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Abstract

Most tracking-by-detection methods employ a local

search window around the predicted object location in the

current frame assuming the previous location is accurate,

the trajectory is smooth, and the computational capacity

permits a search radius that can accommodate the maxi-

mum speed yet small enough to reduce mismatches. These,

however, may not be valid always, in particular for fast

and irregularly moving objects. Here, we present an ob-

ject tracker that is not limited to a local search window and

has ability to probe efficiently the entire frame. Our method

generates a small number of “high-quality” proposals by

a novel instance-specific objectness measure and evaluates

them against the object model that can be adopted from an

existing tracking-by-detection approach as a core tracker.

During the tracking process, we update the object model

concentrating on hard false-positives supplied by the pro-

posals, which help suppressing distractors caused by diffi-

cult background clutters, and learn how to re-rank propos-

als according to the object model. Since we reduce signifi-

cantly the number of hypotheses the core tracker evaluates,

we can use richer object descriptors and stronger detector.

Our method outperforms most recent state-of-the-art track-

ers on popular tracking benchmarks, and provides improved

robustness for fast moving objects as well as for ultra low-

frame-rate videos.

1. Introduction

Model-free object tracking, which aims to track arbi-

trary objects based on a single bounding-box annotation,

has gained significant attention recently with numerous ap-

proaches [22, 16, 18] proposed and several large benchmark
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(a) Frame t (b) Frame t+ 1

Figure 1: Top row: Most existing tracking-by-detection

methods examine hypothesis locations within a local and

heuristically defined search window around the last detected

location. Bottom row: Our tracker seeks high-quality hy-

potheses over the entire image using instance-specific edge-

box locations.

datasets [39, 32, 26, 38] released. Significant amount of ef-

fort has been devoted to either designing a better object rep-

resentation, including subspace [30], sparsity [28, 43], and

deep learned features [34, 41], or building complex clas-

sifiers [16, 4, 45, 40, 29] for better discrimination of the

object from its background patches. Most of these meth-

ods, however, require a search window centered at the pre-

vious object location to select candidate patches, partly due

to computational complexity. This is sometimes referred as

the motion model [35], and it is implicitly assumed that the

object is correctly tracked in the previous frames and the

object motion is not large. Even though this simplification

works in some situations, it also introduces serious difficul-

ties especially when the object undergoes deformations and
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occlusions (which may cause drift), or when the object and

camera motion puts the object beyond the search window

radius.

One important reason that the existing trackers avoid em-

ploying a wider search radius is the potential distractions

from the background [13, 29]. It is not a trivial task to

update a discriminative classifier when the negative sample

space grows greatly with the samples coming from the ex-

tended search radius. In [18], extended set of training data

is obtained by implicitly including all shifted versions of the

given samples within the circulant matrices. However, it is

impractical to apply the same trick for the negative samples,

especially for the ones far away from the object.

To overcome this, in this work we introduce a proposal

generation procedure for handling the problem of sample

selection, both for the object detection and the model up-

date stages. Generally, the motion model limits the search

radius and the applied sampling schemes disregard the con-

tents presented on them. Instead of working within a lim-

ited search radius, we generate a small yet high-quality

set of proposals efficiently in entire frame by using sim-

ple bottom-up, edge-based features [46] as shown in Figure

1. Intuitively, edge information provides valuable guidance

for object tracking since objects may often be identified by

their silhouettes. In addition, concentrating on image re-

gions where edge information is eminent allows efficient

selection of more object-like proposals.

Our method can incorporate any existing object model

including simpler template matching models, e.g. normal-

ized cross correlation (NCC) and sophisticated classifiers,

e.g., structured support vector machines (SSVM). Using the

object model, we adapt the edge-based features used in pro-

posal generation. In an online fashion, we learn how to

re-rank the proposal by a linear support vector machine,

trained on the current proposals, with a crafted feature vec-

tor. Our proposal scheme, thus, generates windows that

suggest certain similarity to the tracked object. This al-

lows taking advantage of objectness to regulate the proposal

selection in a temporally coherent manner instead of treat-

ing objectness as yet another cue by (linearly) combining

the original tracking response with some objectness score.

