
 

 
Abstract 

 
The development of biometric recognition technologies 

often requires large sets of biometric data for training and 
evaluation purposes. The use of synthetically generated 
biometric samples has been explored as a means of 
avoiding the challenges of large scale data collection. Our 
paper builds on previous work in synthetic fingerprint 
generation research through the modeling and synthesis of 
texture characteristics for synthetic fingerprint generation. 
The proposed texture characterizing features can be 
modeled from real fingerprint images to generate 
synthetic fingerprint texture statistically representative of 
a particular real fingerprint database. The texture 
characterizing features include ridge intensity along the 
ridge center-lines with seven frequency components, ridge 
width, ridge cross-sectional slope, ridge noise, and valley 
noise. A comparison of these feature densities from real 
and synthetic fingerprints is shown, which demonstrates 
the effectiveness of this method of modeling and 
generating synthetic fingerprint textures. 
 

1. Introduction 
Fingerprint ridge patterns are one of the most widely 

utilized biometric indicators of identity. Though 
fingerprint recognition systems have displayed low error 
rates in matching performance, this technology is far from 
reaching the theoretical limits of fingerprint individuality 
[1]. Furthermore, some applications require 1 to N 
matching, where N may be upwards on the order of���

�. 
As new matching algorithms are introduced and refined 
over time, large numbers of biometric samples must be 
collected, firstly, for training purposes and secondly, for 
performance evaluation. As fingerprint databases grow 
quite large, the scalability of fingerprint matching systems 
becomes an increasing concern.  

The concept of using synthetically generated 
fingerprints to create large databases has been explored. 
Synthetic biometrics is defined as artificially generated 
biometric data, which exhibits meaningful biological 
characteristics as measured by an existing biometric 

system [2]. Typically, the generated biometric data 
represents unique virtual identities. These generated 
characteristics of an artificial fingerprint are typically 
defined by controlling parameters set to imitate the 
biological characteristics of real fingerprints.  Introducing 
a certain amount of variation in the setting of these 
parameters allows for the generation of large numbers of 
unique fingerprint images. With the ability to generate 
large numbers of realistic synthetic fingerprint images, the 
time consuming and expensive process of collecting data 
from live subjects can be reduced. However, with a switch 
from real fingerprints to synthetic, there also comes a loss 
of empirical accuracy, which motivates further 
development in and testing of synthetic generation 
techniques. 

Synthetic biometrics also allow for the protection of 
personal identity [3].  A synthetic biometric sample in an 
evaluation database is not associated with any real 
person's identity. Thus, synthetic biometric databases 
could be distributed among research organizations with 
less regulation. 

Through modeling, one tries to represent aspects of the 
real world, but the models are only as good as what can be 
observed. Yanushkevich [2] defined the crucial point of 
biometric modeling as the analysis-by-synthesis paradigm, 
where analysis incorporates feature extraction and 
modeling. The model for analysis produces features from 
the biometric sample and the model for synthesis 
reproduces the biometric sample from the extracted 
features. The diagram in Figure 1 demonstrates the 
analysis-by-synthesis process for fingerprint modeling and 
generation, where features are extracted from real 
fingerprint images and modeled according to their 
densities. These densities are sampled to generate unique 
features, which are mapped to synthetic fingerprint 
images. After extracting and modeling the features from 
these synthetic images, the densities of the synthetic 
images can be compared back to the densities from the 
real images to validate the realistic nature of the synthetic 
images. 

The first step in generating a synthetic fingerprint image 
is creating the master print. The master print is defined by 
the ridge orientation and ridge density and is represented 
by a binary image. Common methods of generating the 
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master print are described in [4], [5]. Given the master 
print, non-linear distortions are typically applied to 
simulate the effects of pressing the finger on the sensor 
[6]. The final step is texture rendering and adding noise. 
Previously, this step has been accomplished with uniform 
noise generation [4] and improved upon with the non-
uniform Perlin noise function [7]. For these methods, the 
realistic nature of the texture was analyzed with visual 
inspection. In this paper, we propose a new approach for 
rendering synthetic fingerprint texture by modeling 
characteristics of real fingerprint ridges and valleys. 
Unlike previous approaches, our approach is objectively 
validated by comparing statistical distributions of the 
measured characteristics from the real and synthetic 
datasets. 

