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Abstract

Video summarization has unprecedented importance to

help us digest, browse, and search today’s ever-growing

video collections. We propose a novel subset selection tech-

nique that leverages supervision in the form of human-

created summaries to perform automatic keyframe-based

video summarization. The main idea is to nonparametri-

cally transfer summary structures from annotated videos to

unseen test videos. We show how to extend our method to

exploit semantic side information about the video’s cate-

gory/genre to guide the transfer process by those training

videos semantically consistent with the test input. We also

show how to generalize our method to subshot-based sum-

marization, which not only reduces computational costs but

also provides more flexible ways of defining visual similar-

ity across subshots spanning several frames. We conduct ex-

tensive evaluation on several benchmarks and demonstrate

promising results, outperforming existing methods in sev-

eral settings.

1. Introduction

The amount of video data has been explosively increas-

ing due to the proliferation of video recording devices

such as mobile phones, wearable and ego-centric cameras,

surveillance equipment, and others. According to YouTube

statistics, about 300 hours of video are uploaded every

minute [2]. To cope with this video data deluge, automatic

video summarization has emerged as a promising tool to as-

sist in curating video contents for fast browsing, retrieval,

and understanding [14, 29, 45, 47], without losing impor-

tant information.

Video can be summarized at several levels of abstrac-

tion: keyframes [10, 24, 27, 34, 48], segment or shot-

based skims [23, 30, 35, 36], story-boards [6, 9], mon-

tages [16, 41] or video synopses [39]. In this paper,

we focus on developing learning algorithms for selecting

∗ Equal contributions

keyframes or subshots from a video sequence. Namely, the

input is a video and its subshots and the output is an (or-

dered) subset of the frames or subshots in the video.

Inherently, summarization is a structured prediction

problem where the decisions on whether to include or ex-

clude certain frames or subshots into the subset are interde-

pendent. This is in sharp contrast to typical classification

and recognition tasks where the output is a single label.

The structured nature of subset selection presents a ma-

jor challenge. Current approaches rely heavily on several

heuristics to decide the desirability of each frame: repre-

sentativeness [15, 17, 36], diversity or uniformity [28, 48],

interestingness and relevance [16, 24, 30, 32, 36]. However,

combining those frame-based properties to output an opti-

mal subset remains an open and understudied problem. In

particular, researchers are hampered by the lack of knowl-

edge on the “global” criteria human annotators presumably

optimize when manually creating a summary.

Recently, initial steps investigating supervised learning

for video summarization have been made. They demon-

strate promising results [10, 12], often exceeding the con-

ventional unsupervised clustering of frames. The main idea

is to use a training set of videos and human-created sum-

maries as targets to adapt the parameters of a subset selec-

tion model to optimize the quality of the summarization.

If successful, a strong form of supervised learning would

extract high-level semantics and cues from human-created

summaries to guide summarization.

Supervised learning for structured prediction is a chal-

lenging problem in itself. Existing parametric techniques

typically require a complex model with sufficient anno-

tated data to represent highly complicated decision regions

in a combinatorially large output space. In this paper, we

explore a nonparametric supervised learning approach to

summarization. Our method is motivated by the observation

that similar videos share similar summary structures. For

instance, suppose we have a collection of videos of wedding

ceremonies inside churches. It is quite likely good sum-

maries for those videos would all contain frames portray-

ing brides proceeding to the altar, standing of the grooms
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Figure 1. The conceptual diagram of our approach, which leverages the intuition that similar videos share similar summary structures. The

main idea is nonparametric structure transfer, ie, transferring the subset structures in the human-created summaries (blue frames) of the

training videos to a new video. Concretely, for each new video, we first compute frame-level similarity between training and test videos

(i.e., sim(·, ·), cf. eq. (4)). Then, we encode the summary structures in the training videos with kernel matrices made of binarized pairwise

similarity among their frames. We combine those structures, factoring the pairwise similarity between the training and the test videos, into

a kernel matrix that encodes the summary structure for the test video, cf. eq. (7). Finally, the summary is decoded by inputting the kernel

matrix to a probabilistic model called the determinantal point process (DPP) to extract a globally optimal subset of frames.

and their best men, the priests’ preaching, the exchange

of rings, etc. Thus, if one such video is annotated with

human-created summaries, a clever algorithm could essen-

tially “copy and paste” the relative positions of the extracted

frames in the annotated video sequence and apply them to

an unannotated one to extract relevant frames. Note that

this type of transferring summary structures across videos

need not assume a precise matching of visual appearance in

corresponding frames — there is no need to have the same

priest as long as the frames of the priests in each video are

sufficiently different from other frames to be “singled out”

as possible candidates.

