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Abstract

RGBD scene recognition has attracted increasingly at-

tention due to the rapid development of depth sensors and

their wide application scenarios. While many research

has been conducted, most work used hand-crafted features

which are difficult to capture high-level semantic structures.

Recently, the feature extracted from deep convolutional neu-

ral network has produced state-of-the-art results for various

computer vision tasks, which inspire researchers to explore

incorporating CNN learned features for RGBD scene un-

derstanding. On the other hand, most existing work com-

bines rgb and depth features without adequately exploiting

the consistency and complementary information between

them. Inspired by some recent work on RGBD object recog-

nition using multi-modal feature fusion, we introduce a

novel discriminative multi-modal fusion framework for rgbd

scene recognition for the first time which simultaneously

considers the inter- and intra-modality correlation for all

samples and meanwhile regularizing the learned features to

be discriminative and compact. The results from the multi-

modal layer can be back-propagated to the lower CNN lay-

ers, hence the parameters of the CNN layers and multi-

modal layers are updated iteratively until convergence. Ex-

periments on the recently proposed large scale SUN RGB-D

datasets show that our method achieved the state-of-the-art

without any image segmentation.

1. Introduction

Indoor scene recognition based on RGBD camera has at-

tracted increasingly attention due to its wide applications in

computer vision and robotics and the popularity of depth

sensors. Although much progress has been achieved in the

past few years, indoor scene recognition is still challeng-

ing due to the large intra-object variation and spatial layout

changes, not to mention the challenges caused by the occlu-

sion and low-light condition.

Given an input indoor image, we human can quickly

recognize the scene category and generalize the brained

learned recognizer to the new place which is not seen be-

fore. The key to success of our brain lies in three aspects:

(1) its exposure to the dense and diversity sampling of our

visual world; (2) its versatile capacity to abstract compact

and discriminative representations of different complexi-

ties; (3) its high efficiency to fuse information from multi-

modalities to perform high-level reasoning.

To improve current scene recognition systems, a large

dataset is very helpful to learn meaningful representations

and prevent overfitting. Early scene-centric datasets [21,

13] for outdoor and indoor scene recognition either has a

small number of scene categories or dataset size compared

with the counterparts in object centric datasets, such as Im-

ageNet [14]. Recently, Zhou et al [22] proposed the Places

dataset which contains 7 million images from 476 places

categories, making it the largest scene and place database,

which allows us to train data hungry models. Although

depth sensors has become cheaper, the number of influen-

tial RGBD dataset is still relative smaller than RGB coun-

terparts. The first generation benchmarks, such as NYU

D2 [16] and Berkeley B3DO dataset [6], have bootstrapped

the initial progress of RGBD scene understanding. Re-

cently, Song et al [17] proposed the large scale SUN-RGBD

dataset, which is the first RGBD dataset that has a similar

scale as the PASCAL VOC dataset [3], hence make it pos-

sible to borrow the success technique in RGB scene under-

standing to RGBD research.

Besides a large dataset, features are also vital for scene

recognition. Many features have been proposed for scene

recognition, here we just briefly mention some recent influ-

ential and related works due to the space limits. Early scene

recognition uses hand-crafted features such as SIFT [11],

GIST [12] and CENTRIST [20], which achieved reason-

able performance for certain tasks. On the other hand, as

the hand-crafted features models low-level activations from

V1 cells, they can ignore the more discriminative informa-

tion in higher hierarchies which are vital for scene under-

standing. Moreover, the hand-craft features also have a low

generalization capability when migrating to new tasks. To

avoid the limitations of hand-craft features, the unsuper-

vised feature learning has been proposed, such as deep be-

lief nets [5], deep Boltzmann machines [15], deep autoen-
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Figure 1. Pipeline of our multi-modal feature fusion framework for RGBD indoor scene recognition. The input to our system are small

batches of RGB images and corresponding HHA[4] encoded depth images. The CNNs for RGB and depth modalities are then separately

trained and the features from the second fully connected layers are fed into the multi-modal learning layer F for learning two projection

matrix W1 and W2. F formulates an objective function which maximizes the inter- and intra-modality associations for samples from

the same class and vice versa for samples from different classes, and meanwhile regularize the learned features to be discriminative and

compact. The blue solid lines denote the forward training of multi-modal layer F . The blue dashed lines denote the parameter back-

propagation process. The golden lines denote the final feature fusion between two modalities for final rgbd scene recognition.

