
Fast Image Gradients Using Binary Feature Convolutions

Pierre-Luc St-Charles, Guillaume-Alexandre Bilodeau

LITIV lab., Dept. of Computer & Software Eng.

Polytechnique Montréal
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Abstract

The recent increase in popularity of binary feature de-

scriptors has opened the door to new lightweight computer

vision applications. Most research efforts thus far have

been dedicated to the introduction of new large-scale binary

features, which are primarily used for keypoint description

and matching. In this paper, we show that the side products

of small-scale binary feature computations can efficiently

filter images and estimate image gradients. The improved

efficiency of low-level operations can be especially useful

in time-constrained applications. Through our experiments,

we show that efficient binary feature convolutions can be

used to mimic various image processing operations, and

even outperform Sobel gradient estimation in the edge de-

tection problem, both in terms of speed and F-Measure.

1. Introduction

Binary feature descriptors have recently experienced a

surge in popularity in computer vision tasks such as ob-

ject matching, visual correspondence, and texture analysis.

Their compact and discriminative nature allows them to per-

form just as well as (or better than) traditional handcrafted

image feature descriptors like SIFT’s [20] or SURF’s [6],

yet at a much lower computational cost [2,5,16]. Typically,

binary features are created by comparing low-level image

characteristics (intensities or gradients) based on a pre-

determined (handcrafted or learned) pattern. The boolean

comparison results obtained are then concatenated into bi-

nary strings, and the “feature-space” distance between these

descriptors can finally be defined as the Hamming distance

between their binary strings.

Lately, research on feature descriptors has mostly fo-

cused on proposing new large-scale binary features for

the keypoint description and matching problem [5, 17, 25].

These works show a clear trend towards data-driven pattern

design for learning task-specific features. However, small-

scale handcrafted binary patterns (e.g. Local Binary Pat-

terns [24]) are still very popular in recognition tasks [7,29–

Figure 1: Gradient magnitude maps obtained by pooling the Ham-

ming weights of 5x5, 16-bit binary feature descriptors across a 3-

level image pyramid. The pyramid is generated using only pixels

fetched via the feature’s lookup pattern.

31] and in texture analysis and modeling [22, 27]. While

large-scale and small-scale binary features differ consider-

ably in their use, they both share the idea of comparing low-

level image characteristics to describe shape context and lo-

cal texture information. Small-scale binary descriptors are

however often computed densely over entire images; there-

fore, given knowledge of their comparison pattern, they can

be reused to accelerate other image processing operations.

In this paper, we show that dense binary features can

be used to efficiently approximate image processing oper-

ations that rely on convolutions, for instance the generation

of an image pyramid, and local image gradient estimation.

These operations are commonly used to solve computer vi-

sion problems, but to our knowledge, no previous work

has studied how the side products of local binary descrip-

tor computations can be used to approximate the low-pass

and high-pass filtering steps they require. In most cases,

applications which already need to compute dense binary

descriptors can benefit from having almost costless filtered

images at their disposition for further processing and anal-

ysis. Besides, depending on the type of local binary feature

used, the “binary feature convolutions” we study may be

several times faster than their traditional counterpart (even
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when considering separable filters), and just as accurate.

This opens the door to new possibilities for applications

targeting low-power or hardware-limited mobile and em-

bedded platforms. Examples of gradient magnitude maps

obtained using a small-scale binary feature are presented in

Figure 1.

In the following sections, we show that given the 5x5,

16-bit binary pattern displayed in Figure 2b, we can ad-

equately mimic a traditional pyramid reduction based on

Burt and Adelson’s 5x5 kernel [9], and generate gradient

maps that are visually similar to those obtained using 3x3

and 5x5 Sobel operators. Then, to demonstrate that binary

feature convolutions are also comparable in terms of mea-

surable performance to their classic counterparts in a com-

puter vision problem, we set up an experiment based on

Canny’s edge detection method [11] using the BSDS500

boundary segmentation dataset [3]. We show that given

identical non-maximum suppression and hysteresis thresh-

olding steps, our proposed image processing operations

based on binary feature convolutions provide faster and

slightly improved results over Canny’s traditional image

processing operations. The source code used for our ex-

periments is available online1.