The main idea of our approach centers around this intu-

ition, that is, non-parametric learning from exemplar videos

to transfer summary structures to novel input videos. In re-

cent years, non-parametric methods in the vision literature

have shown great promise in letting the data “speak for it-

self”, though thus far primarily for traditional categoriza-

tion or regression tasks (e.g., label transfer for image recog-

nition [26, 42] or scene completion [13]).

How can summarization be treated non-parametrically?

A naive application of non-parametric learning to video

summarization would treat keyframe selection as a binary

classification problem—matching each frame in the unan-

notated test video to the nearest human-selected keyframes

in some training video, and deciding independently per

frame whether it should be included in or excluded from the

summary. Such an approach, however, conceptually fails on

two fronts. First, it fails to account for the relatedness be-

tween a summary’s keyframes. Second, it limits the system

to inputs having very similar frame-level matches in the an-

notated database, creating a data efficiency problem.

Therefore, rather than transfer simple relevance labels,

our key insight is to transfer the structures implied by subset

selection. We show how kernel-based representations of a

video’s frames (subshots) can be used to detect and align the

meta-cues present in selected subsets. In this way, we com-

pose novel summaries by borrowing recurring structures in

exemplars for which we have seen both the source video

and its human-created summary. A conceptual diagram of

our approach is shown in Fig. 1.

In short, our main contributions are an original modeling

idea that leverages non-parametric learning for structured

objects (namely, selecting subsets from video sequences), a

summarization method that advances the frontier of super-

vised learning for video summarization, and an extensive

empirical study validating the proposed method and attain-

ing far better summarization results than competing meth-

ods on several benchmark datasets.

The rest of the paper is organized as follows. In sec-

tion 3, we describe our approach of nonparametric structure

transfer. We report and analyze experimental results in sec-

tion 4 and conclude in section 5.

2. Related Work

A variety of video summarization techniques have been

developed in the literature [33, 43]. Broadly speaking, most

methods first compute visual features at the frame level,

then apply some selection criteria to prioritize frames for

inclusion in the output summary.

Keyframe-based methods select a subset of frames to

form a summary, and typically use low-level features like

optical flow [44] or image differences [48]. Recent work

also injects high-level information such as object tracks [27]

or “important” objects [24], or takes user input to generate

a storyboard [9]. In contrast, video skimming techniques

first segment the input into subshots using shot boundary

detection. The summary then consists of a selected set of

representative subshots [23, 35, 36].

Selection criteria for summaries often aim to retain di-

verse and representative frames [15, 17, 28, 36, 48]. An-

other strategy is to predict object and event saliency [16,

24, 32, 36], or to pose summarization as an anomaly de-

tection problem [19, 49]. When the camera is known to be
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stationary, background subtraction and object tracking offer

valuable cues about the salient entities in the video [5, 39].

Whatever the above choices, existing methods are almost

entirely unsupervised. For example, they employ clustering

to identify groups of related frames, and/or manually define

selection criteria based on intuition for the problem. Some

prior work includes supervised learning components (e.g.,

to generate regions with learned saliency metrics [24], train

classifiers for canonical viewpoints [17], or recognize frag-

ments of a particular event category [38]), but they do not

learn the subset selection procedure itself.

Departing from unsupervised methods, limited recent

work formulates video summarization as a subset selection

problem [10, 12, 18, 46]. This enables supervised learn-

ing, exploiting knowledge encoded in human-created sum-

maries. In [12], a submodular function optimizes a global

objective function of the desirability of selected frames,

while [10] uses a probabilistic model that maximizes the

probability of the ground-truth subsets.