Section 2 gives an overview of specific research in the 
generation of synthetic fingerprints. Section 3 describes 
the ridge and valley modeling approach for fingerprint 
synthesis proposed in this paper. Section 4 then evaluates 
and discusses the ridge and valley models. Finally, Section 
5 gives the conclusions. 

2. Synthetic Fingerprint Generation 
The process of generating a synthetic fingerprint image 

begins with the creation of the master fingerprint image, 
which is a binary image not containing any texture or 
noise. The state of the art is the SFinGe technique 
developed by Cappelli et al. [4], [6], [7]. This technique 
begins with the Sherlock and Monro model [8] for 
generating the orientation image from randomly placed 
cores and deltas. Cappelli and Maltoni [9] modeled the 
spatial distributions of cores and deltas using Gaussian 
mixture models (GMM). Next, the ridge density image is 
defined. Then, beginning with a small spike placed in the 
center of the image, or multiple randomly places spikes, a 

Gabor filter, tuned to local orientation and frequency, is 
used to iteratively enhance the fingerprint image from 
those points. In order to produce a more realistic 
distribution of minutiae points, Zhao et al. [5] proposed 
modeling the realistic distribution of minutiae points and 
built on the technique of reconstructing fingerprints from 
minutiae templates of Feng and Jain [10] to generate 
unique synthetic fingerprints. 

After the master fingerprint is generated, the next step is 
adding distortions to the image to simulate the effects of 
traction and torsion forces applied during placement of the 
finger on the sensor surface. For the modeling of the 
resulting non-linear distortions, a skin-distortion model 
that had been developed to aid in matching is implemented 
[6]. For this step, every pixel is re-mapped according to a 
specified distortion function. 
 The final step in the generation of a synthetic 
fingerprint image is rendering texture and adding noise. 
An initial attempt at creating a noisy fingerprint by 
Cappelli et al. [4] is to add small white circles of varying 
size at random positions on the image. After applying a 
smoothing filter and reapplying the valleys, a textured, 
somewhat realistic fingerprint is obtained. This method is 
then improved upon by Cappelli et al. [7] with the use of 
the Perlin Noise function [11]. In this method, random 
waves at multiple frequency ranges are added together to 
create a non-uniform noise function. The downside of 
these methods is that they do not necessaraly produce 
fingerprint texture statistically representative of real 
fingerprint texture.  

Research has shown that image quality is influenced by 
various skin characteristics, such as moisture, natural oils, 
elasticity, and temperature, as well as different sensing 
technologies [12]. Our paper focuses on accurately 
representing the ridge and valley segments in fingerprint 
images, which can influence quality, particularly ridge 

Figure 1: Analysis-by-synthesis process for synthetic fingerprint generation.  
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clarity [13]. While previous methods produce fingerprint 
images that have texture and noise characteristics of the 
ridges and valleys visually similar to that of real 
fingerprint images, we propose a new approach for adding 
these characteristics to synthetic fingerprint images, where 
the texture and noise are modeled from real fingerprint 
images. The advantage of this approach is that the 
characteristics are measurable in a real database and can 
be mapped to a synthetic database. Through this approach, 
the synthetic database models the real database such that 
the characteristics of the synthetic database can vary 
depending on the real database it seeks to model. 

3. Proposed Approach 
A set of key features are identified and used to generate 

texture and noise for synthetic fingerprint images. By 
accurately modeling these features from a database of real 
fingerprint images, a database of synthetic fingerprint 
images can be generated, representative of the database 
from which it was modeled. 

The proposed method of this paper is as follows: First, 
features from a database of real fingerprint images are 
extracted (Section 3.1) and modeled (Section 3.2). Next, 
the models are sampled to obtain the controlling 
parameters for the synthetic fingerprint generator, 
allowing the features to be effectively mapped from a real 
world database to a synthetic database (Section 3.3). 
Finally, the analysis by synthesis cycle is completed by 
extracting and verifying the features from the synthetic 
database (Section 4). This process is demonstrated through 
the modeling of ridge texture and valley noise features. 

