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Abstract

Over the last years, the apparent diffusion coefficient

(ADC), computed from diffusion-weighted magnetic reso-

nance (DW-MR) images, has become an important imag-

ing biomarker for evaluating and managing patients with

neoplastic or cerebrovascular disease. Standard methods

for the calculation of ADC ignore the presence of noise

and motion between successive (in time) DW-MR images

acquired by changing the b-value. In order to accurately

quantify the diffusion process during image acquisition, we

introduce a method based on a high-order Markov Ran-

dom Field (MRF) formulation that jointly registers the DW-

MR images and models the spatiotemporal diffusion. Spa-

tial smoothness on the ADC map, as well as spatiotempo-

ral deformation smoothness, is imposed towards producing

anatomically meaningful representations. The high-order

dependencies in our MRF model are handled through Dual

Decomposition. Performance of registration is compared to

a state-of-the art registration approach in terms of obtained

fitting error of the diffusion model in the core of the tumor.

Preliminary results reveal a marginally better performance

of our method when compared against the standard ADC

map used in clinical practice, which indicates its potential

as a means for extracting imaging biomarkers.

1. Introduction

Since the proposal of background body signal suppres-

sion [25], DW-MRI has gained clinical impetus for the de-

tection of primary tumors and metastases throughout the

whole body [10], [17]. Besides the qualitative anatomi-

cal information [3], [1], [27], [22], quantitative analysis of

whole-body DW-MRI is becoming possible by scanning the

patient with different b-values (a parameter determining the

strength and duration of the diffusion gradients). The appar-

ent diffusion coefficient, which reflects the gradient of wa-

ter diffusivity in the body, can be subsequently computed

at each voxel and displayed as a parametric map (ADC

map) [14]. ADC has been examined not only for the charac-

terization and staging of lesions but also for the response to

treatment [16], [8], [28], [15]. The calculation of ADC was

performed without motion or artifact correction in the pre-

vious studies. It is reported though that ADC is a parameter

susceptible to artifacts, the most frequent of all being pa-

tient’s motion and breathing, resulting in misregistration of

the images obtained with different b-values [1], [13]. There-

fore, in order to correctly visualize diffusion in biological

tissues, image registration should precede the ADC calcu-

lation [10]. Specifically, due to non-linear motion (cardiac

pulses, respiration), non-rigid alignment of the DW-MRI se-

quence becomes necessary [23].

In this paper, we propose a joint deformable registration

and appearance model computation framework. The defor-

mation model maps each one of the m DW images in a

common space (the ADC space), whereas the appearance

model describes the signal intensity related to the diffusion

of water molecules that takes place during DW-MRI acqui-

sition. The unknown variables of the combined deformation

and appearance model correspond to a m + 2-layer graph-

ical model, m layers that represent the m 3D deformation

fields, one for each DW image, and two layers for the two

parameters of the appearance model, namely the 3D ADC

map and the 3D signal intensity without diffusion weighting

(explained later with more details). The latent deformation

variables are obtained using the discrete formulation intro-

duced in [7]. The m + 2 layers are interconnected in or-

der to achieve consistency between the predicted diffusion
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(by the appearance model) and the diffusion calculated by

the registered DW images. Each deformation field depends

thus on the 2-layers appearance model, which amounts to a

high-order dependency that requires a high-order inference

scheme. Spatial smoothness constraints on the parameters

of the appearance model and the deformations are imposed

through pairwise interactions. Moreover, the m layers de-

formation fields have pairwise interconnections (based on

proximity of b-values) towards imposing smoothness on the

change of deformation through time (the images sequence

is acquired with increasing b-values).

Our approach lies between frameworks of concurrent

segmentation and registration [29], [30], [18], [2] and im-

age reconstruction and modeling [21], [19]. The main dif-

ference of our approach with respect to the concurrent seg-

mentation and registration works is that, our ADC variables

are continuous and have unique values on a voxel-wise ba-

sis, whereas segmentation labels are discrete and common

within regions. In that sense, methods for image reconstruc-

tion [21] and denoising [20] are closer to our approach;

those however are defined in a single spatial domain and

do not require deformable image registration. On the other

hand, methods for recovering appearance change and mo-

tion in image sequences target a similar goal, but they ac-

count usually for global motion or smooth deformations, as

well as systematic changes in appearance exhibiting spa-

tial or temporal structure that can be modeled [5]. Intensity

changes in domain-specific cases are captured by learning

models using training examples. Such training images are

not available in our case where the tumor appears in differ-

ent areas of the body.