The novelty of our approach is to learn non-

parametrically from exemplar training videos to transfer

summary structures to test videos. In contrast to previous

parametric models [10, 12], non-parametric learning gen-

eralizes to new videos by directly exploiting patterns in the

training data. This has the advantage of generalizing locally

within highly nonsmooth regions: as long as a test video’s

“neighborhood” contains an annotated training video, the

summary structure of that training video will be transferred.

In contrast, parametric techniques typically require a com-

plex model with sufficient annotated data to parametrically

represent those regions. Our non-parametric approach also

puts design power into flexible kernel functions, as opposed

to relying strictly on combinations of hand-crafted criteria

(e.g., frame interestingness, diversity, etc.).

3. Approach

We cast the process of extracting a summary from a

video as selecting a subset of items (i.e., video frames)

from a ground set (i.e., the whole video). Given a corpus

of videos and their human-created summaries, our learning

algorithm learns the optimal criteria for subset selection and

applies them to unseen videos to extract summaries.

The first step is to decide on a subset selection model

that can output a structure (i.e., an ordered subset). For

such structured prediction problems, we focus on the deter-

minantal point process (DPP) [22] which has the benefits

of being more computationally tractable than many proba-

bilistic graphical models [20]. Empirically, DPP has been

successfully applied to documentation summarization [21],

image retrieval [7] and more recently, to video summariza-

tion [3, 10].

We will describe first DPP and how it can be used for

video summarization. We then describe our main approach

in detail, as well as its several extensions.

3.1. Background

Let Y = {1, 2, · · · ,N} denote a (ground) set of N items,

such as video frames. The ground set has 2N subsets. The

DPP over the N items assigns a probability to each of those

subsets. Let y ⊆ Y denote a subset and the probability of

selecting it is given by

P (y;L) =
det(Ly)

det(L+ I)
, (1)

where L is a symmetric, positive semidefinite matrix and

I is an identity matrix of the same size of L. Ly is the

principal minor (sub-matrix) with rows and columns from

L indexed by the integers in y.

DPP can be seen conceptually as a fully connected N-

node Markov network where the nodes correspond to the

items. This network’s node-potentials are given by the di-

agonal elements of L and the edge potentials are given by

the off-diagonal elements in L. Note that those “poten-

tials” cannot be arbitrarily assigned — to ensure they form

a valid probabilistic model, the matrix L needs to be posi-

tive semidefinite. Due to this constraint, L is often referred

to as a kernel matrix whose elements can be interpreted as

measuring the pairwise compatibility.

Besides computational tractability which facilitates pa-

rameter estimation, DPP has an important modeling advan-

tage over standard Markov networks. Due to the celebrated

Hammersley-Clifford Theorem, Markov networks cannot

model distributions where there are zero-probability events.

On the other hand, DPP is capable of assigning zero prob-

ability to absolutely impossible (or inadmissible) instantia-

tions of random variables.

To see its use for video summarization, suppose there are

two frames that are identical. For keyframe-based summa-

rization, any subset containing such identical frames should

be ruled out by being assigned zero probability. This is

impossible in Markov networks — no matter how small,

Markov networks will assign strictly positive probabilities

to an exponentially large number of subsets containing iden-

tical frames. For DPP, since the two items are identical, they

lead to two identical columns/rows in the matrix L, result-

ing a determinant zero (thus zero probability) for those sub-

sets. Thus, DPP naturally encourages selected items in the

subset to be diverse, an important objective for summariza-

tion and information retrieval [22].

The mode of the distribution is the most probable subset

y∗ = argmax
y
P (y;L) = argmax

y
det(Ly). (2)

This is an NP-hard combinatorial optimization problem,

and there are several approaches to obtaining approximate

solutions [8, 22].
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The most crucial component in a DPP is its kernel ma-

trix L. To apply DPP to video summarization, we define the

ground set as the frames in a video and identify the most de-

sired summarization as the MAP inference result of eq. (2).

We compute L with a bivariate function over two frames —

we dub it the summarization kernel:

Lij = φ(vi)
Tφ(vj) (3)

where φ(·) is a function of the features vi (or vj) computed

on the i-th (or the j-th ) frames. There are several choices.