3.1. Feature Extraction 
The process of extracting the ridge features begins with 

enhancement of the fingerprint image to obtain a binary 
ridge mask. The typical method of ridge enhancement is 
using a Gabor filter to bandpass filter the fingerprint 
image using the local ridge orientation and frequency. The 
estimation of the ridge orientation map is conducted using 
the gradient method, as described in [14], [15]. Given the 
estimated orientation, the ridge frequency can then be 
estimated for each pixel by counting peaks in the cross 
section signature. The ridge segments from the enhanced 
fingerprint are then thinned to a single pixel wide 8-
connected segment. After removing all ridge bifurcation 
minutiae points, each ridge segment is individually 
extracted. 

During the extraction of ridge segments, the cross 
section perpendicular to the ridge direction is analyzed and 
the ridge width and cross-sectional slope are measured. 
The edges of the ridge are identified by locating the points 
of maximum derivative on either side of the ridge center. 
After the successful tracking of each ridge segment, the 1-
dimensional signal along the center of the ridge is 

analyzed, allowing for the measurement of the frequency 
components along the length of the ridge and the gray 
level intensities forming the ridge. A short-time Fourier 
transform is performed on this ridge signal, allowing for 
the modeling of the variation of ridge signal frequency 
along the length of each ridge. Frequency analysis of this 
ridge signal has been demonstrated to be a useful measure 
of perspiration patterns along ridge segments in fingerprint 
liveness detection research [16]. The ridge frequency is 
modeled using the absolute values of the first seven 
frequency components of a 32-point Fast Fourier 
Transform (FFT). The first seven frequency components 
were considered sufficient for capturing the variation of 
gray level from perspiration emanating from pores. By 
reconstructing the signal with these seven frequency 
components and subtracting the reconstructed signal from 
the original signal, the difference gives an approximation 
of the noise in the ridge. Finally, in a similar way, the 
valley segments are isolated and the gray level values are 
extracted for determination of the noise in the valleys. 

This process results in five features as follows:  ridge 
intensity along the ridge center-lines with seven frequency 
components, ridge width, ridge cross-sectional slope, ridge 
noise, and valley noise.  These features are characterized 
as described in Section 3.2 and used when generating the 
texture for the synthetic images as described in Section 
3.3. 

3.2. Feature Modeling 
The distribution of each feature is analyzed on a per 

image basis and an appropriate model is constructed. 
Since it is unknown whether the densities belong to a 
particular distribution, a non-parametric modeling 
approach is implemented. In this case, the simple 
histogram method is applied, where the model is defined 
as the histogram of the data. Features are extracted from a 
real fingerprint image and modeled. These models are then 
sampled to create texture for one or many synthetic 
fingerprint images, where the texture of each synthetic 
fingerprint is different, yet representative of the single real 
fingerprint. 

3.3. Feature Mapping 
For the mapping of texture features to a synthetically 

generated ridge pattern, the reverse of the feature 
extraction process must be implemented. The master 
synthetic fingerprint and the orientation map are required 
for this step. First, the ridges of the master fingerprint are 
thinned to one pixel wide 8-connected segments as 
described in Section 3.1. Then, each ridge segment is 
tracked, overlaying a synthetically generated ridge 
segment on the master print. The following procedure is 
repeated for each ridge segment. 
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1. Determine length of segment. 
2. Generate ridge center signal, sampling from ridge 

frequency, intensity, and noise models. 
3. Generate a cross-section for each ridge center 

pixel, sampling from ridge width and cross-
sectional slope models. 

4. Travel along each ridge segment, placing a cross-
section, rotated to be perpendicular to local ridge 
orientation. 

The last step is to scan through the image and locate any 
unassigned ridge pixels and choose a value based on its 
neighborhood, here the median value was chosen.  

Three examples of texture mapping (one for each 
database) from a real fingerprint image to a synthetic are 
shown in Figure 2. These examples visually demonstrate 
the capability of the proposed texture modeling approach 
in capturing particular image quality characteristics to be 
recreated in synthetic fingerprints. 

4. Model Evaluation & Discussion 
As a check to ensure the appropriate mapping of 

features, the feature extraction process is repeated for the 
synthetic images. The distributions are then compared to 
the extracted features of the real fingerprints. For this 
evaluation, 800 images are selected from each of the three 
real FVC2004 databases and the texture characteristics of 
each image are modeled. One synthetic image is created 
from each of the models, giving 800 synthetic images per 
database, each with unique, yet statistically representative 
texture. Ten unique master prints are used for this process. 