By elaborating more on concurrent segmentation and

registration frameworks, we aim at finding the optimal de-

formation fields of the DW-MR images together with the

optimal ADC values in a one-shot optimization approach.

Alchatzidis et al. [2] proposed a joint group-wise registra-

tion and segmentation method for brain atlas selection, but

they optimized the deformation fields iteratively, whereas

Sotiras et al. [24] didn’t include a segmentation layer in

their group-wise, one-shot registration method. In our case

the one-shot optimization problem imposes additional chal-

lenges. To this end, Dual Decomposition (DD) for MRF

optimization [11] is used to determine the optimal solu-

tion to the joint problem, in which linear programming and

duality [12] are incorporated. It is also worth to mention

that our framework is modular with respect to the registra-

tion/annotation grid and can be adapted to the application

domain. Finally, to the best of our knowledge, we are the

first to propose a DW-MRI registration scheme that opti-

mizes explicitly the derived ADC map. Very recently, two

other works of DW-MRI registration were published [9],

[26] aiming at computing the ADC without motion artifacts.

Guyader at al. [9] examined the influence of pairwise regis-

tration on the ADC calculation, while Veeraraghavan et al.

[26] proposed a group-wise DW-MRI registration method

that requires structure segmentation, thus is not completely

automated. Both methods (i) use mutual information crite-

rion for image similarity which is less appropriate than the

fitting error to a diffusion model we are using. (ii) calculate

the motion for each image independently without consid-

ering temporal consistency (smooth transition in time) and

(iii) extract the ADC by voxel-wise curve fitting from the

warped images without accounting for spatial constraints.

The remainder of this paper is organized as follows: sec-

tion 2 describes the combined registration and ADC calcu-

lation strategy, while experimental validation is presented

in the following section. Discussion and future directions

conclude the paper.

2. Graph-based joint DW image registration

and diffusion modelling

Let us consider a sequence of m DW-MR images, each

one described by intensity values st(x), t = 1, ...,m, with

x ∈ Ωt, Ωt ∈ R3. On top of that, let’s consider an extra

image z(x) with x ∈ Ωz which represents the ADC tem-

plate corresponding to the previous image sequence. This

ADC template is regarded as the reference frame of an op-

timal alignment among the DW-MR images. We therefore

seek for two results: a set of deformations d = {d : xR =
dt(xt), t = {1, ...,m}} which map mutually correspond-

ing points from the m-image spaces to the same point of

the reference frame Ωz and the optimal - in terms of spatial

consistency and smoothness - ADC values that can be cal-

culated when all m-images are mutually aligned. This joint

mapping and ADC refinement aims at (i) correcting defor-

mations due to (local) organ deformations or motion, (ii) en-

sure temporal consistency in the diffusion process and (iii)

impose spatial consistency on the deformation fields and the

derived ADC map. The appearance model used for the cal-

culation of the ADC, as well as the deformation model, are

jointly optimized to define the reference pose. In the follow-

ing section, the problem formulation is presented, first for

the case of negligible deformations and then for all possible

deformations.

2.1. Appearance (diffusion) model and MAP esti
mation

In DWI, we assume that the intensity values of the im-

ages depend mainly on the amount of signal loss occurred

during the application of two equally rectangular gradients

before and after the 180◦-refocusing pulse [4]. The rela-

tion between the signal attenuation expressed by the signal

intensity s and the diffusion of the water molecules in a mi-

croscopic level is known to be exponential [14]. Having

acquired the images with high b values (> 50s/mm2), we

can assume that the DW images are insensitive to vascular
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capillary perfusion and diffusion is the only type of motion

present, thus the ADC is equal to the water diffusion [10].

Therefore the relation between the ADC (referred to with

the letter z) and the signal intensity s can be modeled as:

st = s0e
−bt·z (1)

where st and bt the image intensity vector and b-value at

instant t respectively, s0 the signal attenuation for b = 0 and

z is the ADC vector (all vectors are linearized 3D matrices).