1.1. Binary Features

Small-scale binary descriptors were first used by Ojala

et al. in [23] for texture analysis and classification. Local

Binary Patterns (LBPs), in their 3x3, 8-bit form shown in

Figure 2a, were demonstrated to be invariant to pixel inten-

sity variations, and were directly used to compute texture

histograms due to their small code size. The comparison

operation used in the original LBP descriptor is simply a

pixel intensity difference with respect to the pattern’s cen-

tral pixel; more specifically, the N -bit LBP descriptor of a

pixel x is defined as

B(x) =

N−1
∑

p=0

s(ip , ix) · 2p (1)

where ip is the intensity of the p-th neighbor of x on the

predetermined pattern, and

s(ip , ix) =

{

1 if ip ≥ ix
0 otherwise

(2)

is the classic LBP comparison operator. LBPs were later

generalized to any pixel neighborhood size in [24], and

reused in various applications over the years [1, 14, 33].

Due to the simplistic nature of LBPs, numerous im-

provements have been proposed in the literature. Many au-

thors have suggested alternative comparison operations [19,

28], have applied new comparison patterns in the spatio-

temporal domain [32, 33], or have proposed to use supple-

mental gradient information along with LBPs [13, 18]. In

this work, we rely on the Local Binary Similarity Pattern

1https://github.com/plstcharles/litiv
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Figure 2: Examples of small-scale binary feature lookup patterns

where the central regions are used as references. Regions identi-

fied with ones are sampled and have their comparison result as-

signed to a descriptor bit, while regions with zeros are skipped.

(LBSP) descriptor (shown in Figure 2b) which was intro-

duced in [8] for background texture modeling in video se-

quences. This descriptor compares intensity samples over

5x5 regions to generate binary strings with N = 16 bits; its

comparison operator is defined by

s(ip , ix) =

{

1 if |ip − ix| ≥ Tx

0 otherwise
, (3)

where Tx > 0 is a dynamic threshold for x, which we re-

discuss in Section 3. We chose this descriptor for our ex-

periments as its pattern can be used to mimic the discrete

sampling of a 5x5 Gaussian kernel, and (3) is an ideal op-

erator for the detection of strong intensity gradients. More-

over, its compact 16-bit size makes it an ideal candidate for

a vectorized implementation using Single Instruction, Mul-

tiple Data (SIMD) instructions. In theory, any binary de-

scriptor with similar characteristics could be used to obtain

relatively good performance in our experiments — as we

will rediscuss in Section 6, only minor changes would be

required to compute the “convolutions” of another binary

feature. Besides, note that (3) can be viewed as a simplifi-

cation of the ternary comparison operator of [28] in which

the sign bit is ignored.

As stated earlier, small-scale binary feature descriptors

such as LBPs are better suited for local texture description

than high-level keypoint matching. This latter problem is

better tackled by large-scale binary features with invariance

properties such as BRIEF [10], ORB [25], BRISK [16],

FREAK [2], or LATCH [17], which typically compare sev-

eral hundred samples in large pixel neighborhoods. For

more details on the different types of binary features, the

interested reader is referred to recent surveys [15, 22, 34].

In Sections 2 and 3 below, we now introduce the two image

processing operations we aim to mimic using binary feature

convolutions.

2. Pattern Lookup and Pyramid Generation

The computation of an LBP-like feature can be separated

in two steps: first, N data samples (usually pixel inten-

sities) are retrieved from the analyzed image according to

the predetermined pattern (the “lookup” step). Then, these

samples are tested using (1) and a comparison operator,

e.g. (2) or (3), to generate the binary string (the “threshold”

2
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Figure 3: Illustration of the traditional pyramid reduction approach

using the 5x5 Gaussian-like kernel of Burt and Adelson [9]. The

lowest slice represents the input image, which is convolved and

reduced to obtain the next pyramid image.

step). This separation is useful when parameter sweeps of

the comparison operator are required (as the lookup step is

constant), or when data vectorization is used. In this sec-

tion, we focus on reusing the information gathered by the

first step only.

Centrosymmetric binary lookup patterns such as the ones

shown in Figure 2 can be viewed as approximations of

Gaussian kernels where samples all have equal weights.

Computing the average value of all samples during the

lookup step is therefore similar to convolving this image

using a binary low-pass filter. The cost of this operation is

very low, as it only involves N additions and one division.

