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Abstract

A growing set of applications in home-based interactive

physical therapy require the ability to monitor, inform and

assess the quality of everyday movements. Interactive ther-

apy requires both real-time feedback of movement quality,

as well as summative feedback of quality over a period of

time. Obtaining labeled data from trained experts is the

main limitation, since it is both expensive and time con-

suming. Motivated by recent studies in motor-control, we

propose an unsupervised approach that measures movement

quality of simple actions by considering the deviation of a

trajectory from an ideal movement path in the configuration

space. We use two different configuration spaces to demon-

strate this idea – the product space S1×S1 to model the in-

teraction of two joint angles, and SE(3)×SE(3) to model

the movement of two joints, for two different applications

in movement quality estimation. We also describe potential

applications of these ideas to assess quality in real-time.

1. Introduction

In many applications for health-care, the ability to moni-

tor, inform, and asses the quality of our movements, plays a

key role. This ability can enable the creation of systems

that one could use on an everyday basis while reducing

the time and effort required on the part of trained physi-

cal therapist. Home based systems are also more intimate,

and reduce the need to travel elsewhere for physical ther-

apy. A growing class of affordable sensing devices have

led to the development of such home-based and hospital-

based systems that can provide feedback and quality ratings

for movements. Sensors for motion capture (e.g. Optitrack,

Microsoft Kinect), accelerometers and gyroscopes are often

used in such systems. Similar ideas are also being studied

in the context of sports and athletics [15].

In the effort to build autonomous systems, a large body

of work combines features obtained from the sensor data
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with machine learning techniques to predict quality scores

similar to a physical therapist/experts. This involves ob-

taining labeled data from therapists, which is used to train

a model [5, 20, 15, 18]. Obtaining such labels are not easy,

since domain knowledge is very essential in most applica-

tions for movement quality assessment. Additionally, phys-

ical therapists ratings are often very subjective, with wide

variability in rating across different therapists. One ap-

proach to decouple the inherent subjectivity of rating vs true

quality is via a combination of crowd-sourcing platforms

such as Amazon MTurk [1], with computational methods

such as non-negative matrix factorization. This approach

has been difficult to pursue in fields where experts are re-

quired to label data such as in physical therapy and medical

imaging, and where sharing of patient data raises many con-

cerns.

In this paper, we consider the role of geometric con-

straints in human body, and associated metrics for mea-

suring movement quality. We base our approach on recent

studies which suggest that the most efficient movement be-

tween two poses, in certain well defined cases, is often the

geodesic path in the pose-space [4]. Some of these results

have been reported in other forms, such as showing that the

optimal reaching movements in the Euclidean space appear

curved [3, 11]. Recent work in motor control suggests that,

when presented with visual feedback of the configuration

space of two joints (more specifically, a torus), as applied

to a reaching movement, subjects’ movements tend to con-

verge to geodesics on the torus [7].

These results suggest that the geometry of the configu-

ration space may have an important role to play in creating

effective, scalable algorithms for a variety of applications

in interactive rehabilitation and physical therapy. While the

basic scientific results reviewed above suggest a clear uni-

fying framework in terms of optimal paths and geodesics,

there are several engineering research problems that arise

in practical implementation. Firstly, in order to create a

general algorithmic framework, one needs to have a mod-

ular approach to plug in different kinds of configuration

spaces as available from different sensing modalities: such
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Figure 1. We propose to measure movement quality as the deviation of a given trajectory w.r.t. an ideal path, for movements on S
1
× S

1,

and SE(3)× SE(3).

as product-space of circles for joint angles obtained from

motion-capture devices, or shape silhouettes from video

sensors. Secondly, one needs effective computational ap-

proaches to measure quality in real-time to enable their use

in an interactive setting (e.g. interactive movement ther-

apy). Thirdly, a study of the correlation between geometri-

cally derived measures of quality, with other clinical mea-

sures of quality such as those obtained from force plates

etc. is needed to throw light on the possibility of using

them as surrogates of clinical measures. We consider two

cases where we show promising results for quality analysis

of human movement – 1) movement quality of the sit-to-

stand (STS) actions, where we consider the important fea-

ture to be opening of the hip angle, measured on the left and

right side and is represented on the product space of circles,

S1×S1, and 2) reaching movements in stroke rehabilitation

[5], where we represent the skeleton of the upper body as a

point on SE(3) × SE(3), and its correlation with clinical

measures of reaching quality. An overview of our approach

is presented in figures 1a and 1b.