Denoting with yt the natural logarithm of the image vector

st, the relation between the image vector and the ADC can

be expressed as:

yt = −btz+ y0 + nt (2)

where nt the noise vector. We are assuming noise to be zero

mean i.i.d., thus the multivariate pdf of nt is given by:

P (nt) =
1

(2π)
M
2 σM

n

exp{−
1

2σ2
n

nT
t nt} (3)

where M the size of the linearized noise vector and σ2
n de-

notes the variance of the noise process. If all m DW-MR

images are perfectly aligned, the standard way of estimat-

ing ADC is by calculating the slope of a line fitted on the

plot of the logaritm of the relative signal intensities of the

tissue against the b-values:

z =

∑m

i=1 (bi − b̄)((yi − ȳ)∑m

i=1 (bi − b̄)2
(4)

where b̄, ȳ the mean b-value and mean of the natural log-

arithm of the image vector respectively. We approach the

calculation of z, as well as y0 using the Maximum a Poste-

riori (MAP) technique:

ẑ, ŷ0 = argmax
z,y0

P(z,y0 | y1, · · · ,ym) (5)

The random fields z and y0 are assumed to be statistically

independent in this study, as they refer to two independent

processes. From Bayes’ rule, equation (4) can be written as:

ẑ, ŷ0 = argmax
z

P(y1, · · · ,ym | z,y0)P(z)P(y0)

P(y1, · · · ,ym)
(6)

Since the denominator is not a function of z nor of y0, it

does not influence their estimation and therefore can be ig-

nored. Taking the log probability of posterior probability:

ẑ, ŷ0 = argmax
z,y0

{[logP(y1, · · · ,ym | z,y0)

+ logP(z) + logP(y0)]}
(7)

Next we solve equation (7) assuming there is no deforma-

tion between the DW images.

From equation (7), since nt’s are assumed to be inde-

pendent:

ẑ, ŷ0 = argmax
z,y0

{[log

m∏
t=1

P(yt | z,y0)

+ logP(z) + logP(y0)]} = argmax
z,y0

{[

m∑
t=1

logP(yi | z,y0)

+ logP(z) + logP(y0)]}

(8)

Since noise is assumed to be i.i.d. Gaussian, from equations

(2) and (3) we have:

P(y1, · · · ,ym | z,y0) =

[

m∑
t=1

log
1

(2πσ2
n)

M
2

exp{−
‖yt + btz− y0‖

2

2σ2
n

}] =

m∑
t=1

−‖yt + btz− y0‖
2

2σ2
n

−
M

3
log(2πσ2

n)

(9)

Substituting equation (9) in equation (8) we obtain:

ẑ, ŷ0 =

argmax
z,y0

{[

m∑
t=1

−‖yt + btz− y0‖
2

2σ2
n

+ logP(z) + logP(y0)]}

(10)

The derivation of a solution for ADC based on equation (10)

is the first contribution of our work, in which the ADC can

be calculated based on the data (DW-MR images) and some

prior knowledge about context dependencies on ADC map

and y0 values, acting as regularization constraints.

2.2. MAP estimation for joint appearance and
deformation model

Assuming now that some motion has occurred during

the acquisition process of the DW-MR images, equation (2)

takes the form:

yt ◦Dt = −btz+ y0 + nt (11)

where Dt denotes the deformation field that maps st to the

ADC template space. In this case, we would like to compute

the m deformation fields that would bring the m DW-MR

images to a common reference space in which the ADC map

can be accurately estimated. Let’s denote the geometric de-

formation that maps the DW-MR image st to the common

(ADC) space with Dt(x) = x + dt(x), where dt is the

displacement field of image st. The joint posterior proba-

bility for the appearance model parameters and the set of
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displacement fields [d1, · · · ,dm] is given by:

P(d1, · · · ,dm, z,y0 | y1, · · · ,ym) =

P(y1, · · · ,ym | d1, · · · ,dm, z,y0)P(d1, · · · ,dm, z,y0)

P(y1, · · · ,ym)
(12)

The random fields dt,z and y0 are once again assumed to

be statistically independent, as they refer to three indepen-

dent processes. Therefore, the joint MAP solution could be

derived similarly as in the previous section, resulting in the

following optimization problem:

ẑ, ŷ0, d̂1, · · · , d̂m =

argmax
z,y0,d1,··· ,dm

{[
m∑
t=1

−‖yt ◦Dt + btz− y0‖
2

2σ2
n

+ logP(z) + logP(y0) + logP(d1, · · · ,dm)]}

(13)

The latter equation for computing a joint solution for

ADC and deformation fields, using some priors on context

dependencies on z, y0 and deformation fields, is the second

contribution of our work.

