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Abstract

One of the basic components of diffeomorphic image reg-

istration algorithms based on velocity fields is the numeri-

cal method used to integrate velocity parameters and obtain

spatial transformations as displacement fields. When the in-

put velocity field does not depend on the time parameter, the

solution is often referred to as the Lie exponential of the ve-

locity field. In this work, we present an integration method

for its numerical computation based both on a generaliza-

tion of the scaling and squaring algorithm and on a class

of numerical integrators aimed to solve systems of ordinary

differential equations called exponential integrators. This

new method led to the introduction of three numerical in-

tegrators, and the subsequent validation are performed on

synthetic deformations and real medical images.

1. Introduction

Diffeomorphisms in medical image registration:

There are multiple medical applications where it is inter-

esting to combine and compare information obtained from

different patients’ images: in longitudinal studies, when a

temporal sequence of medical images of the same subject

is studied, in cross-sectional studies, when images are com-

pared across subjects, and when images are acquired us-

ing different modalities [22]. In brain imaging, for exam-

ple, registration techniques are widely used to correct the

subject motion and, in longitudinal scans, to help in com-

paring and analysing anatomical differences. In the practi-

cal implementations of image registration algorithms, one

of the crucial choice is the set of constraints that reflects

the geometrical properties that are expected to remain un-

changed between scans. A reasonable choice for the set of

spatial transformations modelling continuous deformations

between images, is the group of diffeomorphisms.

Parametrisation of diffeomorphisms: Two main prob-

lems do arise in the practical implementation of diffeomor-

phic image registration frameworks: their parametrization

and the statistical analysis [13]. A sensible choice to par-

tially solve these technical issues is to parametrize each dif-

feomorphism with its tangent vector field, that makes them

easier to be manipulated, and where the computation of

statistics is simplified. Two possible options are available

according to the dependence of the vector field on the time

parameter.

From time-varying to stationary velocity fields: While

theoretically the parametrisation in the tangent space par-

tially solves the above mentioned problems, difficulties

emerges in its computation. An analytic (or exact) solu-

tion of the differential equation system that provides the re-

lated geometrical transformation of the vector field, is al-

most never available. To approximate it, it is necessarily

to rely on numerical schemes, called integrators, such as

the widely used Euler method or Runge Kutta 4 [7]. These

methods are applied in medical imaging both when deal-

ing with vector fields that are time-dependent (time-varying

velocity field or TVVF) or time-independent (called sta-

tionary velocity fields or SVF). TVVFs appear in diffeo-

morphic image registration as a parametrization model of

the deformations, where the geodesic motion on the dif-

feomorphism group is defined by the Euler-Poincaré equa-

tions [5, 20]. Authors of [3] have indicated that restrict-

ing the parametrization to the SVF, allows to use an al-

gorithm called (classical) scaling and squaring, that is in

general faster than the previously proposed methods. In

[24], a similar algorithm is developed for non-linear station-

ary ordinary differential equations applied to wave propaga-

tion alongside a rigorously error analysis. A comparison of

some of the methods to exponentiate an SVF has been per-

formed in [6], while SVF-based diffeomorphic image regis-

tration has found successful applications [23, 15, 17, 21, 4].
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Contributions: This paper is concerned with the numer-

ical computation of the integrator of SVF, also called Lie

exponential. Its main contribution is the introduction of

a methodological approach based on a combination of the

generalised scaling and squaring proposed in [2] and on the

exponential integrators, developed in the numerical analysis

community, and presented in [12].

Paper organization: In the next section we introduce the

relevant theory leading to three numerical integrator al-

gorithms, while formalizing the problem and introducing

some of the available schemes in the state of the art. In

section 3, we present the five datasets used for numerical

experiments, and in section 4 we provide the results of the

new numerical scheme compared with other algorithms.

2. Numerical computations of the exponential

of a Stationary Velocity Field

Stationary and time-varying velocity field: We indicate

by Ω ⊂ Rd the image’s domain (d = 2, 3 for bi- and tri-

dimensional images), by φ : Ω→ Ω a diffeomorphic spatial

transformation and by u : Ω → Rd a stationary velocity

field (or tangent vector field).

