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Abstract

We aim at detecting salient objects in unconstrained im-

ages. In unconstrained images, the number of salient ob-

jects (if any) varies from image to image, and is not given.

We present a salient object detection system that directly

outputs a compact set of detection windows, if any, for an

input image. Our system leverages a Convolutional-Neural-

Network model to generate location proposals of salient ob-

jects. Location proposals tend to be highly overlapping and

noisy. Based on the Maximum a Posteriori principle, we

propose a novel subset optimization framework to generate

a compact set of detection windows out of noisy proposals.

In experiments, we show that our subset optimization for-

mulation greatly enhances the performance of our system,

and our system attains 16-34% relative improvement in Av-

erage Precision compared with the state-of-the-art on three

challenging salient object datasets.

1. Introduction

In this paper, we aim at detecting generic salient objects

in unconstrained images, which may contain multiple sa-

lient objects or no salient object. Solving this problem en-

tails generating a compact set of detection windows that

matches the number and the locations of salient objects.

To be more specific, a satisfying solution to this problem

should answer the following questions:

1. (Existence) Is there any salient object in the image?

2. (Localization) Where is each salient object, if any?

These two questions are important not only in a theo-

retic aspect, but also in an applicative aspect. First of all,

a compact and clean set of detection windows can signifi-

cantly reduce the computational cost of the subsequent pro-

cess (e.g. object recognition) applied on each detection win-

dow [22, 36]. Furthermore, individuating each salient ob-

ject (or reporting that no salient object is present) can crit-

ically alleviate the ambiguity in the weakly supervised or

unsupervised learning scenario [10, 26, 55], where object

appearance models are to be learned with no instance level

annotation.
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Figure 1: Our system outputs a compact set of detection

windows (shown in the bottom row) that localize each sa-

lient object in an image. Note that for the input image in the

right column, where no dominant object exists, our system

does not output any detection window.

However, many previous methods [1, 11, 41, 30, 25, 6,

54] only solve the task of foreground segmentation, i.e. gen-

erating a dense foreground mask (saliency map). These

methods do not individuate each object. Moreover, they do

not directly answer the question of Existence. In this paper,

we will use the term salient region detection when referring

to these methods, so as to distinguish from the salient ob-

ject detection task solved by our approach, which includes

individuating each of the salient objects, if there are any, in

a given input image.

Some methods generate a ranked list of bounding box

candidates for salient objects [21, 43, 52], but they lack an

effective way to fully answer the questions of Existence and

Localization. In practice, they just produce a fixed number

of location proposals, without specifying the exact set of

detection windows. Other salient object detection methods

simplify the detection task by assuming the existence of one

and only one salient object [48, 45, 32]. This overly strong

assumption limits their usage on unconstrained images.

In contrast to previous works, we present a salient ob-

ject detection system that directly outputs a compact set of

detections windows for an unconstrained image. Some ex-

ample outputs of our system are shown in Fig. 1.

Our system leverages the high expressiveness of a Con-

volutional Neural Network (CNN) model to generate a set

of scored salient object proposals for an image. Inspired by
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the attention-based mechanisms of [27, 4, 35], we propose

an Adaptive Region Sampling method to make our CNN

model “look closer” at promising images regions, which

substantially increases the detection rate. The obtained pro-

posals are then filtered to produce a compact detection set.

A key difference between salient object detection and

object class detection is that saliency greatly depends on

the surrounding context. Therefore, the salient object pro-

posal scores estimated on local image regions can be incon-

sistent with the ones estimated on the global scale. This

intrinsic property of saliency detection makes our proposal

filtering process challenging. We find that using the greedy

Non-maximum Suppression (NMS) method often leads to

sub-optimal performance in our task. To attack this prob-

lem, we propose a subset optimization formulation based on

the maximum a posteriori (MAP) principle, which jointly

optimizes the number and the locations of detection win-

dows. The effectiveness of our optimization formulation is

validated on various benchmark datasets, where our formu-

lation attains about 12% relative improvement in Average

Precision (AP) over the NMS approach.