The comparisons of the three real FVC2004 databases and 
three corresponding synthetic databases created here are 
shown in Figure 3, demonstrating a close similarity 
between the feature distributions of the synthetic 
fingerprints and the real fingerprints from which they were 
modeled. For this analysis, the feature distributions from 
all 800 images for each database are combined into a 
single plot for each feature. Each pair of distributions is 
compared using the two-sample Kolmogorov-Smirnov (K-
S) test, where the K-S statistic is a measure of the distance 
between the distribution functions of the two samples. 
Each K-S statistic is labeled in Figure 3. Figure 3 also 
demonstrates the differences in the feature distributions 
across different types of fingerprint data, e.g. the different 
sensing technologies used in the FVC2004 collection.   

One issue encountered is in DB3, where significant 
portions of the ridges are saturated at a gray level of zero. 
During generation of the synthetic ridges, clipping caused 
the distribution of each frequency component magnitude 
to be shifted towards higher gray levels when adding in 
each component to the synthetic ridge signal. 
Consequently, the K-S statistics for the DB3 intensity 
distributions are significantly higher than all the others. 
This case demonstrates what can happen when the 
synthetic generation process is not tightly coupled with the 
feature extraction process.  In order to solve this problem, 
a new synthetic generation method would need to be 
developed which includes modeling of this saturation 
effect. A contribution of this work is that the method 
“couples” analysis and synthesis for texture generation, 
particularly in DB1 and DB2.   

Figure 2: Example image pairs
(real/synthetic) for each of the
three real FVC2004 databases. Top
row contains real fingerprints;
bottom row contains corresponding
synthetic fingerprints. The same
master fingerprint is used for the
generation of each synthetic image. 
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Figure 3: Comparison of real and synthetic feature distributions measured from 800 real fingerprint images from each of the three
real FVC2004 databases and 800 synthetic fingerprint images representative of each of the real databases in terms of texture.
Distributions are compared using the two-sample Kolmogorov-Smirnov (K-S) test and each K-S statistic is reported. 
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When comparing our texture generating approach to the 
commercial software SFinGe, some important differences 
should be pointed out. The input parameters for texture in 
SFinGe include ridge noise, ridge prominence, valley 
noise, and background noise. Our input parameters for 
texture include ridge intensity along the ridge center with 
seven frequency components, ridge width, ridge cross-
sectional slope, ridge noise, and valley noise. While the 
commercial SFinGe includes texture analysis, our features 
expand upon this work and include additional components 
of the texture characteristics. However, the main 
contribution of our approach is in the modeling aspect. 
Our features are measured and modeled directly from real 
fingerprint images and mapped to synthetic fingerprint 
images. The SFinGe software allows the parameters to be 
selected from specified distributions for creating a 
database of images.  However, the linkage between the 
distributions of a real database and controlling parameters 
of the synthetic features must be performed manually. 
Furthermore, the distributions are for selection of 
parameters at the database level and distributions at the 
image level can not be controlled. Currently our features 
are spatially independent, causing a slight lack in realism. 
Spatial dependence will be considered in future work. 

5. Conclusion 
Modeling of fingerprint features is an important aspect 

of synthetic fingerprint generation, in that it allows for 
generation of new fingerprint samples, which are unique 
from the fingerprint used for modeling, while still 
retaining the statistical properties of the database of real 
fingerprints. This process has been demonstrated by 
mapping the feature statistics from real to synthetic 
fingerprints. The synthesis process could be repeated any 
number of times by resampling the models to create many 
synthetic fingerprints with unique textures, representative 
of real fingerprint images. 

A future direction to be taken in this work is to analyze 
the correlations between features to assess the possible 
need for joint-feature models. It is likely that at least some 
of the features are highly correlated and that correlation 
should be incorporated into the models. An additional step 
will be to analyze the spatial dependence of each feature. 
An example of this type of dependency could be the ridge 
intensity being greater towards the center of the fingerprint 
image than on the outside. Ultimately, these texture 
features should be combined with minutia distribution and 
distortion models to assess matching performance with 
synthetic fingerprint images. 
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