For a separable k× k filter, this would demand 2k multipli-

cations, 2k additions, and one division. Therefore, given the

pattern of Figure 2b where N = 16, our approach is faster

than using any similarly sized filter (k = 5). The convolved

images we obtain can then be used for smoothing, noise

suppression, or to create an image pyramid.

Image pyramids are often used in computer vision tasks

where the multiscale analysis of image characteristics (e.g.

textures or edges) is required. The de facto standard

followed by most image processing libraries (including

OpenCV and Matlab’s) for image pyramid generation has

been introduced by Burt and Adelson [9]: each pyramid

level is computed by first blurring the previous level with a

Gaussian kernel, and then downsampling the resulting im-

age by keeping only alternating rows and columns. An iter-

ation of this is illustrated in Figure 3, where the widely used

Gaussian-like kernel of [9] is shown.

As stated before, averaging the N values sampled ac-

cording to a binary feature pattern may serve as a rough

alternative to Gaussian blurring. We compare in Figure 4

Input (L0)

L
1

L
2

L
3

[9] Bin. Avg. 5x5
Figure 4: Visualizations of rescaled image pyramid levels obtained

using [9]’s approach and using our proposed binary feature sample

averaging technique.

individual image pyramid levels obtained by convolving an

image using the 5x5 kernel of [9] as well as the 5x5, 16-bit

binary feature pattern of Figure 2b. Each level is computed

by resampling its predecessor directly, meaning errors can

accumulate. Despite that, we can observe that the results

are quite similar, even multiple levels down the pyramid.

This shows that binary pattern sample averaging is a good

approximation of Burt and Adelson’s [9] approach, even

though it relies on less information per pixel.

3. Thresholding and Gradient Estimation

We now discuss the second step in binary feature de-

scription, i.e. sampled value thresholding, and how it can be

used to estimate image gradients. First, note that compari-

son operators based on absolute differences with respect to

the central pixel such as (3) and the one introduced in [19]

share an interesting property: since they produce non-zero

bits for pixels with intensities significantly different from

the central reference, the Hamming weight of their result-

ing binary string is strongest when the pattern is centered on

a corner or an edge. This phenomenon has been exploited

in the works of [8, 21], as detecting strong local gradients

was helpful for both image classification and background

modeling tasks.
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Figure 5: Illustration of which bits are used in the four reference

binary strings (B+

X
, B−

X
, B+

Y
, and B

−

Y
) of our 5x5 binary pattern.

Bits which fall outside the highlighted areas for a given string are

set to zero, meaning each reference string contains a total of six

non-zero bits, and ten zero bits.

In our case, the comparison threshold Tx in (3) is respon-

sible for distinguishing irrelevant noise from slight intensity

variations. Using a value that directly scales with the cen-

tral pixel intensity ix would allow our binary descriptors

to be fairly invariant to illumination changes, but it would

also make them overly sensitive in dark regions, and insen-

sitive in bright regions. In contrast, using a constant value

would solve this sensitivity problem at the expense of the

illumination invariance property. For our experiments, we

determined empirically that gradients were best represented

when both constant and scaling components were used si-

multaneously. As such, for the results presented in the fol-

lowing sections, we use

Tx = ix · Ts + Tc, (4)

where we fix Ts = 1/4 and Tc = 20 for RGB and grayscale

images.

Recreating accurate gradient orientation and magnitude

maps using the information contained in precomputed bi-

nary descriptors with only N = 16 bits of information is

quite challenging. Traditionally, gradients are estimated for

the X and Y axes independently by convolving the ana-

lyzed image using Prewitt or Sobel operators. These are dis-

crete differentiation operators that approximate the deriva-

tive functions used for continuous 2D signals. The two con-

volved images then obtained (noted GX and GY ) can be

used to estimate pixel-wise gradient orientations via

Θ(x) = arctan2
(

GY (x), GX(x)
)

, (5)

and gradient magnitudes via

G(x) =

√

GX(x)
2
+GY (x)

2
. (6)

In our case, while we could apply differentiation opera-

tors on the values sampled in the lookup step (Section 2),

directly using the binary descriptors allows for a much

cheaper (yet seemingly accurate enough) solution.