coders [8], convolutional deep belief networks [9], hierar-

chical sparse coding. The recent work of Bo et al [1] on

Hierarchical Matching Pursuit and its Multipath variant [2]

has achieved good performance for various tasks, including

RGBD object recognition. While, the feature hierarchies

learned by unsupervised feature learning is still compara-

tively shallower than the recent popular deep convolutional

neural network [7], which first appears in ImageNet classi-

fication challenges ILSVRC-2012. Recently, [10] explored

to incorporate segmentation in CNN learning framework

and achieved the state-of-the-art for rgbd scene recognition.

To learn features for RGBD scene recognition, one can

apply existing methods to color and depth modalities sep-

arately, or simply treat RGBD as un-differentiated four-

channel data. Such separate learning and un-differential

handling can ignore the consistency and complementary

information between the two modalities and their relative

importance for various tasks. Hence, the relationship be-

tween different modalities have not been thoroughly inves-

tigated for rgbd scene recognition. To resolve the above

issue, we proposed a discriminative multi-modal feature fu-

sion framework for RGBD scene recognition. The pro-

posed framework is illustrated in Fig.1. The basic idea is

that we seek to transform the activations from the trained

rgb and depth CNNs to a common subspace, such that we

can discover the discriminative features for both modalities

and simultaneously increase the association between same

class’ samples and decrease the association between differ-

ent classes’ samples for both intra- and inter-modalities.

Our experiments on SUN-RGBD dataset shows that our

method out-performed [10] without any image segmenta-

tion. More importantly, our research highlights the potential

of appropriate feature fusion for RGBD scene recognition,

which is worthwhile for further research.

Our work is inspired by two recent works [19] and [18]

for RGBD object recognition, which applied multi-modal

feature learning to fuse the response from the CNNs trained

with RGB image and surface normal images. There are

several differences between our work and these two works.

Firstly, the task domain is quite different. [19] and [18] tar-

gets the RGBD object recognition for the prop-like images

in controlled environment, while for scene recognition, the

image is much more cluttered. In terms of theoretical side,

[19] enforced the intra- and inter-modalities correlations be-

tween pairwise samples and [18], enforce the correlations

between the features of each sample individually. While, we
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Figure 2. Conceptual illustration of our method, (© and △) denote the samples from different classes, and the blue and orange colors

denote the samples from rgb and depth modalities separately.

consider both information in our formulation. In addition,

our formulation includes the regularization for the within-

class and between-class inter-view associations, which is ig-

nored in [19]. We prove the necessity of this regularization

by testing our implementation of [19] on the SUN-RGBD

dataset. The results demonstrate our methods’ theoretical

and performance advantages. Moreover, in terms of initial

feature formulation, we include CNN features fine tuned on

the HHA encoded depth layer [4], which has proved to be

more discriminative than raw depth image and surface nor-

mal image.

2. Proposed method

Let X = [x1, x2, ..., xN ] ∈ R
d1×N and Y =

[y1, y2, ..., yN ] ∈ R
d2×N denote the d1- and d2-dimensions

of the activations from the second fully connected (fc2)

layer of color and depth CNN in one data batch of N im-

ages. Let Wi ∈ R
Mi×di be the transformation matrix

for the modality i, (i = 1, 2), and F1 ∈ R
M1×N and

F2 ∈ R
M2×N be the learned features for the rgb and depth

modalities, respectively. Mi is the projected feature dimen-

sion for color (i = 1) and depth features (i = 2).