Since we adapt the generic edge-based objectness measure

to the specific object, this selection is superior to replacing

the search window with simple objectness responses.

Furthermore, for the chosen object model, we explore

the best combination of global proposals provided by in-

stance specific edge-based features and local candidates

sampled around the previous location for model update

(e.g., for negative support vectors in case of SSVM). We

also adapt the size and scale to obtain the best proposals.

The benefits of our proposal generation is threefold:

• Our method can execute global search over entire im-

age. Thus, it can track objects without making any

assumption on object motion.

• The high-quality proposals increase the tracking accu-

racy since they allow including better hard negatives

into training set, hence reduces drift.

• It adapts the specific object, thus provides better object

model update (than generic proposals).

We validate the above arguments with two object models

(from NCC tracker and Struck) and show that the incorpora-

tion of instance-specific proposals has potential to improve

most detection-by-tracking approaches.

Our method is conceptually simple, easy to implement,

and most importantly, provides the best results (at the time

of submission) in comparison to all state-of-the-art track-

ers. Our method ranks as the top tracker on VOT2014 [26]

benchmark as well as on OTB [39] and TB50 [38] datasets

in comparison to the latest state-of-the-art including MEEM

[40], KCF [18], Struck [16], and over twenty other methods.

2. Related Work

Providing an inclusive overview of the object tracking

literature is outside the scope and capacity of this paper.

We refer readers to the excellent surveys on object tracking.

Here, we only compare with some relevant algorithms. We

briefly examine different search schemes and then summa-

rize recent object proposal methods.

Search Schemes in Tracking

There is a wide-spectrum of styles to select which win-

dows will be tested in a current frame to locate the target

object and also update its model.

Single Window Search: Several trackers use the local win-

dow around the former object location to find the object in

the current frame. Examples include the tracking on Lie

groups [33], which applies iteratively a feature-motion re-

gressor to estimate object window in the next frame, and

the mean-shift tracker [11], which uses gradient-based lo-

cal optimization to determine the mode of the underlying

similarity distribution.

Particle-based Search: In recent years, tracking algo-

rithms [30, 44, 21] based on particle filtering has been ex-

tensively studied. Particle filters apply importance sampling

on the previous particle states (e.g. candidate locations)

within mostly a mixed number of candidates. On the neg-

ative side, the random sampling is blind to the underlying

texture, edgeness, and other spatial information.

Searching for the Hard Negatives: It is worthwhile to

mention that tracking-by-detection, which allows an online

trained classifier [3, 31] as an object model to distinguish

the object from its surrounding background, has recently

become particularly popular. Rather than explicitly cou-

pling to the accurate estimation of object position, [4] lim-

its its focus on increasing the robustness to poorly labeled
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(a) Edge map (b) Proposals (c) Detected object (d) Classifier update

(e) Frame t (f) Proposal heatmap (g) Detection heatmap (ft−1) (h) Detection heatmap (ft)

Figure 2: Framework of the proposed method. First column: (a) Edge map extracted from the current frame (e); Second

column: (b) Object proposals in blue bounding boxes (Section 3.3) and (f) corresponding heatmap of instance specific

proposals; Third column: (c) Detection results on proposals (green is detected as object) and (g) detection heatmap (by the

proposed EBT classifier); Fourth column: (d) EBT is updated using the proposals and (h) detection heatmap with updated

EBT. Notice that spurious hypotheses (bright regions in (g)) are suppressed significantly by treating them as negative samples.

samples. [16] proposes directly predicting the change in ob-

ject location between frames by an online structured output

SVM. Even though it produces comparably accurate track-

ing, it uniformly samples the state space to generate positive

and negative support vectors. Such a brute force approach

on a larger search window is computationally intractable.

Objectness in Object Detection

As shown in [19, 46], use of proposal has significantly

improved the object detection benchmark along with the

convolutional neural nets. Since, a subset of high-quality

candidates are used for detection, object proposal methods

improve not only the speed but also the accuracy by reduc-

ing false positives. The top performing detection methods

[15, 36] for PASCAL VOC [14] use detection proposals.