A diffeomorphism can be obtained from a velocity field

u through a first order ordinary differential equation system

(ODE) of the same dimension of Ω:

dφt

dt
= u(φt), φ0 = Id . (1)

whose solution at t = 1 is indicated with φ = φ1. The

set of diffeomorphisms continuously parametrized by a

time-parameter t, indicated by {φt}t∈R satisfies the one-

parameter subgroup properties: φ0 corresponds to the iden-

tity and φt ◦ φs = φt+s ([14], p. 102). When the velocity

vector field is time-dependent, the vector field u = u(t, φt),
it is called time-varying velocity field (TVVF), and the pre-

vious ODE becomes dφt

dt = u(t, φt).

We introduce two examples that will be of particular in-

terest for our purpose: the affine ODE system, in particular

when defined over elements of the Lie algebra of rigid body

transformations of the d-dimensional real space (special Eu-

clidean group SE(d)), and the non-linear ODE system de-

fined by an element of the projective general linear alge-

bra, whose Lie exponentials are the homographies of Rd.

In both cases an analytic solution of the Lie exponential is

available and therefore there is a ground truth to validate the

numerical methods.

Linear and Affine ODE: When the ODE is consid-

ered from a given point x in Ω, the transformed point

parametrized at the time t, given by φt(x) is denoted with

x(t) and its time derivative with ẋ(t). Using this notation,

when u is linear, equation (1) becomes ẋ(t) = Lx(t), for

a d × d square matrix L and x(0) = x0 initial condition.

The solution of this linear case uses the matrix exponen-

tial: at time t it is provided by x(t) = ϕ0(tL)x0 where

ϕ0(tL) =
∑

∞

j=0(tL)
j/j! is the matrix exponential func-

tion. When the ODE is affine, ẋ(t) = Lx(t)+r, and the ini-

tial condition is x(0) = 0, then its analytic solution is given

by x(t) = tϕ1(tL)r, where ϕ1(tL) is the shifted Taylor ex-

pansion of the exponential given by
∑

∞

j=0(tL)
j/(j + 1)!

([11] p. 10). In case the initial condition is not cen-

tred in the origin, is it possible to translate the coordinate

frame by y(t) := x(t) − x(0), so that y(0) = 0 and

x(t) = y(t) + x(0). The affine ODE can be written as

[
ẏ(t)
0

]
=

[
L r+ Lx(0)
0 0

] [
y(t)
1

]
, (2)

with initial condition [y(0) 1]T = [0 1]T . Its analytic so-

lution is given by

[
y(t)
1

]
= ϕ0

([
L r+ Lx(0)
0 0

])[
0

1

]
. (3)

while using ϕ1, and in Euclidean coordinates, is

x(t) = x(0) + tϕ1(tL)(r+ Lx(0)) . (4)

The numerical computation of ϕ0 and ϕ1 is an open field of

research, and a comparison of the commonly used methods

can be found in [18]. There are several numerical methods

available to approximate ϕ0(A)X0 or ϕ1(A)r , not involv-

ing any direct computation of ϕ0. However, their efficiency

over a simple truncation of ϕ0 appears only when large ma-

trices are involved ([8, 1, 19]).

Homography group: The affine case can be extended in

homogeneous coordinates to the homography group. This

second example will provide a class of polynomial ODE,

where an analytic solution is still available as the quotient

of the exponential of the linear matrix in projective coor-

dinates. Indicating with X(t) the (d+ 1)-dimensional vec-

tor x(t) in projective coordinates, where all the components

depends on time, and with H an element of the projective

general linear algebra pgl(d) ((d + 1) × (d + 1) matrices

defined up to a constant), a linear ODE in homogeneous

coordinates can be written as Ẋ(t) = HX(t). The deriva-

tive of the Euclidean coordinates xi(t) = Xi(t)/Xd+1(t),
is given by the quotient rule

ẋi(t) =
Ẋi(t)Xd+1(t)−Xi(t)Ẋd+1(t)

Xd+1(t)2
i = 1, . . . , d .