Our task is to learn a new representation F1 = W1X
and F2 = W2Y such that the correlation for same class’

samples are maximized for both inter- and intra-modalities,

and vice versa for different classes’ samples, and require

the learned features to be compact and discriminative ac-

cording to the input samples. Finally, the learned features

Fs = [F1 F2] are fed to the SVM to train the final scene

classifier. Noted, our framework can incorporate any state-

of-the-art features as input and any state-of-the-art classi-

fiers for final prediction, e.g. we can incorporate the sparse

logistic regression to from an end-to-end learning system

and back-propagate the parameters to the lower layers as in

[18]. We choose SVM in our work due to its robustness to

outliers. An illustration of our method is shown in Fig. 2.

2.1. Formulation

To learn features for both modalities, our objective func-

tion is formulated as

min
{W1,W2,F1,F2,α1,α2}

F =
2

∑

i=1

αp
i [t1Di + t2Ri] + β(C1 − λ2C2)

subject to α1 + α2 = 1, α1 ≥ 0, α2 ≥ 0

(1)

where Di := Di(Wi) is the intra-modality discriminative

term and Ri := Ri(Wi, Fi) is the intra-modality recon-

struction term for modality i, i = {1, 2}, which are to be

elaborated in following parts. These two terms are bal-

anced by the trade-off factor t1 and t2 respectively. α1 and

α2 are self-adjusted weights for each modality. The hyper-

parameter p is introduced to avoid trivial sub-optimal solu-

tion when only one modality is selected before such non-

linear handling [19]. C1 and C2 are the inter-modality cor-

relation terms for within-class and between-class samples.

Intra-modality discriminative term: The discrimina-

tive term D1(W1) for RGB modality is intended to find a

W1 to project the RGB CNN activations X to a space in

which the distance between xi and xj is small if they are

of the same class, otherwise large if they are from differ-

ent classes. D2(W2) is similarly defined for the depth CNN

activations Y . The constraint can be defined as: if two ob-

jects are from the same class (yij = 1), their relative feature

distance should be smaller than a given threshold µ1 − τ1,

otherwise (yij = −1) the distance should be larger than

µ1 + τ1, which is similarly defined as in [19]. Mathemati-
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cally, this can be expressed as

yij(µ1 − dW1
(xi, xj)) > τ1 (2)

where the distance between a pair of the CNN activations

xi and xj is computed as

dW1
(xi, xj) = (W1xi −W1xj)

T · (W1xi −W1xj) (3)

and the discriminative term is defined as follows

D1(W1) =
∑

∀i,j

h(τ1 − yij(µ1 − dW1
(xi, xj))) (4)

where h is a smoothed hinge loss function h(x) =
max(0, x), where D2(W2) is similarly defined for the

depth modality.

Intra-modality reconstruction term: The reconstruc-

tion term R1(W1, F1) for color modality is defined as

R1(W1, F1) =

||W1X − F1||
2
F + ||WT

1 F1 −X||2F + λ1g(F1)
(5)

this term enforces the learned feature F1 to be similar to the

W1 transformed X , while the second term encourages F1

to reconstruct X when back-transformed via WT
1 , and the

third term g is the smooth L1 penalty function [18]. With

the reconstruction term, the supervised information is in-

troduced to allow W1 better fit the observed training data

individually. Likewise, R2(W2, F2) corresponds to the re-

construction error for the depth modality Y .

Inter-modality correlation term: With the discrimina-

tive term and reconstruction term, the distances between

same class samples are decreased and the distances between

different classes samples are increased for each modality.

However, the data captured from different modalities may

suffer from missing information or noise pollution, hence

we seek to exploit the correlation between different modal-

ities to reduce misclassification, such that the association of

within-class samples are maximized, while the association

between different classes are minimized for inter-views.

Such regularization is introduced by adding two inter-view

correlation terms C1 and C2 which minimize the pairwise

distances between the color and depth modalities of the

same class and vice versa for the samples from different

classes.