Edge Box: [46] proposes object candidates based on the

observation that the number of contours wholly enclosed

by a bounding box is an indicator of the likelihood of the

box containing an object. Edge Box is designed as a fast

algorithm to balance between speed and proposal recall. Its

1-D feature generates remarkably accurate results.

BING: [10] made a similar observation that generic objects

with well-defined closed boundary can be discriminated by

looking at the norm of gradients.They further designed a

feature called binarized normed gradients (BING), which

can be used for efficient objectness estimation and requires

only a few atomic operations.

Objectness as Supportive Cue for Tracking

A straightforward strategy, i.e., linear combination of

the original tracking confidence and an adaptive objectness

score based on BING [10] is employed in [25]. In [20], a

detection proposal scheme is applied as a post-processing

step, mainly to improve the tracker’s adaptability to scale

and aspect ratio changes. These methods are substantially

different from our work, where we adapt objectness to spe-

cific object using a separate classifier and generate high-

quality proposal to regulate the tracking process.

3. Global Tracking with Proposals

3.1. Pipeline

A typical tracking-by-detection framework is composed

mainly of motion model, observation model and model up-

dater [39, 32, 35]. Motion model generates a set of candi-

dates which might contain the target in the current frame

based on the estimation from the previous frame. Observa-

tion model judges whether a candidate is the target based on

the features extracted from it. Model updater online updates

the observation model to adapt the change of the object ap-

pearance.

Suppose the object location is initialized manually at the

first frame t = 1 and Bt is its bounding box at frame t.
Then, given an observation model, i.e., a classification func-

tion ft−1 trained on the previous frames, the current loca-
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(b) Bottom-up ranking fea-

ture

(c) Proposals from ours (d) Proposals using [46]

Figure 3: Instance specific proposals. (a) Input

frame (ground truth is the green bounding box); (b) 10-

dimensional feature vector for ranking of the bounding

boxes; (c) Top proposals using the proposed method; (d)

Top proposals from [46]. As shown, the instance specific

proposals are far more precise.

tion of the object is estimated through:

B⋆
t = argmaxBt∈Bt

ft−1(Bt), (1)

where Bt is a set of samples generated by the motion model

at the current frame. To select samples, traditional track-

ers use heuristic search windows around the previously es-

timated object location for computational and accuracy rea-

sons. For example, a search radius of 30 pixels is used

in [16].

Each sample is labeled by a classifier that models the

object. The update routine will then revises its model

ft−1 → ft with the new location of the object to adapt

possible appearance changes. It is not trivial to design a

robust updating scheme [27, 35]. As there is only one reli-

able example, the tracker must maintain a trade-off between

adapting to new but possibly noisy examples collected dur-

ing tracking and preventing the tracker from drifting to the

background.

3.2. Our Method

The method proposed in this paper uses a similar frame-

work as introduced in Section 3.1, yet we made two criti-

cal changes to the motion model. The first change is that

we recognize not all candidate bounding boxes Bt ∈ Bt

should be treated equally (as the traditional trackers often

do) since those boxes possess different object-like appear-

ance, i.e. objectness [2, 9] characteristics, which should

be taken into account. Secondly, we do not constrain the

search radius to a small window that causes throwing so

much available image information away.

To execute our changes, we take advantage of the sparse,

simple, yet critical edge information. The current frame It
is processed into an edge map as shown in Figure 2a. Then,

we employ an instance specific proposal method (explained

in Section 3.3) build on top of the object proposal algorithm

[46] to produce a number of candidate bounding boxes (Fig-

ure 2b and 3c) denoted as BE
t . Notice that, we impose a

smooth size change constraint to the bounding boxes be-

tween consecutive frames.

Suppose the bounding box set generated by sampling

only around the previous object location as BR
t (as in tra-

ditional methods). Now we have two different sets of can-

didates, i.e., BE
t and BR

t . The first one possesses object

regularity while the second one is with no discriminative

information. As shown in the experimental section 5.2, the

choice of using only the proposals BE
t generates the best

results, better than combining them together. This confirms

our argument that object proposals not only reduce the can-

didate sample space but also reduce spurious false positive

and improve tracking accuracy. Our tracker will not drift to

a textureless region like other trackers due to the objectness

constraint.