(5)

For Xd+1(t) = 1 and Xi(t) = xi(t), the ODE can be writ-

ten, as the non-linear system

ẋi(t) = H(i,:) · [x(t) 1]T − xi(t)
(
H(d+1,:) · [x(t) 1]T

)

(6)
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Figure 1. Scaling and composing scheme, as a generalization of the scaling and squaring. Given a stationary velocity field u, this is first

scaled by a factor of N , then an appropriate numerical integrator is applied to the scaled u, and its result, indicated with ẽxp(u/N),
is iteratively composed by itself N -times. When ẽxp(u/N) is computed as Id + u/N and the iterative composition is computed by

composition of the previous step with itself, then the algorithm is the classical scaling and squaring proposed in [3]. When the iterative

composition is performed sequentially backward, it is equivalent to the Euler method ([7] chapter 5).

where H(i,;) is the i-th row of H . The analytic solution

of the previous non-linear ODE in Euclidean coordinates

can be recovered from the solution in homogeneous co-

ordinates S(t) = ϕ0(tH)X(0), for the initial condition

X(0) = [x(0) 1]T , as S1:d(t)/Sd+1(t).
Numerical integrators: Any numerical method whose aim

is to approximate the solution of equation (1) is called nu-

merical integrator. For the general case, the flow of diffeo-

morphism φt that solves equation (1), called Lie exponential

of the velocity field u and is indicated with exp(tu) ([14],

ch. 5), does not have an analytical solution. To address

this limitation several integrators have been proposed in the

literature to compute a numerical approximation of the Lie

exponential (for example in [7]). Their improvement in ac-

curacy, stability and computational time is an open field of

research: authors of [6] presented a comparison of different

numerical approaches for the integration of SVFs.

Particularly relevant to our purposes are the scaling and

squaring and the Euler method ([3] and [24] where proofs

and bounds on the accuracy of these methods are derived).

Generalized scaling and squaring: The most commonly

used numerical methods to integrate a vector field are based

on the discretization of the time parameter and on the Tay-

lor expansion of the unknown solution (as for example Eu-

ler, Euler modified, Midpoint and Runge Kutta 4). When

dealing with SVFs, the one-parameter subgroup property

of the vector field φt = exp(tu) and its direct implication

exp(u/N)N = exp(u) ([14], p. 204) is at the core of the

generalized scaling and squaring numerical methods. Indi-

cating with ẽxp the Lie exponential approximant (any ap-

propriate numerical integrator of the Lie exponential) that

deals with small SVFs, and denoting u/N with v, it fol-

lows

φ1 = exp(u) =
(
exp(u/N)

)N
≃
(
ẽxp(v)

)N
. (7)

After the scaling of u and the computation of ẽxp, the

result is iteratively composed in order to obtain the so-

lution in the original scale. The final iterative composi-

tion can be performed in 3 ways, called forward compo-

sition, backward composition or, when N = 2M , squared

composition (in [6] respectively forward Euler, composition

method, and scaling and squaring). At the k-th step, the

computation can be performed as ẽxp(v)k+1 = ẽxp(v) ◦

ẽxp(v)k, ẽxp(v)k+1 = ẽxp(v)k ◦ ẽxp(v) or ẽxp(v)2
k+1

=

ẽxp(v)2
k

◦ ẽxp(v)2
k

. Even if mathematically equivalent,

the squared composition is computationally faster. Authors

of [2] proposed to compute ẽxp(v) with a generic adequate

exponential integrator, as for example the Runge-Kutta 4

method (figure 1).

Exponential integrators: Another class of numerical in-

tegrators was introduced in 1958 to solve some particular

stiff ODEs for which the numerical integrators based on

the Taylor expansion have not provided reasonable results

[12]. Called exponential integrators, they originates from

the strategy of separating the linear part and the non-linear

part of the tangent vector field. In this paper we exploit this

approach, combined with the generalized scaling and squar-

ing to produce a new numerical integrator method.

Combining generalized scaling and squaring and expo-

nential integrators: The scaling step, as the first step of the

scaling and squaring algorithm, appears to be particularly

convenient when dealing with large deformations between

images. Once the SVF is reduced in scale, it is possible to

integrate it, separating the linear from the non-linear part,

following the exponential integrator methodology. After

scaling u to v = u/N and changing the coordinate frame

to have the initial condition centred in the origin, equation

(1) becomes ẏ(t) = v(y(t) + x(0)). Separating the linear

from the non-linear part with the Taylor series expansion of

v around x(0) in x(t), the ODE becomes:

ẏ(t) = v(y(t) + x(0)) = v0 + Jv0
y(t) +Nv(y(t)), (8)

where v(x(0)) is written as v0 for brevity and Jv0
is the

Jacobian matrix. The term Nv is a non-linear operator ob-

tained subtracting the linear part of the the SVF computed

with the Taylor expansion of v in x(t) around x(0):

Nv(y(t)) = v(y(t) + x(0))−
(
v0 + Jv0

y(t)
)
. (9)

It follows that Nv(y(0)) = 0 and Nv(y(t)) ∈ O
(
y(t)2

)

for x(t)→ x(0), or equivalently t→ 0.