Contributions:

1. We propose to model the deviation of a given trajectory

w.r.t. an ideal path, on a pose-space as a measure of

quality: applied to the specific case of S1 × S1 and

SE(3)× SE(3) in two different applications.

2. We evaluate our approach and study the correla-

tions between our quality measures with other clinical

movement quality measures.

3. We also present a framework for real-time approxima-

tions of quality as the movement is being executed, for

potential use in an interactive therapy system.

2. Related Work

Assessing the quality of everyday actions has tremen-

dous scope in applications like sports, healthcare rehabili-

tation systems, exercise systems, retrieval of videos and so

on. There have been several efforts to evaluate the perfor-

mance of specific actions by using trajectory-based evalua-

tion metrics [8, 10, 14]. Recent work has investigated the

use of spatio-temporal pose features from video segments,

for estimating quality of sports actions, such as diving and

figure-skating [15]. This is based on learning a regression

function from pose-features to quality scores, which does

not give much insight into what constitutes good movement

quality. Another line of work, in the field of stroke rehab

therapy, the computational score is made more intuitive by

breaking into interpretable components for assessment of

reach movements of stroke survivors [21]. However, this

analysis requires pre-specification of components from do-

main knowledge, and may not generalize to other domains.

Dynamical system theory and geometric techniques have

also been employed for analysis of movement quality.

Shape distribution functions of the reconstructed phase

space have been used for classifying movements of unim-

paired/healthy and stroke-impaired subjects [20]. This ap-

proach also requires training sets for regressing shape dis-

tributions to movement quality. Recently, Tao et al. [18]

developed a method for online movement quality assess-

ment of gait movement via hidden Markov modeling of nor-

mal movements using Kinect skeleton data. Both these ap-

proaches require machine learning methodologies, and gen-

erally lack interpretability.

3. Mathematical Preliminaries

Here, we describe the geometric properties of the two

spaces we consider in this paper – S1×S1 and the space of

SE(3)× SE(3).

3.1. Body-joint angles on S1 × S1

For this study, we consider the hip angles on the left and

right side of the body as shown in figure 2. The reason for

using the left and right sides of the hip is to incorporate the

symmetry of the action. It has been observed that symmetri-

cal distribution of body weight under the feet, significantly
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Figure 2. Illustration of the hip angles computed on the left and

right side of the body, for the sit-to-stand experiment.

improves STS actions in subjects suffering from hemiplegic

stroke [6]. In other studies, improvements in postural stance

was found to be correlated to postural symmetry as well

[24].

Each of these angles can be represented equivalently

on the circle, S1, and the angles computed from both the

left and right side can be represented in the product space

S1 ×S1 which is the torus T2. This space possesses a Rie-

mannian structure obtained by inheriting the Riemannian

metric from R
2 on the circle S1 ⊂ R

2.

Although the geodesics are inherited from the geodesic

on S1, the actual metric on T2 is a design choice. We will

use a simple combination of the sum of the length of the

shortest arc on the individual circles as our metric. This

distance is defined as d : S1 × S1 → R

dS(θ1, θ2) = arccos(cos(θ1 − θ2)), (1)

Next, the distance on the torus between points p1 =
(φ1, θ1) and p2 = (φ2, θ2) is given by dT(p1, p2) =√

d2S(φ1, φ2) + d2S(θ1, θ2).

