
Two-Stream CNNs for Gesture-Based Verification and Identification:

Learning User Style

Jonathan Wu, Prakash Ishwar, Janusz Konrad∗

Department of Electrical and Computer Engineering, Boston University

8 Saint Mary’s Street, Boston, MA, 02215

[jonwu,pi,jkonrad]@bu.edu

Abstract

Recently, gestures have been proposed as an alterna-

tive biometric modality to traditional biometrics such as

face, fingerprint, iris and gait. As a biometric, gesture is a

short body motion that contains static anatomical informa-

tion and changing behavioral (dynamic) information. We

consider two types of gestures: full-body gestures, such as

a wave of the arms, and hand gestures, such as a subtle

curl of the fingers and palm. Most prior work in this area

evaluates gestures in the context of a “password,” where

each user has a single, chosen gesture motion. Contrary to

prior work, we instead aim to learn a user’s gesture “style”

from a set of training gestures. We use two-stream convo-

lutional neural networks, a form of deep learning, to learn

this gesture style. First, we evaluate the generalization per-

formance during testing of our approach against gestures

or users that have not been seen during training. Then, we

study the importance of dynamics by suppressing dynamic

information in training and testing. We find that we are able

to outperform state-of-the-art methods in identification and

verification for two biometrics-oriented gesture datasets for

body and in-air hand gestures.

1. Introduction

Biometrics are a convenient alternative to traditional

forms of access control such as passwords and pass-cards

since they rely solely on user-specific traits. Unlike al-

phanumeric passwords, biometrics cannot be given or told

to another person, and unlike pass-cards, are always “on-

hand.” Perhaps the most well-known biometrics with these

properties are: fingerprint, face, speech, iris and, gait.

A gesture is a short, few seconds long, body motion that

contains static anatomical information and changing behav-

ioral (dynamic) information. We consider both full-body

∗This work was supported by the National Science Foundation (NSF)

under award CNS-1228869.

BodyLogin: Full-body gestures (captured with Kinect v1)

Handlogin: In-air hand gestures (captured with Kinect v2)

MSRAction3D: Full-body gestures (captured with Kinect v1)

Figure 1. Examples of normalized depth images and correspond-

ing colored optical flow [14] for body and hand gestures captured

using various depth sensors. Hue indicates optical flow orienta-

tion, and saturation indicates magnitude.

gestures, such as a wave of the arms, and hand gestures

such as a subtle curl of the fingers and palm. For identi-

fication and verification, a user can chose a specific gesture

as a “password.”

In this work, rather than focusing on identifying a user

performing a specific “password,” we aim to identify a user

across a set of gestures, in effect learning a user’s gesture

style. We focus on body- and hand-based gestures from

42

depth maps acquired by Kinect sensors (v1 and v2) [2]

(Fig.1).

Extensive literature exists for depth-based gesture recog-

nition for body [15, 24, 31, 5] and hand [17, 10, 21] ges-

tures. However, there are few works for user identifica-

tion and verification based on gestures. Both body- and

hand-based gesture biometrics have been investigated inde-

pendently using primarily depth silhouette shape [27, 26]

and skeletal features (pose estimates from depth maps)

[12, 3, 30, 11]. In [26], a temporal hierarchy of depth-

based silhouette covariances from hand gestures was used to

authenticate users, whereas in [3] a dynamic time warping

(DTW) algorithm applied to fingertip and palm coordinates

(hand pose estimates), that were estimated from depth im-

ages, was used. Perhaps the work that is closest to the goal

of this paper is [11], where action-specific metric learning

from normalized joint positions of the body was used to pre-

dict identity from a pool of known actions. We differ from

that work, in that we learn user identity directly from depth

images, without the need to have pose estimates of body

joint positions. We use depth maps and the associated op-

tical flow, which can be useful in cases when skeletal pose

estimation is not reliable or fully available (such as for hand

poses).

This paper makes the following key contributions:

• Development of a two-stream convolutional neural

network for user identification and verification based

on body and hand gestures.