In experiments, we demonstrate the superior perfor-

mance of our system on three benchmark datasets: MSRA

[29], DUT-O [51] and MSO [53]. In particular, the MSO

dataset contains a large number of background/cluttered im-

ages that do not contain any dominant object. Our system

can effectively handle such unconstrained images, and at-

tains about 16-34% relative improvement in AP over previ-

ous methods on these datasets.

To summarize, the main contributions of this work are:

• A salient object detection system that outputs compact

detection windows for unconstrained images,

• A novel MAP-based subset optimization formulation

for filtering bounding box proposals,

• Significant improvement over the state-of-the-art

methods on three challenging benchmark datasets.

2. Related Work

We review some previous works related to our task.

Salient region detection. Salient region detection aims

at generating a dense foreground mask (saliency map) that

separates salient objects from the background of an image

[1, 11, 41, 50, 25]. Some methods allow extraction of mul-

tiple salient objects [33, 28]. However, these methods do

not individuate each object.

Salient object localization. Given a saliency map, some

methods find the best detection window based on heuris-

tics [29, 48, 45, 32]. Various segmentation techniques are

also used to generate binary foreground masks to facilitate

object localization [29, 34, 23, 31]. A learning-based re-

gression approach is proposed in [49] to predict a bounding

box for an image. Most of these methods critically rely on

the assumption that there is only one salient object in an

image. In [29, 31], it is demonstrated that segmentation-

based methods can localize multiple objects in some cases

by tweaking certain parts in their formulation, but they lack

a principled way to handle general scenarios.

Predicting the existence of salient objects. Existing

salient object/region detection methods tend to produce un-

desirable results on images that contain no dominant salient

object [49, 6]. In [49, 40], a binary classifier is trained to

detect the existence of salient objects before object local-

ization. In [53], a salient object subitizing model is pro-

posed to suppress the detections on background images that

contain no salient object. While all these methods use a

separately trained background image detector, we provide a

unified solution to the problems of Existence and Localiza-

tion through our subset optimization formulation.

Object proposal generation. Object proposal methods

[2, 9, 56, 47, 3, 12] usually generate hundreds or thou-

sands of proposal windows in order to yield a high recall

rate. While they can lead to substantial speed-ups over slid-

ing window approaches for object detection, these proposal

methods are not optimized for localizing salient objects.

Some methods [43, 21] generate a ranked list of proposals

for salient objects in an image, and can yield accurate lo-

calization using only the top few proposals. However, these

methods do not aim to produce a compact set of detection

windows that exactly match the ground-truth objects.

Bounding box filtering and NMS. Object detection

and proposal methods often produce severely overlapping

windows that correspond to a single object. To alleviate

this problem, greedy Non-Maximum Suppression (NMS) is

widely used due to its simplicity [13, 20, 2, 21]. Several

limitations of greedy NMS are observed and addressed by

[37, 5, 14, 38]. In [5], an improved NMS method is pro-

posed for Hough transform based object detectors. Desai et

al. [14] use a unified framework to model NMS and object

class co-occurrence via Context Cueing. These methods

are designed for a particular detection framework, which

requires either part-based models or object category infor-

mation. In [37], Affinity Propagation Clustering is used for

bounding box filtering. This method achieves more accurate

bounding box localization, but slightly compromises Aver-

age Precision (AP). In [38], Quadratic Binary Optimization

is proposed to recover missing detections caused by greedy

NMS. Unlike [37, 38], our subset optimization formulation

aims to handle highly noisy proposal scores, where greedy

NMS often leads to a poor detection precision rate.

3. A Salient Object Detection Framework

Our salient object detection framework comprises two

steps. It first generates a set of scored location proposals

using a CNN model. It then produces a compact set of de-

tections out of the location proposals using a subset opti-
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mization formulation. We first present the subset optimiza-

tion formulation, as it is independent of the implementation

of our proposal generation model, and can be useful beyond

the scope of salient object detection.

Given a set of scored proposal windows, our formulation

aims to extract a compact set of detection windows based

on the following observations.

I. The scores of location proposals can be noisy, so it is

often suboptimal to consider each proposal’s score in-

dependently. Therefore, we jointly consider the scores

and the spatial proximity of all proposal windows for

more robust localization.