In short, to determine the gradient magnitude G(x) of a

pixel x, we directly use the Hamming weight of its binary

descriptor B(x) computed via (1) instead of computing it

via (6). For our 16-bit pattern, this means gradient magni-

tude values will be restricted to the [0, 16] range. While this

range is much smaller than the ones typically found with

Prewitt or Sobel-based approaches, we will later show that it

is actually quite sufficient for obtaining fairly accurate gra-

dient maps. Next, given our knowledge of the descriptor’s

binary pattern, we can identify bit sets that are indicative of

positive and negative gradients in the X and Y directions,

and use them to form four reference binary strings. These

strings are noted B+

X , B−

X , B+

Y , and B−

Y , and their bit sets

are shown in Figure 5. Finally, GX(x) and GY (x) can be

approximated for x via

GX(x) =
(

B(x) ·B+

X

)

−
(

B(x) ·B−

X

)

, (7a)

GY (x) =
(

B(x) ·B+

Y

)

−
(

B(x) ·B−

Y

)

, (7b)

where the dot product between two binary strings is used

to compute a bitwise “and” as well as a Hamming weight.

All four reference strings essentially act as binary-weighted

operators, which can be viewed as Prewitt operators shaped

like the lookup pattern. Their application in (7) can thus be

seen as a convolution over a 2D binary signal. Note that

using the 16-bit pattern of Figure 2b entails that GX(x) and

GY (x) can only take values in the [−6, 6] range. Because

of this, we cannot expect that Θ(x) values obtained via (5)

will be very precise; however, they should be sufficient for

applications that already bin gradient orientations into fewer

than twelve sectors.

We show in Figure 6 examples of gradient maps which

can be obtained with the binary feature convolution ap-

proach described so far, and compare them to the maps ob-

tained via 5x5 Sobel convolutions. We can immediately

observe that GX and GY are not as accurate as their tra-

ditional counterparts, but our gradient magnitude maps are

quite comparable, although seemingly noisier in some tex-

tured regions. This “noise” is due to the presence of fine-

scale image structures which cause important localized gra-

dient responses. This results in visual artifacts that can be

considered irrelevant or harmful to some computer vision

tasks. Larger convolution kernels or image preprocessing

based on low-pass filtering are typically used to solve this

problem. In our case, a comparable result can be achieved

using the approximate image pyramid generation scheme

we presented in Section 2: by min-pooling gradient map re-

sponses across all pyramid levels, fine-scale structures vis-

ible only in the lowest level can be easily suppressed. The

advantage of min-pooling over cumulating gradient values

is that it keeps the value ranges invariant to pyramid height,

and it avoids edge smearing when upsampling via nearest-

neighbor strategies. We show the new gradient maps ob-

tained using only a two-level pyramid in Figure 7; we can

now observe much lower noise levels for all maps, bringing

them closer to Sobel’s results.
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Figure 6: Visualizations of GX , GY , and G maps obtained using 5x5 Sobel operators and 5x5 binary feature convolutions.

4. Edge Detection

To quantitatively assess the performance of binary fea-

ture convolutions and compare them to their traditional

counterparts in a computer vision task, we opted to test our

approach on the edge detection problem. We adapted an

existing solution to use our proposed convolution approach

for gradient estimation, and measure how well it performs.

While many solutions have been recently proposed for edge

detection [4, 12, 26], we picked the very well-known and

formally defined algorithm introduced by Canny in [11] as

our benchmark. Canny’s method can be briefly summarized

in three steps:

1. Estimate local gradients by convolving the analyzed

image with a pair of differentiation operators;

2. Perform non-maximum suppression to localize and

thin edges according to gradient orientations;

3. Assign and propagate edge labels through connected

neighbors using hysteresis thresholding on gradient

magnitudes.

Image gradient estimation (step 1) is performed using So-

bel operators in most computer vision libraries. To test

our binary feature convolution approach, we replaced this

step with the approximate gradient-pyramid estimation de-

scribed in the previous section. The other two steps

were reimplemented based on the OpenCV source code of

Canny’s algorithm to make sure the new algorithm had sim-

ilar complexity and constraints.