• Evaluation of the generalization performance for un-

seen gestures and users in the training set.

• Assessment of the value of dynamics for user identifi-

cation and verification.

• A t-SNE-based assessment of the capacity of the stud-

ied methods to represent gestures independently of

users (gesture recognition) or to represent users in-

dependently of gestures (user style in verification and

identification).

We validate our approach on two biometrics-oriented

datasets (BodyLogin and HandLogin), and one gesture-

centric dataset (MSRAction3D).

2. Convolutional Neural Networks

Deep convolutional neural networks (CNNs) have be-

come very successful in vision tasks involving single still

images. One of the contributions of this paper is in adapting

CNNs to gesture-based biometrics where both static limb

proportions as well as gesture dynamics come into play.

The goal of CNNs is to learn a large set of kernel weights

optimized for a particular loss function. Within this domain,

several single-image network architectures have been pro-

posed, such as: AlexNet [9], GoogLeNet [22], and VGGNet

[20]. These networks generally vary in the number of layers

and the number and size of kernels.

In this paper, we analyze the biometric performance of

gestures using AlexNet. AlexNet [9] is an eight-layer deep

convolutional network consisting of five convolutional and

three fully-connected layers (the last of which is a soft-max

layer). We adapt this network to gesture sequences by using

a variant of the two-stream convolutional network architec-

ture proposed in [19]. Two-stream convolutional networks,

as the name implies, train two separate convolutional net-

works: one for spatial information, and a second one for

temporal information. Although such networks were orig-

inally intended for RGB images, we have adapted them to

handle depth maps (Fig. 2).

The first network is a “spatial stream” convolutional net-

work where a stream of T input depth map frames, extracted

from the input video through subsampling, are mapped to a

stream of T output feature vectors os by passing each frame,

one-by-one, through the network (Fig. 2).

The second network is a “temporal stream” convolu-

tional network that takes a sequence of T colored optical

flow frames (corresponding to the T spatial-stream input

frames) as input. Optical flow [14] is computed for each

pair of consecutive depth map images (depth map values are

treated as luminance values). The computed optical flow

vectors are mapped into polar coordinates and then con-

verted to hue, based on the angle, and saturation, based on

the magnitude, with a fixed brightness (Fig. 1). Much like

the first network, this stream of T input optical flow frames

is mapped to a stream of T output feature vectors ot by pass-

ing every colored optical flow frame, one-by-one, through

the temporal-stream network.

A simple convex combination of the outputs of both net-

works is used to yield a single output oc which is used for

performance evaluation:

oc = wsos + wtot,

where ws ≥ 0 is the spatial-stream network weight, wt ≥ 0
is the temporal-stream network weight, ws + wt = 1,

and os and ot are the respective network outputs. When

ws = 1, wt = 0, only information from the spatial-stream

network is used, and when ws = 0, wt = 1, only infor-

mation from the temporal-stream network is used. We will

report results for various combinations of (ws, wt) weights.

2.1. CNNs for Identification and Verification

Identification: The use of this network for closed-set iden-

tification, i.e., given a gesture, identify a user from a set

of known users, is straightforward. During training (see

Section 2.2), gesture sequences are broken up into single

frames to be trained standalone. During testing, we take

43

Figure 2. A visualization of how we use a deep network for user identification and verification. In identification (top), we fully fine-tune

a network, using gesture depth map frames and optical flow. In verification (bottom), we borrow weights from an identification network,

and use the outputs of the fully-connected layer as the verification features.

the mean of the soft-max probability outputs oc across T

frames (Fig. 2). Recall that oc is a weighted combination of

the softmax probabilities for an input across two networks.

This yields a single soft-max probability vector of length

N (given N users to identify), and the component with the

largest probability identifies the user. Although not the main

focus of this paper, gesture recognition uses the same struc-

ture where N is the number of gestures rather than the num-

ber of users to identity.