2.3. MRF Formulation of Joint Problem

We formulate our joint DW-MRI registration and ADC

modeling problem using Markov Random Fields (MRF).

The joint model is parameterized by a set of m + 2 iso-

morphic grid graphs G = {G1, . . . , Gm+2}, each of the

first m superimposed onto the corresponding DW-MR im-

age, whereas the last two grid graphs are superimposed onto

the ADC map that we want to compute and the y0 image

vector respectively. To this end, we define three sets of la-

bels, corresponding to the three different types of variables

in our model. The label set Ld is a quantized version of

the displacement space. A label assignment ldp ∈ L
d (with

p ∈ Vd) is equivalent to displacing the control point p by

displacement dp. Correspondingly, the labels lzp ∈ L
z and

ly0
p ∈ L

y0 are quantized versions of the ADC and y0 inten-

sities, respectively.

For every control point in each grid i there is a node p
that represents either its displacement if the grid is a defor-

mation grid either the ADC or the y0 value in case of the

last two grids respectively (p ∈ V,with V denoting the set

of all nodes on a grid that encode the latent variable). Re-

garding the deformation, it is evaluated on the deformation

grid’s control point p as D(x) = x+
∑

p∈G η(‖x− p‖)dp,

where dp is the displacement of the grid’s control point

p. By moving the grid’s control points, we end up de-

forming the DW-MR images. In the end, the displacement

of a voxel x of the image will be determined by the con-

trol points displacements and the influence of each control

point on x, which is given by the projection function η (a

cubic B-splines in our case). Due to the isomorphic na-

ture of the grid, p indexes a common to all grids control

point position. Moreover, the nodes in the graph are con-

nected with a set of edges E that encode the interactions

between the deformation and the ADC variables. The first

type of dependencies between the nodes is a high-order de-

pendency term that relates to the coupling term, which pe-

nalises any deviation due to registration of the image inten-

sity value from the attenuation value calculated based on

equation (1). The second type of dependencies in our en-

ergy formulation is related to temporal constistency of the

deformation fields, which means that we assume that the

deformations occurring on the image query should change

smoothly from one image to the other. This term is appli-

cable only on edges connecting nodes on different deforma-

tion grids (inter-deformation dependency). The third, fourth

and fifth terms relate to the smoothness constraints and are

applicable only on edges connecting nodes on the same grid

(intra-deformation, intra-ADC and intra-b0 dependency re-

spectively) (see figure 1,left).

Energy terms: The constructed graph is associated with

an energy, consisting of four pairwise terms:

Ejoint(d1, · · · , dm, z, y0) =

λc

m∑
t=1

∑
p∈Gt

∑
p∈Gm+1

∑
p∈Gm+2

Vc(l
dt
p , lzp, l

y0

p )

+ λinter

m−1∑
t=1

∑
p∈Gt

Vinter(l
dt
p , ldt+1

p )

+ λintra1

m∑
t=1

∑
p∈Gi

∑
q∈(N(p)∩Gi)

Vintra1(ldt
p , ldt

q )

+ λintra2

∑
p∈Gm+1

∑
q∈(N(p)∩Gm+1)

Vintra2(lzp, l
z
q)

+ λintra3

∑
p∈Gm+2

∑
q∈(N(p)∩Gm+2)

Vintra3(ly0

p , ly0

q )

(14)

where Vc is the coupling potential of a third-order depen-

dency, Vinter is a pair-wise potential for temporal regu-

larization, Vintran(·, ·), n = 1, · · · , 3 are the three pair-

wise potentials imposing spatial regularization within each

graph, and N represents the spatial connectivity of the

nodes. The constants λc,λinter and λintran , n = 1, · · · , 3
are used to weight the different types of potentials.

Coupling term: It penalizes deformations that lead to

an increase in the matching error among z, y0 and the sig-

nal attenuation at a given instant t, based on equation (13).