3.2. Product space of the special Euclidean group

For the stroke rehabilitation experiment, we represent a

stick figure as a combination of relative transformations be-

tween joints [19]. The resulting feature for each skeleton

is interpreted as a point on the product space of SE(3) ×
SE(3). These transformation matrices lie on the curved

space known as the Special Euclidean group SE(3). There-

fore the set of all transformations lies on the product space

of SE(3)× SE(3).
The special Euclidean group, denoted by SE(3) is a Lie

group, containing the set of all 4× 4 matrices of the form

P (R,
−→
d ) =

[
R

−→
d

0 1

]
, (2)

where R denotes the rotation matrix, which is a point on the

special orthogonal group SO(3) and
−→
d denotes the trans-

lation vector, which lies in R
3. The 4 × 4 identity matrix

I4 is an element of SE(3) and is the identity element of the

group. The tangent space of SE(3) at I4 is called its Lie

algebra – denoted here as se(3). It can be identified with

4× 4 matrices of the form

ξ̂ =

[
ω̂ −→v
0 0

]
=




0 −ω3 ω2 v1
ω3 0 −ω1 v2
−ω2 ω1 0 v3
0 0 0 0


 , (3)

where ω̂ is a 3×3 skew-symmetric matrix and −→v ∈ R
3. An

equivalent representation is ξ = [ω1, ω2, ω3, v1, v2, v3]
T ∈

R
6. We are following the notation to denote the vector

space (ξ ∈ R
6) and the equivalent Lie algebra represen-

tation (ξ̂ ∈ se(3)) as [13] (pg. 411). The exponential and

inverse exponential maps are given below for completeness

[13] (pg. 413− 414). The exponential map is given by

exp ξ̂ =

[
I −→v
0 1

]
ω = 0 and exp ξ̂ =

[
eω̂ A−→v
0 1

]
ω 6= 0,

(4)

where eω̂ is given explicitly by the Rodrigues’ formula –

= I+ ω̂
‖ω‖ sin‖ω‖+ ω̂2

‖ω‖2 (1−cos‖ω‖), and A = I+ ω̂
‖ω‖2 (1−

cos‖ω‖) + ω̂2

‖ω‖3 (‖ω‖ − sin‖ω‖). The inverse exponential

map is given by

ξ̂ = log

[
R d

0 1

]
=

[
ω̂ A−1d

0 0

]
, (5)

where ω̂ = logR, and

A−1 = I −
1

2
ω̂ +

2 sin‖ω‖ − ‖ω‖(1 + cos‖ω‖)

2‖ω‖2sin‖ω‖
ω̂2 ω 6= 0,

when ω = 0, then A = I .

4. Measures of Quality

In this section, we outline two complementary ap-

proaches to quantify movement quality. The first one is a

summative measure, which requires observing the full tra-

jectory of movement. The other is a online version for po-

tential use in real-time feedback, which is based on sequen-

tially accumulating the deviation from an idealized trajec-

tory, thereby not requiring full observation of the trajectory.

Both these approaches easily generalize to both geometric

spaces under consideration.

Also, the framework is quite general in its treatment of

what is the ‘idealized’ movement. In the absence of addi-

tional information, we represent the ideal movement as the

geodesic between start and end poses, in the respective rep-

resentation space. However, for more complex movements,

a geodesic may be an oversimplification of the ideal move-

ment. Instead, one may need to average several trajectories

obtained form healthy subjects to define the ideal. Given a
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large enough dataset for the given movement that are seg-

mented in time, the average trajectory can be computed us-

ing tools developed, as in Su et al. [17].

4.1. Summative quality measure

The idea of summative quality centers around measuring

the deviation of a given trajectory compared to an ideal-

ized trajectory. This idealized trajectory could be a simple

geodesic or a more complex trajectory computed by averag-

ing a few ‘normal’ trajectories. To keep things simple, we

will make it specific to the torus, where the idealized trajec-

tory is fixed to the geodesic between the start and the end

pose.

The geodesic on a circle is the shortest arc that connects

two points, where the metric is defined as in (1). In order

to compare a movement trajectory with the geodesic, we

must first sample along the geodesic. Let γ(t) represent the

trajectory for which we wish to estimate a quality score.