During the update stage, we also have different options

for using BE
t and BR

t . As validated in the experimental part

5.2, the combination of using both of them to choose neg-

ative support vectors results in the best performance. This

can be easily explained: BE
t \B

⋆
t only represents other good

object-like regions. By putting them as negative support

vectors, we would only increase the discriminative power

among objects-like candidates. However, the negative sam-

ple space contains a lot more other negative samples. Thus,

the advantageous option is to augment BE
t \B

⋆
t with BR

t in

order to achieve the best discriminative ability.

3.3. Instance Specific Proposals

Objectness attempts to generate quickly as few as possi-

ble hypotheses yet cover all of the objects present in an im-

age. Take EdgeBox [46] for example - it generates a pool of

bounding boxes {Bt,i} uniformly sampled in a sliding win-

dow manner, then ranks and extracts the top H candidates

with the highest objectness score Et,i, represented by:

BEB
t = {Bt,i|Et,i}H . (2)

Et,i is basically a weighted and normalized number of con-

tours wholly enclosed by the bounding box Bt,i. This fea-

ture can be calculated very efficiently in real-time. We refer

[46] for more details.

Instead of directly applying the computed proposals

BEB
t for tracking, we argue that the object instance level

properties should be taken into account. As such, there
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is a strong object prior in terms of its geometric structure

of contours and size in contrast to object detection where

the goal is to locate all instances of all object classes in the

image. EdgeBox generates proposals that favors bounding

boxes with many internal contour segments, thus it is likely

to miss the target in a cluttered background as shown in Fig-

ure 3d.

To this end, we incorporated an online updated lin-

ear SVM [37] classifier fR
t−1

to re-rank proposals and de-

termine the top H proposals based on their classification

scores:

BE
t = {Bt,i|f

R
t−1

(Bt,i)}H , (3)

with a 10-dimensional feature vector {E1

t,i, . . . , E
10

t,i} as

shown in Figure 3b. This feature characterizes the spa-

tial structure of edge information. It concatenates Edge-

Box scores corresponding to Haar wavelet like partitioning

of the bounding box Bt,i. Notice that, only the bounding

boxes whose initial objectness scores are above a thresh-

old, i.e., BEBT

t = {Bt,i|Et,i > eT } (in all experiments

eT = 0.005) are accepted into the classifier for re-ranking

to save computing time.

The re-ranking classifier is initialized using the top

EdgeBox proposal (top 200 in all experiments) and then on-

line updated at every 5 frames with the same number of pro-

posals. The estimated position gives the positive sample and

bounding boxes which overlap the estimation less than 0.5
are assigned as negative ones. We use the implementation

and parameters as in [40].

3.4. Candidate Classification

We use the following decision function to estimate the

new location of the object (Figure 2c):

B⋆
t = argmaxBt∈Bt

ft−1(Bt) + s(Bt, B
⋆
t−1

). (4)

s(Bt, B
⋆
t−1

) is a term representing the motion smooth-

ness between the previous object location and the candi-

date box. This is important in our formulation as we are

testing candidates all over the image, though not penaliz-

ing it too much. We use a simple function in this paper:

s(Bt, B
⋆
t−1

) = ws exp(−
1

2σ2 ‖c(Bt) − c(B⋆
t−1

)‖2), where

c(Bt) is the center of bounding box Bt, ws = 0.1 and σ is

set as the diagonal length of the initialized bounding box.

4. Proposed Trackers

Two core object models are integrated in the proposal

tracker. The first one (called as EBT to indicate its rela-

tion to EdgeBox) follows a popular structured support vec-

tor machine (SSVM) framework [16], which shows good

performance on several benchmarks [39, 32]. We addition-

ally incorporated a much simpler, normalized cross correla-

tion (NCC) template matching, called as NCCEB, to inves-

tigate how much additional performance improvement our

method is able to provide.