It is applicable on a third-order clique consisted by the cor-

responding control points p (same spatial location) on the
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d1 d2 dmdm-1

z b0

Figure 1: Left figure: The node and the edge system of all the connected graphs. With green, blue and brown color the

relationship within the grid nodes belonging to ADC, y0 and each of the deformation field respectively (intra connections).

The black dotted edge represents the third-order dependency among deformation field and appearance model (coupling

relationship), whereas pink edges denote the temporal relationship between successive deformatio fields (inter relationship).

Right figure: Boxplots of the mean SSE based on ADC maps derived by the four different examined cases.

deformation, the z and the y0 grid:

Vc(l
dt
p , lzp, l

y0

p ) =

∫
Ωst

η̄(‖xt − p‖)

(y(xt + dl
dt
p ) + btz

lzp − y
ly0p
0 )2dxt

(15)

This term is our data term as it connects the DW-MR im-

ages with all three types of variables. It is defined on the

image domain Ω and a function η̄ is used to back project

the voxel-wise information on the grids’ control points, by

determining how much voxel x influences the control point

p.

Spatial and temporal deformation smoothness: We

assume that the organs’ motion evolves smoothly during

image acquisition process therefore we expect the deforma-

tion on each DW-MR image to not deviate much from the

deformation computed on each immediate neighbor, mean-

ing the image preceding it. In the same time, each defor-

mation field should deform the tissues in a way in which

the anatomical information is retained. Therefore in order

to impose temporal and spatial smoothness on the defor-

mation fields we penalize the magnitude of displacement

vector differences. The pairwise potential would then be:

V (ldi
p , ldj

q ) =
‖dl

di
p − dl

dj
q ‖

‖p− q‖
(16)

In case of temporal deformation smoothness (Vinter) p ≡ q
and j = i + 1, whereas in case of spatial deformation

smoothness (Vintra1 ) i ≡ j. For both cases we are assum-

ing a 8-nodes connectivity.

Spatial smoothness on appearance model: Finally the

last two terms in equation (14) relate to the spatial con-

straints applied within each of the images of our appearance

model (z and y0). The squared error between two different

appearance labels was used towards this end:

Vintra2(lzp, l
z
q) = (zl

z
p − zl

z
q)2,

Vintra3(ly0

p , ly0

q ) = (y0
l
y0
p − y0

l
y0
q )2

(17)

Again we are assuming a 8-nodes intra-image connectivity.

2.4. Optimization and implementation details

Our discrete high-order MRF-based energy minimiza-

tion problem was solved using Dual Decomposition (DD),

which has been introduced as a framework for MRF opti-

mization, offering global guarantees [11]. Dual Decompo-

sition consists in decomposing a global difficult problem

into smaller solvable subproblems (referred to as slaves)

and then extracting a solution by combining the solutions

from these subproblems. In our framework, the graph is de-

composed into subgraphs that constitute the set of subprob-

lems, such that they cover (at least once) every node and

edge in each graph. One slave problem is defined for each

line parallel to a coordinate axis in space and time (corre-

sponding to pairwise interactions), and one slave is defined

for the higher order clique (related to the data term). Two

different optimization schemes are used for the solution of

the subproblems: linear programming and duality [12] for

pairwise interactions and exhaustive search for the higher

order clique. In the end, global optimization is achieved

through DD, that ensures agreement among the solutions

provided by all slaves.

Our algorithm follows a coarse-to-fine process that first

estimates parameters at a coarse spatial image resolution

level and then updates the solution to a finer resolution

182



Figure 2: An axial slice of the 3D image of a patient. First row: b values of 20, 50, 150, 400 and 800 s/mm2 (from left to

right). The red contour in the “b 50” image corresponds to the tumor’s contour, as it was drawn by the expert. 2nd row: ADC

map derived by unregistered images,by deformed entropy-based group-wise registration approach, by curve fitting from the

wraped by the proposed framework images and finally the ADC derived by the proposed joint approach (from left to right).