Further, let γ̃(t) represent the geodesic path with the same

starting and ending points as γ(t), i.e., γ(0) = γ̃(0) and

γ(1) = γ̃(1). Let us then define the geodesic discretization

interval to be given by δ = dS(γ(1),γ(0))
N−1 , where N is the

number of desired samples along γ(t). Since our operations

are on the circle, S1, we are able to uniformly sample along

the geodesic using δ as γ̃(t) = γ(0) + (t δ).
L = γ(0) − γ(1), at ‘time’ t, the sampled geodesic is

given by

γ̃(t) =

{
γ(0) + (t δ), if (L > π) or (−π < L < 0)

γ(0)− (t δ), else.

(6)

Once the angles for both the original and geodesic trajec-

tory have been computed, we solve the registration problem

between the two trajectories using Dynamic Time Warp-

ing (DTW) [12]. The deviation from geodesic measure

(DGM) obtained using DTW is used as the final quality

score, which is given by q = DTW(γφ, γ̃φ)+DTW(γθ, γ̃θ).
Where γθ and γφ refer to the movement trajectories cor-

responding to first and second angles, θ and φ, respec-

tively. For the STS experiment, we use the above approach.

Given more data of ‘ideal’ movements, we can replace the

geodesic γ̃ by the mean sequence [17].

4.2. Towards an online quality measure

While summative feedback is useful to assess quality, it

is also imperative for interactive feedback systems to gen-

erate real-time movement quality as the movement is being

executed. Summative measure as defined above requires

observing the full movement. In this section, we outline a

strategy to obtain an approximate measure of deviation that

can be implemented in a real-time setting as the movement

is evolving. Movement quality is measured by the deviation

from the ideal movement. The deviation for each new point

along a trajectory is represented as the tangent vector

v(t) = logγ̃(t) γ(t), q(t) = ‖v(t)‖ (7)

We propose to use q(t) as the basis of our online qual-

ity score. The intuition being that a larger tangent vec-

tor implies a bigger deviation from the average trajectory,

and therefore a poor quality of movement. The feature

q(t) can be used to drive feedback in real-time, since the

average trajectory is obtained offline as part of training.

In order to incorporate temporal information, we cumulate

scores over time to produce the score at time instant T , i.e.

q(T ) =
∑

t q(t).
Su et al. [17] proposed a representation to allow metrics

that are invariant to speed. They also propose an algorithm

to compute the mean of a set of trajectories, after they have

been aligned in time. In a real-time setting, this is difficult

to perform, since we only have access to the previous few

frames. In this paper, we assume that the movements have

been registered in time following which we extract the fea-

tures per frame to show its effectiveness in capturing quality

information. An alternative way work around this problem

could be to fit splines [16] or geodesics [9] to the data di-

rectly, which can work for both repetitive and non-repetitive

movements.

5. Experimental results

We validate the proposed approach for movement quality

estimation on two different experimental conditions: 1) STS

actions of four healthy subjects, 2) Reach and grasp actions

of 19 stroke survivors.

5.1. Sit-to-stand quality assessment

In this experiment, the data set was provided to us by

the authors of [22]. The data set was collected using a Mi-

crosoft Kinect sensor and consists of the 3D position infor-

mation of the 20 body joints for four healthy subjects. Each

of the subjects was first asked to perform a few STS ac-

tions in their normal habitual manner. Next, each subject

was asked to practice with the system for 10 minutes af-

ter being given few verbal instructions. The subjects were

instructed to perform the STS actions in a relaxed, smooth

manner, with their head guiding the whole body. They were

also instructed to make sure that they moved forward and

up at the same time. These STS actions come under the

control (CT) stage. After resting for an hour, each subject

was again asked to practice with the system for 10 minutes,

but this time with auditory feedback and these STS action

come under the feedback (FB) stage. On a whole, each sub-

ject carried out 12 STS actions during the CT stage and 21

STS actions during the FB stage. For subject 2, we show

results for only 9 STS actions in CT and 21 STS actions in

FB, due to data recording problems. The findings reported
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in [22], indicate that the quality performance of all the four

subjects generally improved with practice. The improve-

ment was also greater when auditory feedback was present.