C1(W1,W2) =
∑

c

∑

∀i,j∈c

[
√

(dW1
(xi, xj))−

√

(dW2
(yi, yj))]

2

(6)

and

C2(W1,W2) =

c 6=d
∑

c,d

∑

∀i∈c,j∈d

[
√

(dW1
(xi, xj))−

√

(dW2
(yi, yj))]

2

(7)

2.2. Alternating optimization

To our knowledge, there is no closed-form solution to

Eq.1 because we need to solve Wk, Fk and ak jointly. To

address this, we adopt the alternating approach to optimize

Wk, Fk, ak. The pseudocode of our algorithm is illustrated

as in Algorithm 1:

Algorithm 1 Optimizing our proposed feature fusion

framework

Input: Training set with two modalities: X , Y , the corre-

sponding label

Output: Feature projection matrix: W1, W2

Step 1 (Initialization):

Initializae W1,W2, F1, F2, a1, a2
Step 2 (Optimization)

for k =1, 2, ..., K do

2.1. Fix W1,W2, a1, a2 Update F1, F2 with ( 8)

2.2. Fix F1, F2, a1, a2, Update W1,W2 with ( 10)

2.3. Fix W1,W2, F1, F2, Update a1, a2 with ( 12)

end for

In Step 2.1 and 2.2, we update the other variables using

the gradient descent algorithm, where the same learning rate

γ is used. In Step 2.1, we update F1, F2, the derivate of F
respect to F1 are shown below:

∂F

∂F1
= 2ap1t2[(F1 −W1X)

+W1(W
T
1 F1 −X) + λ1g

′(F1)]

(8)

then F1 is updated as

F1 ← F1 − γ
∂F

∂F1
(9)

In step 2.2, when F1, F2, a1, a2 are fixed, Wi is updated,

e.g.

∂F

∂W1
= 2αp

1t1[(W1X − F1)X
T +W1(W

T
1 F1 −X)]

+ 2t2W1[α
p
1

∑

∀i,j

yijh
′(τ1 − yij(µ1 − dW1(xi, xj))Ai,j)

+ β(
∑

c

∑

∀i,j∈c

(1−

√

dW2(yi, yj)

dW1(xi, xj)
)Ai,j

− λ2

c 6=d
∑

c,d

∑

∀i∈c,j∈d

(1−

√

dW2(yi, yj)

dW1(xi, xj)
)Ai,j))]

(10)

where Ai,j = (xi − xj)
T (xi − xj)

W1 ←W1 − γ
∂F

∂W1
(11)
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Then by fixing W1,W2, F1, F2, we can update α1, α2

accordingly by attaching Lagrange multiplier based on :

L(α, η) =αp
1T1 + αp

2T2 − η(α1 + α2 − 1)

=αp
1(t1D1(W1) + t2R1(W1, F1))

+αp
2(t1D2(W2) + t2R2(W2, F2))

+− η(α1 + α2 − 1)

(12)

By setting
∂L(α,η)

α and
∂L(α,η)

η to 0, αi can be updated as:

αi =
(1/Ti)

1/(p−1)

∑2
i=1(1/Ti)1/(p−1)

(13)

Finally, the learned weight can be back-propagated to the

lower layer of CNN by

∂F

∂xi
= αp

1t1
∂D1(W1)

∂xi
+β

∂C

∂xi
+αp

1t2
∂R1(W1, F1)

∂xi
(14)

where

∂D1(W1)

∂xi
=
∑

∀j

2yijW
T
1 W1(xi − xj)

h′(τ1 − yij(µ1 − dW1
(xi, xj)))

(15)

∂C(W1,W2)

∂xi
=

2WT
1 W1

∑

c

∑

∀i,j∈c

(xi − xj)

√

dW1
(xi, xj)− dW2

(yi, yj)

dW1
(xi, xj)

− λ2

c 6=d
∑

c,d

∑

∀i∈c,j∈d

(xi − xj)

√

dW1
(xi, xj)− dW2

(yi, yj)

dW1
(xi, xj)

(16)

∂R1(W1, F1)

∂xi
= WT

1 (W1xi − fi)− (WT
1 fi − xi) (17)

for color modality X and is similarly defined for depth

modality Y .

3. Experiments

To evaluate the effectiveness of our proposed method,

we perform experiments on recently proposed SUN-RGBD

dataset [17]. The details of the experiments and the results

are discussed in the following sections.