Verification: In verification1 (given a gesture, is a user who

(s)he claims to be?), we propose using the output features

from the “full7” layer of a network trained for identification

(Fig. 2). This avoids having to train a separate verification

network for each user which is very expensive computa-

tionally. In addition, there are simply not enough training

samples for each positive class represented by an authentic

user to fully train a network. In this approach, for T frames

that are uniformly sampled from a gesture sequence, two

features of dimension 4096× T (the length of the last fully

connected layer) are extracted yielding os and ot, whose

linear combination gives oc. Since there is no built-in clas-

sification in this approach (no softmax layer), we use these

features as inputs to a two-class classification algorithm for

verification, e.g., based on nearest-neighbor or SVM. The

intuition behind this idea is that, given enough users to iden-

tify, the network will naturally learn a user-separating fea-

1Verification is also called authentication.

ture space which can be leveraged for verification.

We discuss the parameters and training of all the ele-

ments of our networks in the next section.

2.2. Network Implementation Details

Typically, there are not enough training samples in ges-

ture datasets to train all the weights of a deep convolu-

tional network from scratch. Therefore, we follow the com-

mon practice to “pre-train” the network [4, 8] using weights

from another network with sufficient data and then fine-tune

those weights for new data. In our case, we use the dataset

from ImageNet [18] (a network with a softmax loss func-

tion to classify RGB images into 1000 classes) to initialize

the weights in our 5 convolutional layers (conv1 to conv5).

Although our modality is different, as we use depth images

and colored optical flow (instead of RGB), initializing with

ImageNet weights is still effective. Our fully-connected

layers are trained from scratch, with weights initialized to

be zero-mean Gaussian with a small standard deviation of

0.001. In all our networks, we use a batch size of 256 im-

ages. For the spatial-stream network, we start with a learn-

ing rate of 0.003, decreasing this rate by one-tenth every

3,000 iterations until a total of 12,000 iterations are com-

pleted. For the temporal-stream network, we start with a

learning rate of 0.001, decreasing this rate by one-tenth ev-

ery 1,000 iterations until a total of 6,000 iterations are com-

pleted. The dropout value is set to 0.5 in the fully-connected

layers of both networks.

44

We implement, in entirety, all our networks using Caffe

[7, 25] on a single Titan Z GPU.

3. Gesture Datasets

We evaluate our method on 3 publicly available datasets.

Two of these datasets were designed for user verification

and identification (collected with the intention of maximiz-

ing the number of users). The third one was designed for

gesture recognition (collected with the intention of maxi-

mizing the number of gesture/action types).

HandLogin [26] is a dataset containing in-air hand ges-

ture sequences of 21 users, each performing 4 different ges-

tures that are recorded by a Kinect v2 sensor. These gestures

are: compass (move open hand in multiple directions), pi-

ano (move fingers as if playing piano), push (move open

hand towards and away from the sensor), and flipping fist

(twist and curl hand into a fist). Each user performed 10

samples of each gesture.

BodyLogin [27, 30, 28] is a full body multi-view dataset

containing gesture sequences of 40 users performing 5 dif-

ferent gestures that are recorded by Kinect v1 sensors. Four

of these gestures are predefined: S gesture (user draws an

“S” shape with both arms), left-right (user reaches right

shoulder with left hand, and then left shoulder with right

hand), double-handed arch (user moves both arms in an up-

wards arch), and balancing (user performs a complex bal-

ancing gesture involving arms and legs). The fifth gesture

is created by the user (user-defined). Each user performed

each gesture about 20 times under varying degradations,

such as carrying a bag, wearing a coat, passage of time,

and also under spoof attacks. In this study, we train and

test with samples across all degradations, and only from the

center camera viewpoint.

MSRAction3D [13, 24] is a full-body, single-view

dataset containing motion sequences of 10 users, perform-

ing 20 different actions in front of a Kinect v1 sensor. Each

subject performs each action 2 or 3 times, with a total

of 567 depth map sequences. Actions in this dataset are

quite varied, for example: arm waves, hammer motions,

catches, punches, symbol drawings, kicks, tennis swings,

golf swings, and jogging. Although in [13], the actions are

split into 3 subsets for evaluation, we instead evaluate all

the actions at once in all our experiments, which is a more

difficult scenario.