II. Severely overlapping windows often correspond to the

same object. On the other hand, salient objects can

also overlap each other to varying extents. We address

these issues by softly penalizing overlaps between de-

tection windows in our optimization formulation.

III. At the same time, we favor a compact set of detec-

tions that explains the observations, as salient objects

are distinctive and rare in nature [16].

3.1. MAPbased Proposal Subset Optimization

Given an image I , a set of location proposals B = {bi :
i = 1 . . . n} and a proposal scoring function S , we want to

output a set of detection windows O, which is a subset of B.

We assume each proposal bi is a bounding box, with a score

si , S(bi, I). Given B, the output set O can be represented

as a binary indicator vector (Oi)
n
i=1, where Oi = 1 iff bi is

selected as an output.

The high-level idea of our formulation is to perform three

tasks altogether: 1) group location proposals into clusters,

2) select an exemplar window from each cluster as an out-

put detection, and 3) determine the number of clusters. To

do so, we introduce an auxiliary variable X = (xi)
n
i=1. X

represents the group membership for each proposal in B,

where xi = j if bi belongs to a cluster represented by bj .

We also allow xi = 0 if bi does not belong to any cluster.

Alternately, we can think that bi belongs to the background.

We would like to find the MAP solution w.r.t. the joint dis-

tribution P (O,X|I;B,S). In what follows, we omit the

parameters B and S for brevity, as they are fixed for an im-

age. According to Bayes’ Rule, the joint distribution under

consideration can be decomposed as

P (O,X|I) =
P (I|O,X)P (O,X)

P (I)
. (1)

For the likelihood term P (I|O,X), we assume that O is

conditionally independent of I given X. Thus,

P (I|O,X) = P (I|X)

=
P (X|I)P (I)

P (X)
. (2)

The conditional independence assumption is natural, as the

detection set O can be directly induced by the group mem-

bership vector X. In other words, representative windows

indicated by X should be regarded as detections windows.

This leads to the following constraint on X and O:

Constraint 1. If ∃xi s.t. xi = j, j 6= 0, then bj ∈ O.

To comply with this constraint, the prior term P (O,X)
takes the following form:

P (O,X) = Z1P (X)L(O)C(O,X), (3)

where C(O,X) is a constraint compliance indicator func-

tion, which takes 1 if Constraint 1 is met, and 0 otherwise.

Z1 is a normalization constant that makes P (O,X) a valid

probability mass function. The term L(O) encodes prior

information about the detection windows. The definition

of P (O,X) assumes the minimum dependency between O

and X when Constraint 1 is met.

Substituting Eq. 2 and 3 into the RHS of Eq. 1, we have

P (O,X|I) ∝ P (X|I)L(O)C(O,X). (4)

Note that both P (I) and P (X) are cancelled out, and the

constant Z1 is omitted.

3.2. Formulation Details

We now provide details for each term in Eq. 4, and show

the connections with the observations we made.

Assuming that the xi are independent of each other given

I , we compute P (X|I) as follows:

P (X|I) =

n∏

i=1

P (xi|I), (5)

where

P (xi = j|I) =

{
Zi
2λ if j = 0;

Zi
2K(bi, bj)si otherwise.

(6)

Here Zi
2 is a normalization constant such that

∑n

j=0 P (xi =
j|I) = 1. K(bi, bj) is a function that measures the spatial

proximity between bi and bj . We use window Intersection

Over Union (IOU) [37, 18] as K. The parameter λ con-

trols the probability that a proposal window belongs to the

background. The formulation of P (X|I) favors representa-

tive windows that have strong overlap with many confident

proposals. By jointly considering the scores and the spa-

tial proximity of all proposal windows, our formulation is

robust to individual noisy proposals. This addresses Obser-

vation I.