The last image on the right is the s0 derived also explicitly by our framework.

level. We applied a multi-resolution scheme with 3 resolu-

tions levels; two levels in which the joint problem is solved

and one at full image resolution in which only the appear-

ance model is optimized, keeping the previously obtained

deformation fields fixed. The rationale behind this multi-

resolution approach is that we want to adopt the grid size to

the information content (frequencies) of the modeled vari-

ables, i.e. a sparse grid for the deformation model to cope

with potential rigid transformations, a mid-level grid for lo-

cal deformation and global intensity variations and a last

dense grid for local intensity changes. Finally, regarding

the run-time performance of the method, all the experiments

were computed on a 8-cores machine (3.6 GHz processing

power) with a memory requirement of 4 GB.

3. Experimental Validation

In order to validate the proposed registration method,

we used a data set provided by the Centre Hospitalier

Universitaire Henri-Mondor, France. The data set consisted

of 3D images of 17 different patients with lymphoma,

scanned with a 3 Tesla MRI scanner using 5 b values:

20,50,150,400 and 800 (s/mm2). Therefore, the sequence

of the images to be registered was always of size 5 (m = 5)

per patient. Both male and female patients were included.

The image size was 130x106x22 for every patient, with

a pixel resolution of 2.46x2.46 mm2 in the axial plane

and 5 mm2 in the z-axis. Each image had been manually

annotated by experts to indicate the contour of the tumor

(see figure 2).

We compared the proposed joint method against

three other approaches of computing an ADC map. The

standard way of computing an ADC map is by plotting

the logarithm of the relative signal intensity of the tissue

on the y-axis against the b values on the x-axis and then

fitting a line through the plots with the use of linear

regression (see equation (4)). Then the ADC is described

by the slope of the line. This standard approach used in

clinical practice does not take into account any motion

correction scheme, therefore we refer to the ADC map

derived by this approach as the unregistered case. We

also compared the ADC derived by the proposed joint

method against an ADC map computed based on deformed

images, following the afore-mentioned ADC computation

approach as a post-processing to the registration step. An

implementation of a state-of-the art group-wise registration

approach [24] was examined and the ADC computed

based on the derived deformed images was calculated.

An entropy estimator based on spacings [6] was used as

a global similarity criterion and mutual information (MI)

was used in the inter-images comparisons. Finally, we

computed an ADC map which values were extracted from

the wraped images by our approach. The ADC map in

all cases except the case where it is computed explicitely by

the proposed method was computed based on the DW-MR

images (deformed or not). Then the accuracy on the ADC

maps computed by these four different approached was

quantitatively assessed by computing the sum-squared

error (SSE) among the predicted image values derived by
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equation (1) and the actual (deformed or not) image values.

(see Fig.1,right). The mean SSE over all voxels belonging

to a tumor in the case of the explicitely computed by the

proosed method ADC was lower than the corresponding

mean SSE computed by all three rest cases.

Finally, in order to qualitatively evaluate the results, the

ADC map for the same sagital view of a patient is shown in

Fig.2a, as derived by the four different cases, as well as the

s0 image computed also explicitely by our method. Fig.2

(first row) illustrates an example of the DW-MR intensity

variation for the five different b-valuess. In order to visually

assess the results, we plot the ADC map of the same patient

as calculated by four different methods. The results are

illustrated in Fig. 2, second row, and correspond (from left

to right) to the ADC calculated by voxel-wise curve fitting

from (i) unregistered images, (ii) warped images using

entropy-based similarity (implementation of the method

in [24]), and (iii) warped images based on diffusion model

fit (proposed approach without ADC and y0 regularization

constraints). Finally the AC map an the s0 image resuted

from the propoed joint framework are illustated in the fourh

and fith colum respectivly.

4. Conclusion

In this paper, we propose a novel joint deformable regis-

tration based on diffusion modeling that derives an optimal

geometrical as well as appearance representation towards

more accurately depicting the physiological process taking

place during DW image acquisition. At that point we would

like to note that convergence to a consenus solution among

the slaves in the DD scheme was not achieved in all the

experiments. In those cases, the majority voting algorithm

was applied to derive the final solution to the energy min-

imization problem. Extensive study with more data and a

parametric analysis of the method are required in order to

better explore the predictive power of ADC. Overall, we

conclude on the usefulness of DW-MRI registration towards

improving the quality of ADC, which is in accordance with

the conclusions derived by recent works on ADC refinement

through image registration.
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