The depth data from all datasets are first background sub-

tracted (background frames are given) and then normalized

and resized using bicubic interpolation to 224× 224 pixels

as shown in Fig. 1.

4. Performance Evaluation

We evaluate performance for two access control scenar-

ios [6]: closed-set identification and verification.

In closed-set identification, given a query gesture se-

quence, an identity is predicted from a pool of known users.

The performance measure we use for identification is the

correct classification error (CCE), which is the rate at which

users are incorrectly identified.

In verification, given a query gesture sequence and

claimed identity, the claim is either verified or rejected. If

the query is sufficiently close in distance to a known, en-

rolled gesture sequence of the claimed identity, it will be

accepted as that user; otherwise, it will be rejected. An er-

ror in verification results from either a false acceptance or a

false rejection. The false acceptance rate (FAR) is the rate at

which unauthorized users are accepted and is a measure of

security. The false rejection rate (FRR) is the rate at which

authorized users are denied access and is a measure of con-

venience. There exists a trade-off between FAR and FRR

which is controlled by a threshold on acceptance distance

(between the query and closest enrolled gesture). A popular

metric that captures this trade-off with a single scalar is the

equal error rate (EER) which is the FAR (or FRR) for the

threshold when FAR and FRR are equal.

In our verification experiments, we use the ℓ2 distance

between the features of gesture sequences (flattened vec-

tors of length 4096 × T, T = 50). If the distance between

a query sample and its nearest-neighbor enrolled sample of

the claimed identity is below a threshold, it is accepted; oth-

erwise, it is rejected. In this paper, we report the EER for

our verification experiments. Additional details on this can

be found in [26].

5. Results and Discussion

In all of our experiments, we benchmark against reim-

plemented depth silhouette covariance features as proposed

in [26]. This method is not based on convolutional neural

networks.

User Identification: We attempt to identify a user across a

whole pool of possible gestures. We test performance both

when a gesture has been seen by the system and also when

it has not. The latter case evaluates how well our learned

model generalizes to gestures that have not been part of the

training set. If it performs well, our model would have, in

effect, learned a specific “style” with which a user performs

gestures, not just the specific gestures a user performs.

Results for both the BodyLogin and Handlogin datasets

are shown in Table 1. The first row of this table (“All /

All”) refers to a scenario when the network has been trained

with samples from all gestures. In this row, we split the

dataset into one half for training and the other half for test-

ing, where each half contains samples from all gestures.

The remaining rows in the table are for scenarios when the

network has been trained on some gestures while tested on

a different unseen gesture. For example, for “All but Fist /

Fist” the network has been trained on “Compass,” “Piano”

45

Table 1. User identification results for BodyLogin and HandLogin.

Dataset

Scenario
User Identification CCE (%)

Weighted Convnets (ws, wt) Baseline

Training / Testing Gestures
←− Spatial Temporal −→

Wu [26]
(1, 0) (2

3
, 1

3
) (1

2
, 1

2
) (1

3
, 2

3
) (0, 1)

HandLogin 1. All / All 0.24% 0.24% 0.24% 0.71% 4.05% 6.43%

(21 users, 2. All but Compass / Compass 2.38% 2.86% 4.76% 8.57% 36.19% 82.38%

4 gestures) 3. All but Piano / Piano 1.91% 0.48% 1.43% 1.91% 12.86% 68.10%

4. All but Push / Push 44.29% 49.05% 54.29% 67.62% 77.14% 79.52%

5. All but Fist / Fist 16.67% 15.71% 17.14% 20.00% 31.43% 72.38%

BodyLogin 1. All / All 0.05% 0.05% 0.05% 0.05% 5.01% 1.15%

(40 users, 2. All but S / S 0.75% 1.00% 1.25% 1.75% 16.75% 75.75%

5 gestures) 3. All but Left-Right / Left-Right 0.88% 1.25% 1.50% 1.88% 11.50% 80.88%