Since there are no ground truth scores in this data set, we

propose to generate quality scores for each movement, and

show that our measures depict the same trend reported in

[22] which is – movement quality becomes better with prac-

tice.

We compute the angles between the left and right: shoul-

der, hip and knee joints, denoted by θ and φ respectively as

illustrated in figure 2. This ensures that the postural symme-

try of the subject is considered while calculating the qual-

ity score. The final DGM score is computed using the dis-

tance metric defined in (1) between the movement trajectory

and the corresponding geodesic path, as described in section

4.1. A smaller DGM score is indicative of a well executed

STS movement and a higher score indicates a poorer quality

of movement.

The results of this experiment are shown in figure 4. We

show the quality scores across all STS movements carried

out by each of the 4 subjects. To better indicate the trends

for each subject, we also show the least squares fit line for

the CT stage, FB stage and across all the STS sessions. We

see no improvement for Subjects 2 and 3 during the CT

stage as shown by the CT line fit. However, both subjects

improve their movements during the FB stage as shown by

the FB line fit. Subjects 1 and 4 show lower quality scores

as the number of sessions in the CT stage progresses and

continue to improve their movements during the FB stage

as well. Figures 5 and 6 show an example of the varia-

tion of the geodesic and original trajectory with time and

on the S1 × S1 representation space, for both the CT and

FB stage respectively. On the whole, all four subjects show

a tendency to learn while performing the STS actions with

each progressing session as clearly seen from the total line

fit plot for each subject. These results follow the same trend

reported in [22]. Summary of the trends of the DGM score

and the metrics used in [22] can be seen in Table 1.

Table 1. Summary of the percentage change of the average move-

ment quality measurements from the CT stage to the FB stage, for

each of the 4 subjects. Decrease in the values for DGM score,

Two-peak coefficient (TPC), and increase in the values for mini-

mum hip angle correspond to improvement in movement quality.

Movement Quality Measure S1 S2 S3 S4

DGM score (%) -51 -5.6 -29 -34

TPC of head speed (%) -56 -25 -75 -25

Minimum hip angle (%) 6.8 9.8 19 4.2

5.2. Reach assessment in stroke rehabilitation

Stroke leaves millions of patients disabled with reduced

motor function, which severely restricts a person’s ability

to perform activities of daily living. As a result, there is a

strong effort to design home systems that can provide feed-

back and enable survivors to improve their motor function

over time, while reducing the costs typically incurred by a

typical physical therapy session. We use data collected by

the system developed by Chen et al. [5]. The system uses

14 markers to analyze and study the patient’s movement (eg.

reach and grasp), usually in the presence of a therapist who

then provides a movement quality score, such as the Wolf

Motor Function Test (WMFT) [23].

The goal of experiments such as this, is to predict the

quality of the stroke survivor’s movement as well as the

WMFT score. Particularly, we are interested in unsuper-

vised quality measures, which reduces the need to obtain

labeled data. There are 14 markers on the right hand, arm

and torso in a hospital setting. A total of 19 impaired sub-

jects perform multiple repetitions of reach and grasp move-

ments, both on-table and elevated (with the additional force

of gravity acting against their movement). Each subject

performs 4 sets of reach and grasp movements to differ-

ent target locations, with each set having 10 repetitions.

The dataset is collected in “sessions” consisting of multi-

ple movements. As a result, the proposed measure is mean-

ingless unless temporal segmentation is performed first as

in the previous experiment. Instead, we choose a bottom-

up approach, where we estimate the ideal trajectory as the

mean of all the movements in the dataset. We use the quality

score as explained in section 4.2.

We use the feature settings as described in [2]. This is

used to represent the hand joints in relative configurations

to each other as is done in LARP [19] resulting in each hand

skeleton as a point in SE(3)× SE(3). In order to compare

our scores, we report the ranked correlation values against

the WMFT [23] scores on the day of recording, where a

therapist evaluates the subject’s ability on a scale of 1 - 5

(with 5 being least impaired to 1 being most impaired).

