Aobs

8: {Â, Ê} = arg
A,E

min (rank(A) + γ‖E‖0)
s.t. Aobs = A+ E

9: kth column of Â has the inpainted value for hj

10: Repeat steps 6 to 9 for each patch containing hj

11: Unmask hj

12: end for
13: Average the estimates from each overlapping patch

14: end while
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Algorithm 1 details the steps followed for the implemen-

tation of the inpainting procedure using the methodology

described above. In a manner similar to [2], overlapping

patches are considered and contribution from each patch is

averaged to yield the final inpainted value at each pixel in

the hole region.

4. Experimental Results
In this section, we demonstrate the effectiveness of the

proposed algorithm and also provide comparisons with re-

lated works both quantitatively (synthetic data) and qualita-

tively (real examples). Comparisons are shown against the

works [8], [10] and [13] because the source code of their im-

plementation was freely available. Although [22] is related,

we do not compare with it since it makes use of the same

scene exemplar for inpainting. The proposed method ad-

dresses a scenario where a ‘completed’ same scene may not

be available at all, and thus a comparison with [22] would

be unfair. Comparisons with CSH-based inpainting [13] is

provided as it has been shown to perform better than Patch-

Match [4].

As detailed in section 3.1, a corpus of reliable exemplars

needs to be created to proceed with the proposed low-rank

model-based inpainting. Also, the same examples database

should be applicable for all the inpainting scenarios being

considered. To ensure good span across the appearance

space, a variety of images of archaeological structures avail-

able on online image sharing websites are made use of. Ex-

emplar image patches from surface regions with no geom-

etry corresponding to roughly planar regions are manually

cropped and stored, and the same database is used across

all the experiments. The patch size chosen in this work is

20× 20 as it ensures patch planarity for inpainting and pro-

vides the best trade-off between ensuring overcompleteness

of A (given that the number of patches used is 1400), and

speed of execution. It is to be noted that small patches from

arbitrarily oriented planar regions can be expected to have

some rotation times the similar set of normals (5). How-

ever, if this gets violated, rank(A) will go up, reflecting in

an increase in reconstruction error for the known region in

patch P , leading to artifacts. From the results, it will be

evident that this is an unlikely event. Also, empirically, the

rank(A) turned out to be close to 9 for almost all of the

inpainted patches, leading to the conclusion that complex

lighting source model well-represents uncontrolled illumi-

nation scenarios.

4.1. Synthetic data

Implementing the proposed algorithm on synthetic data

allows for quantitative comparison with other works pro-

posed in the literature. Evaluating against the ground truth,

the reconstruction error is determined by two standard met-

rics used commonly in the colour correction literature,

(a) (b) (32.24 dB, 0.9508)

(c) (30.73 dB, 0.9504) (d) (34.40 dB, 0.9738)

(e) (f) (39.49 dB, 0.9874)

(g) (35.03 dB, 0.9812) (h) (36.25 dB, 0.9804)

Figure 2. Intensity inpainting comparison for a synthetically gen-

erated ‘missing’ region with no geometry. (PSNR, SSIM) values

are given in parentheses. (a, e) Original images, (b, f) results using

the proposed method, (c, g) results using [8], (d, h) results using

[10]. The masked region is shown bounded in green.

namely PSNR and SSIM [21].

In the first example (Figs. 2 (a), (e)), a known tex-

tured region with no geometry is masked (shown bounded

in green) and treated as ‘missing’ region. Since the marked

region in Fig. 2 (a) does not contain any significant ge-

ometry or texture variations, there is no distinct advantage

provided by the proposed method (Fig. 2 (b)). On the other

hand, the marked region in Fig. 2 (e) contains varying tex-

ture and is near to the boundary of the foreground object

and the background. In this case, performance using the

proposed method (Fig. 2 (f)) turns out to be better than the

output provided by [10] (Fig. 2 (h)). In both the cases, the

proposed method outperforms [8] (Figs. 2 (c), (g)), which

can be attributed to the usage of context information in our

scheme.

The second example (Fig. 3) considers a more interest-

ing synthetic scenario, where a missing region is created
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(a) (b) (33.51 dB, 0.9978) (c) (23.32 dB, 0.9878) (d) (25.05 dB, 0.9866) (e) (30.46 dB, 0.9867)

(f) (g) (36.82 dB, 0.9969) (h) (33.55 dB, 0.9960) (i) (34.67 dB, 0.9968) (j) (36.37 dB, 0.9967)

(k) (l) (37.537 dB, 0.9981) (m) (29.94 dB, 0.9927) (n) (29.95 dB, 0.9928) (o) (30.35 dB, 0.9933)

(p) (q) (39.098 dB, 0.9885) (r) (30.611 dB, 0.9884) (s) (30.33 dB, 0.9857) (t) (31.61 dB, 0.9864)

Figure 3. Inpainting of synthetically created ‘missing’ regions in 3D models. (PSNR, SSIM) pair are given in parentheses for each result.