Prior information about detection windows is encoded in

L(O), which is formulated as

L(O) = L1(O)L2(|O|), (7)
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Figure 2: In column 1-5, we show step-by-step window selection results of our greedy algorithm. In the incrementing pass

(step 1-4), windows are selected based on their marginal gains w.r.t. Eq. 11. The window proposals of positive marginal gains

are shown in the bottom row for each step. Warmer colors indicate higher marginal gains. The final step (step 5) removes the

first selected window in the decrementing pass, because our formulation favors a small number of detection windows with

small inter-window overlap. To contrast our method with greedy NMS, we show the top 3 output windows after greedy NMS

using an IOU threshold of 0.4 (top). The scored proposals are shown in the bottom row of the figure.

where

L1(O) =
∏

i,j:i 6=j

exp
(
−
γ

2
OiOjK(bi, bj)

)
. (8)

L1(O) addresses Observation II by penalizing overlapping

detection windows. Parameter γ controls the penalty level.

L2(|O|) represents the prior belief about the number of

salient objects. According to Observation III, we favor a

small set of output windows that explains the observation.

Therefore, L2(.) is defined as

L2(N) = exp(−φN), (9)

where φ controls the strength of this prior belief.

Our MAP-based formulation answers the question of Lo-

calization by jointly optimizing the number and the loca-

tions of the detection windows, and it also naturally ad-

dresses the question of Existence, as the number of detec-

tions tends to be zero if no strong evidence of salient objects

is found (Eq. 9). Note that L(O) can also be straightfor-

wardly modified to encode other priors regarding the num-

ber or the spatial constraints of detection windows.

3.3. Optimization

Taking the log of Eq. 4, we obtain our objective function:

f(O,X) =

n∑

i=1

wi(xi)− φ|O| −
γ

2

∑

i,j∈Õ:i 6=j

Kij , (10)

where wi(xi = j) , logP (xi = j|I) and Kij is shorthand

for K(bi, bj). Õ denotes the index set corresponding to the

selected windows in O. We omit log C(O,X) in Eq. 10, as

we now explicitly consider Constraint 1.

Since we are interested in finding the optimal detection

set O∗, we can first maximize over X and define our opti-

mization problem as

O
∗ = argmax

O

(
max
X

f(O,X)
)
, (11)

which is subject to Constraint 1. Given O is fixed, the sub-

problem of maximizing f(O,X) over X is straightforward:

X
∗(O) = argmax

X

f(O,X)

=

n∑

i=1

max
xi∈Õ∪{0}

wi(xi). (12)

Let h(O) , f(O,X∗(O)), then Eq. 11 is equal to an

unconstrained maximization problem of the set function

h(O), as Constraint 1 is already encoded in X
∗(O).

The set function h(O) is submodular (see proof in our

supplementary material) and the maximization problem is

NP-hard [19]. We use a simple greedy algorithm to solve

our problem. Our greedy algorithm starts from an empty so-

lution set. It alternates between an incrementing pass (Alg.

1) and a decrementing pass (Alg. 2) until a local minimum

is reached. The incrementing (decrementing) pass adds (re-

moves) the element with maximal marginal gain to (from)

the solution set until no more elements can be added (re-

moved) to improve the objective function. Convergence is

guaranteed, as h(O) is upper-bounded and each step of our

algorithm increases h(O). An example of the optimization

process is shown in Fig. 2.

In practice, we find that our greedy algorithm usually

converges within two passes, and it provides reasonable so-

lutions. Some theoretic approximation analyses for uncon-

strained submodular maximization [7, 19] may shed light

on the good performance of our greedy algorithm.

3.4. Salient Object Proposal Generation by CNN

We present a CNN-based approach to generate scored

window proposals {(bi, si)}
n
i=1 for salient objects. Inspired
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Alg. 1 IncrementPass(O)

V ← B \O
while V 6= ∅ do

b∗ ← argmax
b∈V

h(O ∪ {b})
if h(O ∪ {b∗}) > h(O) then

O← O ∪ {b∗}
V ← V \ {b∗}

else
return

Alg. 2 DecrementPass(O)

while O 6= ∅ do
b∗ ← argmax

b∈O
h(O \ {b})

if h(O \ {b∗}) > h(O) then
O← O \ {b∗}

else
return

by [17, 46], we train a CNN model to produce a fixed num-

ber of scored window proposals. As our CNN model takes

the whole image as input, it is able to capture context in-

formation for localizing salient objects. Our CNN model

predicts scores for a predefined set of exemplar windows.