4.1. EBT Tracker

Suppose the support vector set maintained by the SSVM

as Vt−1 and the classification function can be written as a

weighted sum of affinities [5, 16]:

fS
t−1

(Bt) =
∑

Bi

t−1
∈Vt−1

wi
t−1

k(Bi
t−1

, Bt), (5)

where wi
t−1

is a scalar weight associated with the support

vector Bi
t−1

. Kernel function k(Bi
t−1

, Bt) calculates the

affinity between two feature vectors extracted from Bi
t−1

and Bt respectively. The classifier is updated in an online

fashion using [6] with a budget [37]. Intersection kernel is

used and other parameters are set same as [16].

To take advantage of the small set of proposals, we use

histogram features obtained by concatenating 16-bin inten-

sity histograms from a spatial pyramid of 5 levels and RGB

channels separately. At each level L, the patch is divided

into L× L cells, resulting in a 2640-D feature vector, com-

paring to the 480-D feature used in [16], while running at

a similar speed. The performance gain of using the richer

feature is demonstrated in the experimental section 5.2.

4.2. NCCEB Tracker

The classification function for the normalized cross cor-

relation can be written as:

fN
t−1

(Bt) = ρ(Bt, BTemp), (6)

where ρ calculates the normalized cross-correlation coeffi-

cient [7] between the candidate patch and the object tem-

plate. This procedure can be accelerated using the fast

Fourier transform (FFT) trick. We compared the proposed

NCCEB tracker with instance-specific proposals and fixed

template with: (1) NCC, an implementation from [26], uses

local exhaustive search, and has no update; and (2) IMP-

NCC, an improved NCC version from [26], uses local ex-

haustive search, online update, and Kalman Filter [23] for

trajectory smoothness.

5. Experiments

In the first part, we compare our method with the state-

of-the-art trackers on benchmark datasets for a general per-

formance evaluation. We also test on fast-motion related

categories to put it under the spotlight to understand how

well our method can handle the challenging scenarios such

as fast moving objects, randomly moving objects, and track-

ing under low-frame-rate. In the second part, we analyze

different components of our method.

5.1. Full Benchmark Evaluations

Our method is tested on three large datasets: OTB

[39], TB50 [38] and VOT2014 [26]. The first two of
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Figure 4: Success plot and precison plot on two large benchmarks: OTB and TB50. Algorithms are ranked by the area under

the curve and the precision score (20 pixels threshold). Our method achieves consistently superior performance.

these datasets are composed of around 50 sequences each.

They are annotated with ground truth bounding boxes and

various visual attributes. TB50 is an upgraded version

of OTB and contains much more challenging sequences.

VOT2014 dataset selectively collects 25 sequences from

various datasets and allows the tracker to re-initialize once

the tracker drifts away from the object.

We compare against the existing algorithms on respec-

tive benchmarks and additionally two recent works: KCF

[18] and MEEM [40]. Evaluation metrics and code are pro-

Table 1: Performance on VOT2014.

Final Rank Acc. Rank Rob. Rank

Proposed EBT 13.03 15.81 10.24
PLT14 [26] 13.75 16.66 10.84
PLT13 [26] 14.26 18.59 9.92
DGT [8] 14.54 15.48 13.61
DSST [12] 15.25 13.40 17.09
KCF [18] 15.25 12.20 18.29
SAMF [24] 15.47 12.79 18.15
MEEM [40] 18.95 21.15 16.76
Struck [16] 22.83 22.30 23.36

Proposed NCCEB 27.27 24.20 30.35
MIL [4] 27.69 31.24 24.14
FSDT [26] 27.86 25.97 29.75
IMPNCC [26] 27.99 26.05 29.94
CT [42] 28.26 29.14 27.38
FRT [1] 28.64 25.02 32.26
NCC [26] 29.30 22.32 36.28

vided by the respective benchmark. For OTB and TB50, we

employ the one-pass evaluation (OPE) and use two metrics:

precision plot and success plot. The former metric calcu-

lates the rate of frames whose center location is within a

certain threshold distance with the ground truth. The lat-

ter one calculates a same ratio but based on bounding box

overlap threshold.

Parameters For EdgeBox proposals, the sampling

step of sliding window is set at α = 0.85 since we aim for a

high accurate localization. The minimal and maximal areas

are 0.5 and 2 of the area of the previous estimated bounding

box respectively. Non-maximum suppression parameter is

fixed at β = 0.8. The maximum number of proposal is 200
(more discussion in Section 5.2).