Considering only the linear part, it is possible to ap-

ply ϕ0, as proposed in equation (3), obtaining the solution

x(t) as the product of the matrix ϕ0(t[Jv0
,v0; 0, 0]) times
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Figure 2. Visual description of the data set used in the experiments. (a) Axial section of a velocity field generated by element of the rigid

body transformation of the space with rotation randomly chosen in the interval (� �
8 ,

�
8 ) and with the centre randomly selected in the

field of view. An analytic solution of the ODE is available for any choice of rotation and translation. (b) Axial section of a velocity field

generated by an homography H scaled according to the dimension of the image, such that its matrix Logarithm has real entries and the

last row of H multiplied by its column is positive. For this dataset an analytic solution is available. (c) Axial section of an SVF with

values randomly generated from a normal distribution with σinit = 5 and smoothed with a Gaussian filter of σgf = 2. A wide number of

samples of any dimension can be quickly generated, but there is no analytic solution available. (d) SFV obtained from the registration of

two longitudinal weighted MR brain images from MIRIAD dataset.

[0, 1]T . Since this choice is computationally expensive the

function ϕ1, as proposed in equation (4), provides a sec-

ond option that reduces the computational time. With this

choice, we obtain: x(t) = x(0)+tϕ1(tJv0
)v0 . When deal-

ing with sufficiently small time-step, the Jacobian is close

to the identity and an additional term proportional to J2
v0

did not provide any sensible improvement in the numerical

results. For this reason ϕ1 can be truncated at its second

order:

x(t) = x+ tv0 +
t2

2
Jv0

v0 +O
(
t3J2

v0
v0

)
. (10)

In conclusion, an approximation of the solution of the lin-

earised equation (1), after the scaling step, can be written

as

ẽxp(tv)(x) := x+ tv0 +
t2Jv0

v0

2
, (11)

with asympthotic error O
(
y(t)2 + t3J2

v0
v0

)
, t → 0 that

arises from the truncation of ϕ1 and from the error intro-

duced when neglecting the non-linear part.

According to the choice of the exponential approximant

ẽxp, to the truncation of ϕ1 and to the iterative composition

(ϕ1/N )N , the method proposed can be implemented with

three possible algorithms:

1. Scaling and squaring based on exponential integrators

(ss ei): ẽxp is computed approximating the exponen-

tial of the matrix [Jv0
,v0; 0, 0] (equation (3)) and the

composition is computed by squaring.

2. Scaling and squaring based on approximated exponen-

tial integrators (ss aei): ẽxp is computed by truncat-

ing ϕ1 (equation (11), with t = 1) and the composition

is computed by squaring.

3. Scaling and composing based on approximated expo-

nential integrators (euler aei) ẽxp is computed by

truncating ϕ1 (equation (11), with t = 1) and the com-

position is computed with forward integrations.

The remaining part of this paper is devoted to the validation

and the comparison of these algorithms with the state of the

art.

3. Dataset Descriptions

Synthetic dataset 1: The first dataset consists of 50 linear

velocity fields sampled on a regular grid of size 60×60×60
generated by elements of the Lie algebra se(3) of the rigid

body transformations of the d dimensional space ([14], p.

191, 214). Rotations are randomly chosen in the interval

(−π
8 ,

π
8 ) and with the centre randomly selected in the field

of view. Studying these linear ODEs is particularly relevant:

a closed form of the analytic solution φ = exp(v) is avail-

able, therefore results obtained from numerical integrators

can be compared with a ground truth.

Synthetic dataset 2: The SVFs belonging to the second

dataset consists of 50 SVFs sampled on a regular grid of

size 60 × 60 × 60 and generated by homographies in the

projective linear group introduced in section 2. Each ho-

mography H is a (d+1)×(d+1) random matrix whose el-

ements are sampled from a Gaussian distribution with stan-

dard deviation 1 and scaled by a factor of 60. To avoid

foldings, degenerate cases and to avoid the exponential ma-

trix to have complex entries, two additional constraints are

added: the matrix logarithm of H must have real entries

and each row of H when multiplied by any of its columns

always provides a positive number. Despite the fact that the

corresponding ODE is non-linear, the analytic solution of

the Lie exponential is available.
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