(a, f, k, p) Original 3D model, (b, g, l, q) results using the proposed method, (c, h, m, r) results using [8], (d, i, n, s) results using [10], and

(e, j, o, t) results using [13].

so as to include significant 3D geometry variations (for ex-

ample, presence of curved areas). A visual analysis of the

results delivered by the proposed method reveals very few

artifacts. Quantitative analysis in the form of PSNR and

SSIM values too serve to corroborate the performance of

our method.

It is to be noted that although the examples shown in

Figs. 2 and 3 consider a synthetically generated ‘miss-

ing’ region, the scenarios considered (especially Fig. 3) are

quite complex with a considerable chunk of region marked

as ‘missing’. Such a hole-region in no way simplifies the

inpainting problem.

Discussions on comparative results : Neighbourhood

or patch-based methods [8], [13] have been shown to work

well if the known region in the image contains significant

data variations to correctly fill-in the missing region. How-

ever, as noted in [10], a single image space does not span the

large dimensionality of all possible missing textures. Also,

the self-similar examples used in [20] typically come from

multiple archaeological sites and exhibit different material

properties, rendering search for best matching patch use-

less. All these factors lead to an incorrect filling-in using

neighbourhood or patch-based methods. In comparison, our

(a) (b) (c)

(d) (e) (f)

Figure 4. (a, b, c) One of the views of the three real examples

considered with large naturally existing damaged regions. (d, e,

f) Sample patches from across many examples showing texture

variations.

method learns robust basis of a low-dimensional subspace

from varied exemplar patches obtained from a large set of

images to correctly model the missing region in a given

patch.
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(a) (b) (c) (d) (e)

(f) (g) (h) (i) (j)

(k) (l) (m) (n) (o)

Figure 5. Geometric and photometric inpainting of real examples. (a, f, k) Original 3D model, (b, g, l) results using the proposed method,

(c, h, m) results using [8], (d, i, n) results using [10], and (e, j, o) results using [13].

4.2. Real objects

The scenario of naturally existing large missing regions

in real world structures is considered next. Such structures

can be easily found, especially at archaeological sites. All

the examples considered in this work are of sculptures of

archaeological interest (Figs. 4 (a), (b), (c)). Due to absence

of ground truth information, a quantitative error analysis is

not possible for this scenario and the results can only be

judged qualitatively.

The 1st row of Fig. 5 shows geometric and photomet-

ric inpainting result for the broken regions of the 3D model

of a mythical lion stone carving. The results using the pro-

posed method are shown along with those of [8] and [10].

The second real example considered is that of a ‘lion head’

(2nd row of Fig. 5) where the entire head region was miss-

ing. Another example considered is that of a horse carv-

ing (3rd row of Fig. 5) where the body of the horse was

severely damaged. The absence of any artifacts or any vis-

ible seam at the junction of reconstructed and undamaged

regions (Figs. 5 (b), (g), (l)) indicates the effectiveness of

the proposed method.

Discussions on comparative results : Since the region

to be inpainted is known to belong to the appearance space

of sample patches forming the low-rank structure, the re-

sults using the proposed method are visually more salient

in comparison to other works which pick up best matches

without restricting the context, leading to visible artifacts

(3rd, 4th and 5th column of Fig. 5). Though the context-

based inpainting followed in the proposed method may ap-

pear to be restrictive, the variety of textures inpainted (Figs.

4 (d), (e), (f)) illustrates the effectiveness of our method.

The availability of large exemplars from internet images

greatly simplifies the search for exemplar patches ‘describ-

ing’ the context, and simplifies the implementation process
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as well.

5. Conclusions
The proposed work allows for visualizing, with saliently

inpainted intensity values, large broken regions in 3D

models which have been geometrically hole-filled. Such

a combined 3D geometric and photometric methodology

would allow for creating visually pleasing digital archives

of heritage sites, and would also be a natural addition

to applications aiming to provide a ‘Virtual Tour’ of

archaeological sites. The main contribution of this work

includes proposing context-based inpainting which ensures

a visually artifact-free intensity filling-in and inpainting

of the missing region using a learned low-rank subspace

formed by exemplar patches taken from internet images.

The high quality and visually salient intensity inpainted

hole regions in the resulting 3D models adequately demon-

strate the effectiveness of the proposed method.
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