For our experiments, we used the latest version of the

Berkeley Segmentation Data Set (BSDS500) for boundary

detection [3]. This dataset contains 200 training, 100 vali-

dation, and 200 testing images, each of them provided with

manually labeled edge maps. It comes with benchmark-

ing tools that allow algorithms to be evaluated at different

detection sensitivity settings, thus enabling precision-recall

curves to be drawn (see Figure 8). Furthermore, the authors

of [3] defined three standard measures for overall perfor-

mance assessment, which we reuse here: the Average Pre-

cision (AP), the overall F-Measure for the Optimal Dataset

Scale (ODS), and the overall F-Measure for the Optimal

Image Scale (OIS). In the latter two measures, the “scale”

refers to the edge detection sensitivity threshold (i.e. the

sweep parameter).

For the modified algorithm, note that we determined the

optimal parameter configuration of (4) using only the train-

ing and validation image sets of BSDS500, as required. Be-

sides, Canny’s high hysteresis threshold is used for the edge
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Figure 7: Visualizations of GX , GY , and G maps obtained using 5x5 Sobel operators and 5x5 binary feature convolutions with two

pyramid levels.

detection sensitivity sweep, and the low threshold is set as

half of the high threshold. This last rule is similar to the one

used in Matlab’s default configuration of Canny’s method.

All results shown in this section are taken exclusively from

the BSDS500 test set. Note also that Canny’s method typi-

cally requires analyzed images to be blurred using a Gaus-

sian kernel as a preprocessing step to improve edge detec-

tion precision. We avoided this step in the new version of

the algorithm, but kept it for the Sobel version to recreate

the traditional Canny implementation (with σ =
√
2). Fi-

nally, for RGB images, note that we used the maximum gra-

dient across all three channels for the non-maximum sup-

pression and hysteresis thresholding steps.

First, in Table 1, we can observe that our binary feature

convolution-based gradient estimation approach (noted Bin.

Grad.) offers the best ODS and OIS performances when

used with at least two pyramid levels. When used without

pyramiding, binary gradient estimation resulted in a sub-

stantial performance drop according to all measures com-

pared to classic estimation via Sobel operators. This is not

surprising, as we already noted in Section 3 that our naive

pyramid-less approach was prone to noise caused by fine-

scale image structures. Besides, using image pyramids for

binary gradient estimation comes at a very low cost (we will

Method ODS OIS AP

Gradient with 3x3 Sobel 0.603 0.638 0.579

Gradient with 5x5 Sobel 0.613 0.648 0.590

Bin. Grad. 5x5 (no pyr.) 0.538 0.574 0.345

Bin. Grad. 5x5, 2 levels 0.618 0.648 0.550

Bin. Grad. 5x5, 3 levels 0.638 0.664 0.616

Human 0.80 0.80 -

Table 1: Overall performance of Canny edge detection on the

BSDS500 dataset for the configurations listed in Figure 8; the best

values are in bold red text, and the second best in red only. Human

scores are also listed at the bottom.

discuss this further in Section 5), so it should not be seen

as an unfair improvement over Canny’s original method,

which is already advantaged due to its preprocessing step.

As for the precision-recall curves shown in Figure 8, we

can observe that our proposed gradient estimation approach

with a 3-level pyramid outperforms Sobel’s gradient esti-

mation in the high precision regime due to proper gradient

artifact suppression. The performance of binary gradient es-

timation when using a 2-level pyramid is slightly better than

Sobel’s (with both 3x3 and 5x5 operators). Besides, note

that all the curves for our proposed configurations do not

6



0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Recall

P
r
e
c
is
io
n

 

 

[F=.80] Human

[F=.64] Bin. Grad. 5x5, 3 levels

[F=.62] Bin. Grad. 5x5, 2 levels

[F=.61] Grad. 5x5 Sobel

[F=.60] Grad. 3x3 Sobel

[F=.54] Bin. Grad. 5x5

Figure 8: Results of Canny edge detection on the BSDS500 dataset

using our binary gradient estimation approach (Bin. Grad.) with

a 5x5 binary pattern and various pyramid levels, as well as using

traditional 3x3 and 5x5 Sobel gradient estimation approaches.

stretch very far into the high recall regime; this is due to the

presence of the absolute threshold component in (4), which

prevents very small intensity variations from being captured

by the binary descriptor. Finally, we show some exam-

ples of edge detection confidence maps overlapped with the

groundtruth in Figure 9, where we can also observe fewer

false positives for our approach.