3.1. Datasets and experiment setup

SUN-RGBD Dataset: The SUN-RGBD dataset is the

first large scale dataset which has a similar scale as PAS-

CAL VOC [3]. The dataset was captured by four different

sensors, and contains 10,335 RGB-D images in 47 scene

categories. For scene categorization, the benchmark of

scene classification is conducted on 19 subsets of the dataset

with more than 80 samples.

Architecture of CNNs The architecture of the CNN for

scene classification are exactly the same as the AlexNet [7].

The network contains eight layers with weights, with five

convolutional layers and the three fully-connected layers.

The network has about 60 million parameters. For scene

classification, the network was initialized by using the net-

work of PlacesCNN [22], which was trained from 205 cate-

gories of places with minimum 5,000 and maximum 15,000

images per-category. The last fully-connected layer is re-

moved and the second fully-connected layer (fc2) is used

for feature extraction. Then we fine-tune the network for

the RGB images in SUNRGBD dataset, which form the in-

door scene centric CNN. To train the depth CNN, we first

encode the depth images with the HHA encoding method

proposed by Gupta et al. [4], which generates three chan-

nels at each pixel with the information of horizontal dis-

parity, height above ground and the angle the pixel’s local

surface normal makes with the inferred gravity direction.

HHA encodes the properties of geometric pose that empha-

size complementary discontinuities in the image. After the

HHA encoding, we fine-tune the RGB CNN on the encoded

depth dataset. We use the recent popular deep learning plat-

form Caffe, the network was trained on a Titan X.

3.2. Parameter setting and analysis

For our multi-modal feature fusion framework, the di-

mension Mi of the projected features are set to the same

Mi = 2048 for both modality, the effects of different num-

ber of Mi can be observed in Fig.3, one can see that both ex-

cessive small or large Mi lead to performance drop. The pa-

rameters β = 1e−10, λ1 = 1, λ2 = 1e−11, µ1 = 100, µ2 =
1000, τ1 = 1, τ2 = 1,K = 300 are tuned empirically on

the validation set and then fixed during testing.

We also evaluate the contribution of each term by incre-

mentally including them in our objective function, which

is achieved by turning the related trade-off factors λ2 and

t2 from 0 to our validated parameters. We also self-

implemented Wang et al.’s method [19] and tested its per-

formance on the SUN RGB-D dataset with the parameters

tuned on the validation set. From Table.1, one can observe

that by considering within-class and between-class corre-

lation for inter-modality and intra-modality explicitly, we

achieved 6.3% improvement over Wang et al. [19]. Our full

model achieved around 8.7% improvement over the model

with just discriminative term and correlation term. The un-

derlying reason is that the discriminative term and corre-

lation term learns discriminative feature for pairwise sam-

ples, however final classification is evaluated on each sam-

ple individually. Hence the introduction of reconstruction

term allow the supervised information to regularize on the

learned transformation matrix, such that it can better fit the
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observed samples, therefore achieves large performance im-

provement.

Model Accuracy(%)

Wang et al [19] 26.5

Discriminative term + Correlation term 32.8

Full model 41.5
Table 1. The illustration of the contribution of each term.
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Figure 3. The effect of choosing different Mi.

3.3. Convergence analysis

To show the convergence of our methods, we plot the

value of our objective function for the 300 iterations with all

the parameters fixed. From the graph, we can see that the

objective function converge quickly with around first 200

iterations and converge slowly for next 100 iterations, as

shown in Fig.4.
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Figure 4. Convergence of the objective function.

3.4. Comparison with other methods

We compare our method with different baselines.

Specifically, we compare with the hand-craft descrip-

tor GIST [12], unsupervised feature learning descriptor

HMP [1] and supervised AlexNet [7], PlaceCNN [22] and

the state-of-the-art SSCNN [10] on SUNRGBD dataset.

The accuracy figures of GIST, AlexNet, PlaceNN, SSCNN

on RGB or RGB+D are cited from [10]. For HMP, we com-

pute the descriptor on both RGB and HHA encoded depth,

then the features are concatenated to train the classifier.