5.1.1 Benchmark Results

The results are summarized in Table 1, 2 and Figure 4. Our

EBT tracker ranks as the best tracker on VOT2014 as shown

in Table 1. We use the original VOT protocol. EBT achieves

the best overall performance in all datasets1. It consistently

outperforms the state-of-the-art trackers and improves the

base Struck tracker by a large margin. A few examples can

be found in Figure 5.

Even the proposed NCCEB tracker using only template

matching manages to improve the simple NCC tracker sig-

nificantly and outperforms several other trackers including

1As stated in FAQ of the official VOT website, the rankings would not

be identical to the Table 1 in the 2014 paper.
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Table 2: Area Under Curve (AUC) of success plot and Precision Score (20 pixels threshold) reported on various datasets

(AUC/PS) corresponding to the one-pass evaluation (OPE).

Pro. EBT KCF [18] MEEM [40] Struck [16] SCM [44] ASLA [21] TLD [22] CXT [13] CSK [17]

OTB 58.1/84.8 51.7/74.2 56.4/82.5 47.2/65.3 49.8/64.8 43.4/52.9 43.4/60.1 42.3/57.0 39.6/54.1

TB50 49.6/73.9 40.2/61.1 47.9/72.3 36.3/49.9 35.5/47.8 35.8/46.2 32.1/45.0 32.1/43.2 31.4/43.0

Proposed EBT Struck KCF MEEM 

Figure 5: Qualitative comparisons with the state-of-the

art trackers on the DragonBaby, Skating2, and CarScale

videos. Our method exhibits robustness in challenging sce-

narios such as fast motion, occlusion, and scale changing.

the IMPNCC tracker, which has incorporated sophisticated

mechanisms in comparison to ours and NCC. This result

is not surprising since the incorporation of objectness has

proven to be a successful strategy in single image object de-

tection [15, 36, 14]. We believe that our method is a coun-

terpart in the tracking domain as no existing tracking meth-

ods successfully adopted such objectness schemes before,

to the best of our knowledge.

5.1.2 Tracking Fast Objects

Since our method searches over the entire image, it is suit-

able for tracking fast moving objects, which could move

outside of the search radius of the traditional trackers. As

shown in Table 3, our method outperforms other trackers in

the fast-motion related categories as well.

We also tested our method on an extra category Moving

Camera from ALOV300 [32]. This category contains many

sequences that depict camera shake, sudden object motion,

and abrupt jumps. ALOV300 provides a high number of

short sequences with 14 visual attributes. The main source

of their data is real-life videos from YouTube.

Tracking under Ultra-Low-Frame-Rate We addi-

tionally created a dataset, called as VOT2014+ by tempo-

rally sampling sequences at every 20 frames on VOT2014,

thus, it contains 20× faster moving objects. Our method

is tested against with other top-ranked trackers, KCF and

MEEM. Even though both MEEM and KCF rapidly failed,

our tracker retained very high performance scores (see Ta-

ble.4).

Table 4: Performance on the low-fps dataset.

Pro. EBT KCF [18] MEEM [40]

VOT2014 46.7/65.9 38.9/53.7 44.5/62.3
VOT2014+ 43.7/58.5 28.4/34.1 37.5/47.7

5.2. Further Remarks

Combination of BE
t and BR

t As discussed in Sec-

tion 3.2, we tested different combinations of the hypothesis

proposals BE
t and candidate bounding boxes BR

t sampled

around the previous object location within a radius. The re-

sults are shown in Table5. For combinations which use only

BR
t in the testing stage, we apply an exhaustive sampling

within a 30-pixels radius to achieve a comparable result. For

the others which use BR
t , we only generate 80 samples uni-

formly within a 30-pixels radius. Our main discussion about

these results can be found in Section 3.2. We observed the

combination of using samples from the hypothesis propos-

als and local region in update stage and samples only from

the proposed locations in the test stage performs the best.