Furthermore, an Adaptive Region Sampling method is pro-

posed to significantly enhance the detection rate of our CNN

proposal model.

Generating exemplar windows. Given a training set

with ground-truth bounding boxes, we transform the coor-

dinates of each bounding box to a normalized coordinate

space, i.e. (x, y) → ( x
W
, y

H
), where W and H represents

the width and height of the given image. Each bounding box

is represented by a 4D vector composed of the normalized

coordinates of its upper-left and bottom-right corners. Then

we obtain K exemplar windows via K-means clustering in

this 4D space. In our implementation, we set K = 100.

Adaptive region sampling. The 100 exemplar windows

only provide a coarse sampling of location proposals. To

address this problem, the authors of [17, 46] propose to aug-

ment the proposal set by running the proposal generation

method on uniformly sampled regions of an image. We find

this uniformly sampling inefficient for salient object detec-

tion, and sometimes it even worsens the performance in our

task (see Sec. 4).

Instead, we propose an adaptive region sampling

method, which is in a sense related to the attention mecha-

nism used in [27, 4, 35]. After proposal generation on the

whole image, our model takes a closer glimpse at those im-

portant regions indicated by the global prediction. To do

so, we choose the top M windows generated by our CNN

model for the whole image, and extract the corresponding

sub-images after expanding the size of each window by 2X.

We then apply our CNN model on each of these sub-images

to augment our proposal set. In our implementation, we set

M = 5, and only retain the top 10 proposals from each

sub-image. This substantially speeds up the subsequent op-

timization process without sacrificing the performance.

The downside of the this adaptive region sampling is that

it may introduce more noise into the proposal set, because

the context of the sub-images can be very different from

the whole image. This makes the subsequent bounding box

filtering task more challenging.

CNN model architecture and training. We use the

VGG16 model architecture [42], and replace its fc8 layer

with a 100-D linear layer followed by a sigmoid layer. Let

(ci)
K
i=1 denote the output of our CNN model. Logistic loss∑

i −yi log ci − (1 − yi) log(1 − ci) is used to train our

model, where the binary label yi = 1 iff the i-th exemplar

window is the nearest to a ground-truth bounding box in the

4D normalized coordinate space.

To train our CNN model, we use about 5500 images from

the training split of the Salient Object Subitizing (SOS)

dataset [53]. The SOS dataset comprises unconstrained im-

ages with varying numbers of salient objects. In particular,

the SOS dataset has over 1000 background/cluttered images

that contain no salient objects, as judged by human anno-

tators. By including background images in the training set,

our model is expected to suppress the detections on this type

of images. As the SOS dataset only has annotations about

the number of salient objects in an image, we manually an-

notated object bounding boxes according to the number of

salient objects given for each image. We excluded a few

images that we found ambiguous to annotate.

We set aside 1/5 of the SOS training images for vali-

dation purpose. We first fine-tune the pre-trained VGG16

model on the ILSVRC-2014 object detection dataset [39]

using the provided bounding box annotations, and then fine-

tune it using the SOS training set. We find this two-stage

fine-tuning gives lower validation errors than only fine-

tuning on the SOS training set. Training details are included

in our supplementary material due to limited space.

Our full system and the bounding box annotations of the

SOS training set are available on our project website1.

4. Experiments

Evaluation Metrics. Following [21, 43], we use the

PASCAL evaluation protocol [18] to evaluate salient object

detection performance. A detection window is judged as

correct if it overlaps with a ground-truth window by more

than half of their union. We do not allow multiple detections

for one object, which is different from the setting of [21].

Precision is computed as the percentage of correct predic-

tions, and Recall is the percentage of detected ground-truth

objects. We evaluate each method by 1) Precision-Recall

(PR) curves, which are generated by varying a parameter for

each method (see below), and 2) Average Precision (AP),

1http://www.cs.bu.edu/groups/ivc/SOD/
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which is computed by averaging precisions on an interpo-

lated PR curve at regular intervals (see [18] for details).