4. All but 2-Handed Arch / 2-Handed Arch 0.13% 0.13% 0.13% 0.38% 6.25% 74.50%

5. All but Balancing / Balancing 9.26% 10.01% 13.27% 19.52% 45.06% 77.97%

6. All but User Defined / User Defined 5.28% 5.53% 6.16% 8.54% 22.49% 71.61%

and “Push” but tested on “Fist.” In Table 2, we report results

for user identification on the MSRAction3D dataset. Here,

we train only on one sample of each action, and test on the

remaining 1-2 samples. This is the same as the row (“All /

All”) in Table 1, where we train with samples from all ges-

tures. In addition to our silhouette covariance benchmark

from [26], we also compare to the reported user identifica-

tion results from [11], which uses skeletal joint estimates

and a distance metric based on skeletal coordinates to de-

termine user identity.

Table 2. User identification on MSRAction3D. [11] performs user

identification on skeletal pose estimates derived from depth maps.

Dataset

User Identification CCE (%)

Weighted Convnets (ws, wt) Baselines

←− Spatial Temporal −→
Wu [26] [11]

(1, 0) (1
2
, 1

2
) (0, 1)

MSR 0.0% 0.0% 0.53% 13.6% 7.0%

Suppression of Dynamics in User Identification: In order

to understand the impact of dynamics in our deep network

representation, we studied the effect of “removing” it. Al-

though a similar study was done in [29], that was based on

skeletal pose estimates. Our study is based on depth maps.

We consider both the input to the temporal-stream network,

as well as the input to the spatial-stream network as con-

taining full dynamic information. To suppress the impact

of dynamics, we remove the temporal network completely,

and use only the first 3 depth map frames (out of typically

hundreds of frames, spanning the time duration of less than

a tenth of a second) as input to the spatial stream network.

In Table 3, we show the empirical performance of dynam-

ics suppression for our two-stream approach as well as for

the approach in [26] which we have reimplemented for this

experiment.

Table 3. Results for the suppression of dynamics in user iden-

tification: only first 3 frames of each depth map sequence are

used for training and testing, and the temporal stream is disabled

(ws = 1, wt = 0).

Dataset
Scenario User Ident. CCE (%)

Data Used Spatial Wu [26]

HandLogin All frames 0.24% 6.43%

No dynamics 1.90% 9.29%

BodyLogin All frames 0.05% 1.15%

No dynamics 1.00% 32.60%

User Verification: Here, we attempt to verify a user’s query

gesture and claimed identity against a pool of known ges-

tures (all gestures of the claimed identity). As it is impracti-

cal to train a deep network for each user, we instead train

an identification network first and use it as a feature ex-

tractor for verification (see Section 2). In our experiments,

we “leave-out” one-fourth of the user pool for testing, and

train an identification network (for feature extraction) on the

remaining three-fourths. For BodyLogin, this is leave-10-

persons-out and for HandLogin this is leave-5-persons-out

cross-validation. In the benchmark verification method, we

use covariance features from the test samples. We report

these results averaged across 4 “leave-out” folds for verifi-

cation in Table 4 for Bodylogin and HandLogin.

Gesture Recognition: Here, we attempt to recognize the

46

Table 4. User verification results for BodyLogin and HandLogin.

Dataset

Scenario
Verification EER (%)

Weighted Convnets (ws, wt) Baseline

Users
←− Spatial Temporal −→

Wu [26]
(1, 0) (2

3
, 1

3
) (1

2
, 1

2
) (1

3
, 2

3
) (0, 1)

HandLogin Leave 5 persons out 2.52% 2.20% 2.71% 4.09% 6.50% 11.45%

BodyLogin Leave 10 persons out 2.76% 2.45% 1.99% 3.07% 8.29% 3.46%

gesture type performed across a pool of users. While in

user identification we are trying to learn the user identity

irrespective of which gestures the user performs, in gesture

recognition we are trying to learn the gesture irrespective of

the users who perform them. Similar to how we “leave-

out” gestures in our user identification experiments, we

“leave-out” users in our gesture recognition experiments.