5. Complexity Analysis

Approximating gradient maps by relying on binary fea-

tures would not be appealing if it was slower than resorting

to traditional gradient estimation means. For highly time-

constrained applications that already require dense binary

feature computations over large image regions, the potential

speed gain can be very important. However, for applications

that have no need for such features but still require gradient

estimations, our approach could still be interesting due to its

greater efficiency. We now roughly compare the complex-

ity of our proposed approach (with a 5x5 binary pattern) to

that of a traditional gradient estimation approach (using 5x5

Sobel operators) below.

First, in the traditional approach, consider that images

are often preprocessed with a low-pass filter (e.g. the Gaus-

sian blur used in Canny’s method) before convolving them

with differentiation operators in order to eliminate noise.

The cost of this step depends on the filter’s size, but let us

consider Matlab’s implementation of Canny’s preprocess-

ing method (which we used earlier) that relies on a 7x7 ker-

nel. Since Gaussian kernels are separable, this first convo-

lution results in 28 operations per pixel (14 multiplications

and 14 additions). Next, the convolutions behind GX(x)
and GY (x) use two (also separable) 5x5 Sobel operators

that result in 42 operations (10 multiplications, 10 additions,

and one division each), for a total of 70 operations per pixel.

Gradient magnitudes are then finally obtained via (6), which

involves a square root computation. Besides, we ignore the

cost of gradient orientations computations as our proposed

approach also relies on (5).

On the other hand, gradient estimation via binary fea-

ture convolutions does not rely on preprocessing. The bi-

nary comparison threshold Tx computed via (4) can be ob-

tained through a lookup table, so fetching it counts as a

single operation. The computation of descriptors via (1)

and (3) requires five operations per bit: two for the abso-

lute difference, one for the comparison, one for shifting the

boolean result, and one for placing it in B(x). This re-

sults in 80 operations for our 16-bit pattern. The gradient

magnitude value is then obtained using a single operation

(Hamming weight) on this binary string. Finally, GX(x)
and GY (x) values can be obtained via (7) for five opera-

tions each (two bitwise ands, two Hamming weights com-

putations, and one subtraction). This results in a total of

92 operations per pixel. While this total is greater than the

one for the traditional approach, all operations used here

are solely bitwise or based on integer arithmetics, so they

will use far fewer CPU cycles than the floating point op-

erations used in the traditional approach (the actual cycle

counts is architecture-dependent). Besides, our binary gra-

dient estimation approach also has other computational and

architectural advantages: it requires less indexing and sam-

pling operations on the analyzed image (the 5x5 pattern we

used covers 17 pixels instead of 25), and it generates fewer

cache misses (GX and GY are essentially computed in a

single pass).

Using pyramids for multiscale gradient estimation adds

a few operations per pixel for min-pooling and upsampling

via nearest-neighbor copy, and then multiplies the total op-

eration count per pixel by the pyramid height. However, for

each new pyramid level, only a quarter of the last level’s

pixels require new binary features to be computed and have

their gradients estimated and pooled. Therefore, the total

image-wide operation count (or, indirectly, the time cost)

TL for computing a L-level gradient pyramid can be ap-

proximated as a multiple of the first level’s cost, noted T0:

TL = T0 ·
L
∑

l=0

(1

4

)l

(8)

This relation is a convergent series, where

lim
L→∞

L
∑

l=0

(1

4

)l

=
4

3
(9)
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Figure 9: Visualizations of edge detection confidence maps roughly overlapped with the groundtruth. The results were obtained using

Canny with 5x5 Sobel operators and 5x5 binary feature convolutions (with 3 pyramid levels). Edges are dilated using a 3x3 cross kernel

to improve visibility. Green pixels indicate true positives, red pixels false positives, and magenta pixels false negatives. Brighter pixels

indicate better detection confidence, or in other words, that the pixel was detected more often for different detection sensitivity thresholds.

Note that for our approach, the detected edges are often jagged due to our rough gradient orientation approximation strategy.

meaning that no matter the pyramid height, the final gradi-

ent estimation cost will never exceed 4·T0

3
. Therefore, our

approach is still unlikely to be slower than the traditional

gradient estimation approach, as it requires far fewer CPU

cycles per pixel to compute the initial gradients (i.e. the first

pyramid level).