Precision-Recall Tradeoff. As our formulation does not

generate scores for the detection windows, we cannot con-

trol the PR tradeoff by varying a score threshold. Here we

provide a straightforward way to choose an operating point

of our system. By varying the three parameters in our for-

mulation, λ, γ and φ, we find that our system is not very

sensitive to φ in Eq. 9, but responds actively to changes in

λ and γ. λ controls the probability of a proposal window

belonging to the background (Eq. 6), and γ controls the

penalty for overlapping windows (Eq. 8). Thus, lowering

either λ or γ increases the recall. We couple λ and γ by set-

ting γ = αλ, and fix φ and α in our system. In this way, the

PR curve can be generated by varying λ. The parameters

φ and α are optimized by grid search on the SOS training

split. We fix φ at 1.2 and α at 10 for all experiments.

Compared Methods. Traditional salient region detec-

tion methods [1, 11, 41, 50, 25] cannot be fairly evaluated

in our task, as they only generate saliency maps without in-

dividuating each object. Therefore, we mainly compare our

method with two state-of-the-art methods, SC [21] and LBI

[43], both of which output detection windows for salient ob-

jects. We also evaluate a recent CNN-based object proposal

model, MultiBox (MBox) [17, 46], which is closely related

to our salient object proposal method. MBox generates 800

proposal windows, and it is optimized to localize objects

of certain categories of interest (e.g. 20 object classes in

PASCAL VOC [18]), regardless whether they are salient or

not.

These compared methods output ranked lists of windows

with confidence scores. We try different ways to compute

their PR curves, such as score thresholding and rank thresh-

olding, with or without greedy NMS, and we report their

best performance. For SC and LBI, rank thresholding with-

out NMS (i.e. output all windows above a rank) gives con-

sistently better AP scores. Note that SC and LBI already

diversify their output windows, and their confidence scores

are not calibrated across images. For MBox, applying score

thresholding and NMS with the IOU threshold set at 0.4
provides the best performance.

We denote our full model as SalCNN+MAP. We also

evaluate two baseline methods, SalCNN+NMS and Sal-

CNN+MMR. SalCNN+NMS generates the detections by

simply applying score thresholding and greedy NMS on our

proposal windows. The IOU threshold for NMS is set at

0.4, which optimizes its AP scores. SalCNN+MMR uses

the Maximum Marginal Relevance (MMR) measure to re-

score the proposals [8, 3]. The new score of each proposal is

computed as the original score minus a redundancy measure

w.r.t. the previously selected proposals. We optimize the pa-

rameter for MMR and use score thresholding to compute

the AP scores (see our supplementary material for more

details). Moreover, we apply our optimization formulation

(without tuning the parameters) and other baseline methods

(with parameters optimized) on the raw outputs of MBox.

In doing so, we can test how our MAP formulation general-

izes to a different proposal model.

Evaluation Datasets. We evaluate our method mainly

on three benchmark salient object datasets: MSO [53],

DUT-O [51] and MSRA [29].

MSO contains many background images with no salient

object and multiple salient objects. Each object is annotated

separately. Images in this dataset are from the testing split

of the SOS dataset [53].

DUT-O provides raw bounding box annotations of sa-

lient objects from five subjects. Images in this dataset can

contain multiple objects, and a single annotated bounding

box sometimes covers several nearby objects. We consoli-

date the annotations from five subjects to generate ground

truth for evaluation (see supplementary material for details).

MSRA comprises 5000 images, each containing one

dominant salient object. This dataset provides raw bound-

ing boxes from nine subjects, and we consolidate these an-

notations in the same was as in DUT-O.

For completeness, we also report evaluation results on

PASCAL VOC07 [18], which is originally for benchmark-

ing object recognition methods. This dataset is not very

suitable for our task, as it only annotates 20 categories of

objects, many of which are not salient. However, it has

been used for evaluating salient object detection in [21, 43].

As in [21, 43], we use all the annotated bounding boxes in

VOC07 as class-agnostic annotations of salient objects.