Specifically, we “leave-out” half of the user pool for testing,

and train a gesture recognition network on the remaining

half. For MSRAction3D, we employ the cross-validation

approach of leaving 5 persons out as done in [16], and in

BodyLogin2 and Handlogin, we perform leave-20-persons-

out, and leave-10-persons-out (half of each dataset popula-

tion), respectively. We report results for gesture recognition

in Table 5.

Table 5. Gesture recognition results. For each dataset, we perform

leave-(N/2)-persons-out cross-validation, where N is equal to the

total number of users in the dataset.

Dataset

Gesture Recognition CCE (%)

Weighted Convnets (ws, wt) Baseline

←− Spatial Temporal −→
Wu [26]

(1, 0) (1
2
, 1

2
) (0, 1)

HandLogin 15.00% 6.82% 10.91% 0.91%

BodyLogin 21.10% 15.09% 20.35% 15.44%

MSRAction3D 44.36% 36.00% 40.36% 25.45%

Discussion: The above results demonstrate a significant

decrease in error when using deep networks compared to

benchmark methods in user identification (all 3 datasets)

and verification (HandLogin and BodyLogin).3 This de-

crease is most striking in identification, when we test ges-

tures that have not been used in training the network. In

stark contrast to the CNN features proposed in our work,

2Of the 5 gesture classes in BodyLogin, 4 gesture classes are shared

across users, and 1 is not, being user-defined. This means that in leave-

persons-out gesture recognition, the fifth gesture class will not have sam-

ples of its gesture type in training. As a result, the fifth gesture class is

expected to act as a “reject”/“not gestures 1 - 4” category for gesture recog-

nition.
3Due to the general lack of per-user samples in MSRAction3D (as it

is a gesture-centric dataset), we do not report results for verification, and

leave-gesture-out experiments for identification.

the covariance features proposed in [26] do not generalize

well across gestures, i.e., when gestures that are not part

of the training set appear in the test set. This can be seen

most clearly by examining the CCE values for the “Com-

pass” gesture in Table 1. The CCE for covariance features

is as high as 82.38% while it is only 2.38% for our CNN

features.

This cross-gesture generalization capacity of CNNs is

also observed in the t-SNE embeddings [23] of the “full7”

layer outputs for Handlogin (Fig. 3), BodyLogin (Fig. 4),

and MSRAction3D (Fig. 5) datasets. Part (a) of each figure

shows the feature embedding for our baseline, which favors

clustering by gesture type. Parts (b), (c), and (d) show the

feature embeddings for our convolutional networks. In part

(b), the pre-trained embedding from ImageNet tends to fa-

vor clustering points by gesture type. After fine-tuning for

identification in part (c), we see clustering by user identity.

This reveals that it is very beneficial to fine-tune our net-

works from the pre-trained weights in order to cluster by

user. Fine-tuning for gesture recognition, shown in part (d),

causes even more compact clustering by gesture type than in

part (b). Note that in the t-SNE plots of the “full7” layer out-

puts after fine-tuning for identification (part (c)) users tend

to cluster together whereas gesture types are mixed within

each cluster. However, in the corresponding t-SNE plots

of the covariance features (part (a)), gesture types tend to

cluster together with users being mixed within each cluster.

There are cases where our network does not generalize

well across gestures, e.g., the “Push” gesture. We posit that

this lower performance occurs because the trained gestures

are significantly different in form and dynamics from the

other gestures. The “Push” gesture contains variations in

scale whereas the other gestures do not. The “Fist” gesture

contains motion that completely occludes the shape of the

hand, which is not in the other gestures. The “Balancing”

gesture includes leg movements, not so for other gestures.

For the most part, this type of result is to be expected. It will

always be difficult to generalize to a completely unknown

gesture that has little-to-no shared components with training

gestures.

For identification on MSRAction3D, we get 0% classi-

fication error. Although seemingly surprising, this result

might be attributed to the dataset collection procedure. In

47