The introduction of the our comparing methods is given

as follow:

• GIST [12]. GIST is a famous hand-craft scene de-

scriptor, which computes the spectral information in an

image through Discrete Fourier Transform (DFT). The

spectral signals are then compressed by the Karhunen-

Loeve Transform (KLT).

• Hierarchical Matching Pursuit (HMP) [1] is an recent

proposed unsupervised feature learning method. It

builds feature hierarchy layer-by-layer using matching

pursuit encoder. We use the original code provided

by [1] for best performance.

• AlexNet [7]: Since the performance of our method,

PlacesCNN and SSCNN are based on AlexNet, hence

the performance of original AlexNet is included.

AlexNet was trained on the object centric ImageNet

dataset, while our method [14], PlacesCNN and SS-

CNN on the scene centric dataset, such as Places [22]

and SUN-RGBD [17].

• Places-CNN [22]. Place-CNN is pre-trained on 2.5

million scene images using Alexnet. In [22], both Lin-

ear SVM and RBF Kernel SVM are considered to train

and classify the Place-CNN extracted features on RGB

and RGBD.

• SSCNN [10] makes use of a slightly modified AlexNet

that trained with the SUN-RGBD dataset. The net-

work is divided into two branches, one for semantic

segmentation, the other for image classification. The

image classification branch is regularized by the se-

mantic segmentation.

• Our model. We also use our projected features for

RGB and RGBD to train linear SVM.

The experiment result is shown in Table.2 and Table.3,

where the accuracy is the mean accuracy of 19 scene

classes. The confusion matrix is also shown in Fig.5, where

the diagonal represent the recognition accuracy of each

scene. From the tables, it can be seen that the CNN trained

with scene centric databases, such as Place-CNN, SSCNN
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Figure 5. The confusion matrix of our method’s scene recognition performance on SUN-RGBD datasset. The vertical axis shows the

ground-truth classes, the horizontal axis show the predicted classes.

and our model, out-perform the object-centric AlexNet and

those hand-craft GIST and HMP based on unsupervised fea-

ture learning, which proves the advantage of scene specific

modeling. The other notable phenomenon is that the per-

formance of the classifiers trained by combining the rgb

and depth features always out-perform the rgb counterparts,

which confirms the common intuition that there are some

consistency and complementary information between rgb

and depth modalities.

Moreover, the SVM trained with our projected features,

outperform the PlaceCNN RBF baseline by around 2.5%
in terms of accuracy, which means the features learned by

our method has preserved most of the discriminative fea-

ture from the original RGB and depth CNN, while elimi-

nating a lot of noisy and redundant features, which proves

the validity of feature fusion. Our method’s slightly out-

performed SSCNN by 0.2%. Our projected color features

out-performed the SSCNN’s color version by 0.9%. Actu-

ally, our method and SSCNN present different tools toward

RGB-D scene recognition problem. SSCNN goes along

feature engineering, while we go along feature fusion, and

these two methods are both effective and they could be com-

bined together, which is left for future study.

In terms of learned feature dimension, SSCNN is the

most compact, which has only 512 dimensions. The dimen-

sion of our learned feature (4096 dimensions) lies in be-

tween SSCNN and HMP (28000 dimensions). But regard-

ing the generalization capability, our method out-perform

SSCNN as our framework only needs image-wise ground-

truth, while SSCNN need to prepare pixel-wise ground-

truth which is restrictive when applied to a new task. More-

over, SSCNN requires image segmentation, which would

introduce extra computational overhead.

4. Conclusion

In this work, we propose a novel discriminative feature

fusion framework for RGBD scene recognition. Our frame-

work considers the inter- and intra-modalities correlation

for all class samples and meanwhile regularize the learned

feature to be discriminative and compact. Our method out-

performs other state-of-the-arts over the recently proposed

SUN-RGBD dataset in terms of the accuracy, feature length

and learning overhead. Overall, our work shows the poten-

tial of feature fusion for RGBD scene recognition, which is

worthwhile for further research.
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