4.1. Results

The PR curves of our method, baselines and other com-

pared methods are shown in Fig. 3. The full AP scores are

reported in Table 1. Our full model SalCNN+MAP signifi-

cantly outperforms previous methods on MSO, DUT-O and

MSRA. In particular, our method achieves about 15%, 34%

and 20% relative improvement in AP over the best previ-

ous method MBox+NMS on MSO, DUT-O and MSRA re-

spectively. This indicates that our model generalizes well

to different datasets, even though it is only trained on the

SOS training set. On VOC07, our method is slightly worse

than MBox+NMS. Note that VOC07 is designed for object

recognition, and MBox is optimized for this dataset [17].

We find that our method usually successfully detects the sa-

lient objects in this dataset, but often misses annotated ob-

jects in the background. Sample results are show in Fig. 5.

More results can be found in our supplementary material.

Our MAP formulation consistently improves over the

baseline methods NMS and MMR across all the datasets

for both SalCNN and MBox. On average, our MAP attains

more than 11% relative performance gain in AP over MMR

for both SalCNN and MBox, and about about 12% (resp.
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Figure 3: Precision-Recall curves. Our full method SalCNN+MAP significantly outperforms the other methods on MSO,

DUT-O and MSRA. On VOC07, our method is slightly worse than MBox [46], but VOC07 is not a salient object dataset.

Table 1: AP scores. The best score on each dataset is shown

in bold font, and the second best is underlined.

MSO DUT-O MSRA VOC07 Avg.

SC[21] .121 .156 .388 .106 .194

LBI[43] .144 .143 .513 .106 .226

MBox[46]+NMS .628 .382 .647 .374 .508

MBox[46]+MMR .595 .358 .578 .332 .466

MBox[46]+MAP .644 .412 .676 .394 .532

SalCNN+NMS .654 .432 .722 .300 .527

SalCNN+MMR .656 .447 .716 .301 .530

SalCNN+MAP .734 .510 .778 .337 .590

Table 2: AP scores in identifying background images on

MSO.

SalCNN+MAP SalCNN MBox+MAP MBox LBI SC

.89 .88 .74 .73 .27 .27

5%) relative performance gain over NMS for SalCNN (resp.

MBox). Compared with NMS, the performance gain of our

optimization method is more significant for SalCNN, be-

cause our adaptive region sampling method introduces ex-

tra proposal noise in the proposal set (see discussion in Sec-

tion 3.4). The greedy NMS is quite sensitive to such noise,

while our subset optimization formulation can more effec-

tively handle it.

Detecting Background Images. Reporting the nonex-

istence of salient objects is an important task by itself

[53, 49]. Thus, we further evaluate how our method and

the competing methods handle background/cluttered im-

ages that do not contain any salient object. A background

image is implicitly detected if there is no detection out-

put by an algorithm. Table 2 reports the AP score of each

method in detecting background images. The AP score of

our full model SalCNN+MAP is computed by varying the

parameter λ specified before. For SC, LBI, MBox and our

proposal model SalCNN, we vary the score threshold to

compute their AP scores.

As shown in Table 2, the proposal score generated by SC

and LBI is a poor indicator of the existence of salient ob-

jects, since their scores are not calibrated across images.

MBox significantly outperforms SC and LBI, while our

proposal model SalCNN achieves even better performance,
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Figure 4: Object proposal generation performance (hit rate

vs. average #Prop per image) on VOC07. Our MAP-based

formulation further improves the state-of-the-art MBox

method when #Prop is small.

which is expected as we explicitly trained our CNN model

to suppress detections on background images. Our MAP

formulation further improves the AP scores of SalCNN and

MBox by 1 point.

Generating Compact Object Proposals. Object pro-

posal generation aims to attain a high hit rate within a small

proposal budget [24]. When a compact object proposal

set is favored for an input image (e.g. in applications like

weakly supervised localization [15, 44]), how proposals are

filtered can greatly affect the hit rate. In Fig. 4, we show

that using our subset optimization formulation can help im-

prove the hit rate of MBox [46] when the average proposal

number is less than 15 (see MBox+MAP vs MBox+NMS in

Fig. 4). The performance of MBox using rank thresholding2

(MBox+NMS∗), together with SS [47], EB [56] and MCG

[3], is also displayed for comparison.