Number of Proposals To quantitatively compare the

proposed instance specific proposals and the one using Edge

Box [46], we analyzed the upper bound performance with

respect to varying number of proposals as shown in Figure

6. A variant denoted as EBTeb using EdgeBox proposals

instead of ours is also tested and available in Figure 7. Both

results show that the proposed re-ranking method outper-

forms the one directly applies EdgeBox. We also tested the

variants using different number of proposals. EBT100 and

EBT400 use 100 and 400 respectively, comparing to the

proposed EBT that uses 200. Our observations are, using

insufficient number of proposal leads to a bad coverage of

the false positives as well as the object, while using a large

number of proposals attracts spurious candidates.
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Table 3: Area Under Curve (AUC) of success plot and Precision Score (20 pixels threshold) reported on various fast-motion

related categories (AUC/PS). FM: fast motion, MB: motion blur, MC: moving camera. fps: frames per second.

Attributes Pro. EBT KCF [18] MEEM [40] Struck [16] SCM [44] ASLA [21] TLD [22]

FM (17) (OTB) 58.1/77.8 46.8/61.0 54.3/71.4 45.7/59.6 29.4/32.9 24.4/24.6 40.7/53.2
MB (12) 58.3/77.1 50.8/66.0 53.0/68.0 42.6/54.0 29.5/33.3 25.1/26.8 39.0/49.0
FM (25) (TB50) 53.3/74.5 39.0/54.0 48.2/68.4 34.4/42.5 25.2/29.6 25.0/29.6 35.6/46.5
MB (19) 54.9/78.5 40.6/56.4 52.8/72.9 30.9/35.5 21.7/25.1 23.3/25.5 39.3/49.7
MC (22) (ALOV300) 60.9/68.4 56.4/62.9 57.2/65.1 44.9/44.8 35.7/37.9 38.6/38.8 56.1/67.9
fps 4.4 70.9 7.1 4.8 0.3 3.8 8.8

Table 5: Results for different combinations of BE
t and BR

t .

TB50 (Test) BR
t BE

t BE
t + BR

t

BR
t (Update) 41.1/58.7 44.7/64.2 42.7/59.4

BE
t 40.1/56.3 46.5/68.6 43.0/61.8

BE
t + BR

t 39.2/56.5 49.6/73.9 43.2/63.6
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Figure 6: The performance bounds for using EdgeBox pro-

posals and the proposed instance-specific proposal method

on TB50. The best candidate in each frame is used for cal-

culating the performance.

Richer Features and Motion Constraint EBTfeature

denotes the variant using a lower dimensional 480-D fea-

ture. This version has lower performance than the one uses

2640-D feature as expected. More details about the feature

can be found in Section 4.1. EBTwm denotes the variant

without using the smoothness term s(Bt, B
⋆
t−1

) in Function

4. The success rate dropped due to the fact that the motion

in the tracking sequences is not completely random.

Proposals using BING We evaluated another popular

object proposal method, BING [10], for proposals. Two

ways of incorporation were tested. The first one (BING-

VOC) uses the pretrained model on VOC dataset [14], while

the second one (BING-Adapt) relearns the model using the

first frame of each sequence. We tested these two variants

on TB50. Results are in Table 6. Both performances are
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Proposed EBT [49.6]

EBT400 [48.0]

EBTeb [47.3]

EBT100 [46.8]

EBTwm [46.2]

EBTfeature [45.5]

KCF [40.2]

Figure 7: Success plot of variants of the proposed method

on TB50. Details can be found in Section 5.2.

Table 6: Performance when BING is used instead of Edge

Box.

Struck [16] BING-VOC BING-Adapt

TB50 36.3/49.9 30.8/47.6 33.7/48.0

worse than the baseline Struck. This is expected. As shown

[19, 46], BING results in a relatively low recall of the ob-

jects, which is one reason for its mediocre performance.

Computational Speed The computational speed of

the proposed is comparable to the state-of-the-art trackers

even though we can track over the entire image. The pro-

posal part takes less than 100 milliseconds and the overall

tracking speed is available in Table 3.

6. Conclusion

This paper presented a robust method that can locate ob-

jects that are moving randomly and very fast, as well as

perform tracking under extremely low-frame rates. To the

best of our knowledge, our tracker achieves the best results

on all common benchmark datasets including OTB [39],

TB50 [38], VOT2014 [26] and ALOV300 [32].
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