Table 2 and figure 3 show the performance of the pro-

posed approaches as they correlate with the WMFT score

on movement quality. We obtain a correlation coefficient of

Table 2. Comparison of the correlation scores between the pro-

posed movement quality measure in SE(3), to other unsupervised

quality measures.

Movement Quality Measure Correlation

Proposed 0.5832

Inst. velocity vector magnitude on SE(3) 0.0625

Joint position features 0.1341
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Figure 3. Unsupervised online movement quality estimation:

Performance of the proposed quality score at each time instant is

shown here, which given by the correlation coefficient with the

WMFT scores given by an expert. Our method is able to take in

new information with time, to give better performance.

0.5832 with the WMFT score and a p-value of 3 × 10−8.

It is important to note that while better results have been

reported with other features [20, 2], these are usually su-

pervised approaches and require training. These methods

also cannot be used in an online setting. Figure 3 shows

the correlation score as a function of time, where we esti-

mate the quality score in an online fashion. As we observe

more of the movement, we are able to predict the quality

better. Here, we compute the shooting vector at each frame

that goes from v(t) = logµ(t)(γ(t)), the magnitude of the

vector is the quality score for that time instant. We accu-

mulate these features by adding them from all the previous

frames. We compare with a similar score extracted from

joint position features in R3, which performs poorly. We

also compare with magnitude of the instantaneous velocity,

extracted for each frame as ‖v(t)‖ = ‖ logγ(t−1)(γ(t))‖. It

is interesting to note that among the three features, ours is

the only one that is able to accumulate quality information

accurately, so that our estimate gets better with time. At

each time instant, after we estimate the quality score, we

perform a correlation with the WMFT scores to compute

the performance which is reported in figure 3.

6. Conclusion and Future Work

We proposed an unsupervised framework that uses the

deviation from the ideal path of a trajectory in an appropri-

ate pose-space, to measure movement quality. We apply the

methodology to STS movements, interpreted as a curve on

the torus, S1 ×S1, and for reaching movements interpreted

as a curve on SE(3) × SE(3). Our experimental results

look promising and show the effectiveness of the proposed

framework. This points the way toward more complex full-

body quality assessments, that could utilize geodesicness

measures on general shape manifolds. The DGM quality

score can also be generalized to include true elastic invari-

ant metrics such as those developed by Su et. al. [17].
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(a) Subject 1

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30

Session

0.05

0.1

0.15

0.2

0.25

0.3

0.35
CT

CT line fit

FB

FB line fit

Total line fit

D
G
M
 
S
c
o
r
e

(b) Subject 2
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(c) Subject 3
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(d) Subject 4

Figure 4. Lower score is better. For the STS dataset, we show movement quality scores during 30 - 33 sessions for 4 subjects. The trends

seen here, indicate the change in quality of motion with practice. CT indicates the control group receiving no feedback, FB indicates the

group receiving feedback to enable better movement. The downward trend is clearly visible, similar to the results reported in [22]
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(a) STS action on the S1 × S1 configuration space.
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(b) Variation of individual joint angles with time.

Figure 5. Representation of the subject’s movement vs geodesic formed using the joints angles θ and φ, for a STS session carried out during

the CT stage, with no feedback. θ represents the joint angle between the left-shoulder, left-hip and left-knee; φ represents the joint angle

between the right-shoulder, right-hip and right-knee. The trajectory shown with blue represents the original trajectory and the trajectory

shown with red represents the geodesic. The DGM quality score was equal to 0.22127, indicating a relatively low match to the geodesic,

i.e. a low quality movement.

(a) STS action on the S1 × S1 configuration space.
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(b) Variation of individual joint angles with time.

Figure 6. Representation of the subject’s movement vs geodesic formed using the joints angles θ and φ, for a STS session carried out

during the FB stage. θ represents the joint angle between the left-shoulder, left-hip and left-knee; φ represents the joint angle between the

right-shoulder, right-hip and right-knee. The trajectory shown with blue represents the original trajectory and the trajectory shown with

red represents the geodesic. The proposed DGM quality score was equal to 0.048226, indicating a close match to the ideal geodesic, i.e. a

high quality movement.
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