In practice, for the implementations used in the experi-

ments of Section 4, our binary gradient-based edge detector

processed the BSDS500 images (with full detection thresh-

old sweeps) on an Intel i7 mobile processor at 4.7 Hz with-

out pyramid generation, and at 3.7 Hz with a 3-level pyra-

mid. OpenCV’s Canny implementation ran under the same

conditions at 0.5 Hz, relying on highly optimized convolu-

tion subroutines. SSE SIMD instructions were disabled in

both cases for a fair comparison.

6. Conclusion

We introduced a new strategy for gradient orientation

and magnitude estimation based on binary features. While

our “binary feature convolutions” are especially beneficial

to time-constrained applications which already rely on such

features, we expect that some applications will opt for this

approach due its very low computational cost. Through our

experiments, we showed that using a 5x5, 16-bit binary fea-

ture pattern results in image pyramids and gradient maps vi-

sually similar to those obtained via traditional means, and in

slightly increased precision in edge detection when used in

Canny’s method. The efficiency of our approach could also

be further improved by using the integer arithmetic SIMD

instructions of modern hardware architectures.

Besides, our binary feature convolutions could theoret-

ically be applied to a wide variety of binary feature pat-

terns, whether small-scale or large-scale. Image pyramid

generation only requires binary patterns to be (roughly) cen-

trosymmetric, while gradient magnitude and orientation es-

timation can work with any similarity-based comparison

operator, as long as oriented bit sets are provided with the

pattern (e.g. like in Figure 5). Our approach could also be

generalized to gradient estimation for 3D meshes and 4D

medical imaging.
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with local binary patterns: Application to face recognition.

IEEE Trans. Pattern Anal. Mach. Intell., 28(12):2037–2041,

2006.

[2] A. Alahi, R. Ortiz, and P. Vandergheynst. FREAK: Fast

retina keypoint. In Proc. IEEE Conf. Comput. Vis. Pattern

Recognit., pages 510–517, 2012.

[3] P. Arbelaez, M. Maire, C. Fowlkes, and J. Malik. Contour

detection and hierarchical image segmentation. IEEE Trans.

Pattern Anal. Mach. Intell., 33(5):898–916, 2011.

[4] P. Arbelaez, J. Pont-Tuset, J. Barron, F. Marques, and J. Ma-

lik. Multiscale combinatorial grouping. In Proc. IEEE Conf.

Comput. Vis. Pattern Recognit., pages 328–335, 2014.

[5] V. Balntas, L. Tang, and K. Mikolajczyk. BOLD - binary on-

line learned descriptor for efficient image matching. In Proc.

IEEE Conf. Comput. Vis. Pattern Recognit., pages 2367–

2375, 2015.

[6] H. Bay, A. Ess, T. Tuytelaars, and L. V. Gool. Speeded-up ro-

bust features (SURF). Comput. Vis. and Image Understand-

ing, 110(3):346 – 359, 2008.

[7] O. Bilaniuk, E. Fazl-Ersi, R. Laganiere, C. Xu, D. Laroche,

and C. Moulder. Fast LBP face detection on low-power

SIMD architectures. In Proc. IEEE Conf. Comput. Vis. Pat-

tern Recognit. Workshops, June 2014.

[8] G.-A. Bilodeau, J.-P. Jodoin, and N. Saunier. Change detec-

tion in feature space using local binary similarity patterns. In

Proc. Int. Conf. Comput. Robot Vis., pages 106–112, 2013.

[9] P. Burt and E. Adelson. The laplacian pyramid as a compact

image code. IEEE Trans. Commun., 31(4):532–540, 1983.

[10] M. Calonder, V. Lepetit, C. Strecha, and P. Fua. BRIEF:

Binary robust independent elementary features. In Proc. Eu-

ropean Conf. Comput. Vis., pages 778–792, 2010.

[11] J. Canny. A computational approach to edge detection. IEEE

Trans. Pattern Anal. Mach. Intell., 8(6):679–698, 1986.

[12] P. Dollar and C. Zitnick. Fast edge detection using structured

forests. IEEE Trans. Pattern Anal. Mach. Intell., 37(8):1558–

1570, 2015.

[13] Z. Guo, D. Zhang, and D. Zhang. A completed modeling of

local binary pattern operator for texture classification. IEEE

Trans. Image Process., 19(6):1657–1663, 2010.

[14] M. Heikkila and M. Pietikäinen. A texture-based method
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