4.2. Component Analysis

Now we conduct further analysis of our method on the

MSO dataset, to evaluate the benefits of the main compo-

nents of our system.

Adaptive Region Sampling. We compare our full

model with two variants: the model without region sam-

pling (w/o RS) and the model using uniform region sam-

pling (Unif. RS) [17]. For uniform sampling, we extract

2Rank thresholding means outputting a fixed number of proposals for

each image, which is a default setting for object proposal methods like SS,

EB and MCG, as their proposal scores are less calibrated across images.

5739



G
T

G
T

D
e
te
c
ti
o
n

D
e
te
c
ti
o
n

MSO

DUT-O MSRA

VOC07

Figure 5: Sample detection results of our method when λ = 0.1. In the VOC07 dataset, many background objects are

annotated, but our method only detects dominant objects in the scene. In the DUT-O and MSRA datasets, some ground truth

windows cover multiple objects, while our method tends to localize each object separately. Note that we are showing all the

detection windows produced by our method. More detection results are included in the supplementary material.

Table 3: AP scores of variants of our method. Reg. Samp.

refers to variants with different region sampling strategies.

Win. Filtering refers to variants using different window fil-

tering methods. See text for details.

Reg. Samp. Win. Filtering

Full w/o Unif Rank Score MMR

Model RS RS Thresh Thresh

Overall .734 .504 .594 .448 .654 .656

with Obj. .747 .513 .602 .619 .668 .675

Single Obj. .818 .676 .671 .717 .729 .721

Multi. Obj. .698 .338 .540 .601 .609 .620

Large Obj. .859 .790 .726 .776 .833 .804

Small Obj. .658 .253 .498 .488 .558 .567

five sub-windows of 70% width and height of the image,

by shifting the sub-window to the four image corners and

the image center. The AP scores of our full model and these

two variants are displayed in Table 3. Besides the AP scores

computed over the whole MSO dataset, we also include the

results on five subsets of images for more detailed analy-

sis: 1) 886 images with salient objects, 2) 611 images with

a single salient object, 3) 275 images with multiple salient

objects, 4) 404 images with all small objects and 5) 482 im-

ages with a large object. An object is regarded as small if

its bounding box occupies less than 25% area of the image.

Otherwise, the object is regarded as large.

The best scores of the two variants are shown in red. The

model with uniform region sampling generally outperforms

the one without region sampling, especially on images with

all small objects or multiple objects. However, on images

with a large object, uniform region sampling worsens the

performance, as it may introduce window proposals that are

only locally salient, and it tends to cut the salient object.

The proposed adaptive region sampling substantially en-

hances the performance on all the subsets of images, yield-

ing over 20% relative improvement on the whole dataset.

MAP-based Subset Optimization. To further analyze

our subset optimization formulation, we compare our full

model with three variants that use different window filter-

ing strategies. We evaluate the rank thresholding baseline

(Rank Thresh in Table 3) and the score thresholding base-

line (Score Thresh in Table 3) with the greedy NMS applied.

We also evaluate the Maximum Marginal Relevance basline

(MMR in Table 3) as in the previous experiment.

The results of this experiment are shown in Table 3. Our

full model consistently gives better AP scores than all of the

baselines, across all subsets of images. Even on constrained

images with a single salient object, our subset optimization

formulation still provides 12% relative improvement over

the best baseline (shown in red in Table 3). This shows

the robustness of our formulation in handling images with

varying numbers of salient objects.

5. Conclusion

We presented a salient object detection system for un-

constrained images, where each image may contain any

number of salient objects or no salient object. A CNN

model was trained to produce scored window proposals,

and an adaptive region sampling method was proposed to

enhance its performance. Given a set of scored proposals,

we presented a MAP-based subset optimization formulation

to jointly optimize the number and locations of detection

windows. The proposed optimization formulation provided

significant improvement over the baseline methods on vari-

ous benchmark datasets. Our full method outperformed the

state-of-the-art by a substantial margin on three challenging

salient object datasets. Further experimental analysis vali-

dated the effectiveness of our system.
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