For instance, φ(·) could be an identity function, a nonlinear

mapping implied by a Gaussian RBF kernel, or the output

of a neural network [10].

As each different video needs to have a different kernel,

φ(·) needs to be identified from a sufficiently rich function

space so it generalizes from modeling the training videos to

new ones. If the videos are substantially different, this gen-

eralization can be challenging, especially when there are not

enough annotated videos with human-created summaries.

Our approach overcomes this challenge by directly using

the training videos’ kernel matrices, as described below.

3.2. Non­parametric video summarization

Our approach differs significantly from existing sum-

mary methods, including those based on DPPs. Rather than

learn a single function φ(·) and discard the training dataset,

we construct L for every unannotated video by comparing it

to the annotated training videos. This construction exploits

two sources of information: 1) how similar the new video is

to annotated ones, and 2) how the training videos are sum-

marized. The former can be inferred directly by comparing

visual features at each frame, while the latter can be “read

off” from the human-created training summaries.

We motivate our approach with an idealized example that

provides useful insight. Let us assume we are given a train-

ing set of videos and their summaries D = {(Yr,yr)}
R
r=1

and a new video Y to be summarized. Suppose this new

video is very similar — we define similarity more pre-

cisely later — to a particular Yr in D. Then we can rea-

sonably assume that the summary yr might work well for

the new video. As a concrete example, consider the case

where both Y and Yr are videos for wedding ceremonies

inside churches. We anticipate seeing similar events across

both videos: brides proceeding to the altars, priests deliv-

ering speeches, exchanging rings etc. Moreover, similar-

ity in their summaries exists on the higher-order structural

level: the relative positions of the summary frames of yr

in the sequence Y are an informative prior on where the

frames of the summary y should be in the new video Y .

Specifically, as long as we can link the test video to the

training video by identifying similar frames,1 we can “copy

1This task is itself not trivial, of course, but it does have the benefit of a

down”—transfer—the positions of yr and lift the corre-

sponding frames in Y to generate its summary y.

While this intuition is conceptually analogous to the fa-

miliar paradigm of nearest-neighbor classification, our ap-

proach is significantly different. The foremost is that, as

discussed in section 1, we cannot select frames indepen-

dently (by nonparametrically learning its similarity to those

in the training videos). We need to transfer summary struc-

tures which encode interdependencies of selecting frames.

Therefore, a naive solution of representing videos with fix-

length descriptors in Euclidean space and literally pretend-

ing their summaries are “labels” that can be transferred to

new data is flawed.

The main steps of our approach are outlined in Fig. 1.

We describe them in detail in the following.

Step 1: Frame-based visual similarity To infer similar-

ity across videos, we experiment with common ones in the

computer vision literature for calculating frame-based simi-

larity from visual features vi and vk extracted from the cor-

responding frames:

sim1(i, k) = vT
i vk

sim2(i, k) = exp{−‖vi − vk‖
2
2 /σ}

sim3(i, k) = exp{−(vi − vk)
T
Ω(vi − vk)},

(4)

where σ and Ω are adjustable parameters (constrained to

be positive or positive definite, respectively). These forms

of similarity measures are often used in vision tasks and

are quite flexible, e.g., one can learn the kernel parameters

for sim3. However, they are not the focus of our approach

— we expect more sophisticated ones will only benefit our

learning algorithm. We also expect high-level features (such

as interestingness, objectness, etc.) could also be beneficial.

In section 3.4 we discuss a generalization to replace frame-

level similarity with subshot-level similarity.

Step 2: Summarization kernels for training videos The

summarization kernels {Lr}
R
r=1 are not given to us in the

training data. However, note that the crucial function of

those kernels is to ensure that when used to perform the

MAP inference in eq. (2) to identify the summary on the

training video Yr , it will lead to the correct summarization

yr (which is in the training set). This prompts us to define

the following idealized summarization kernels

Lr = αr













δ(1 ∈ yr) 0 · · · 0

0 δ(2 ∈ yr)
. . .

...
...

. . .
. . . 0

0 · · · 0 δ(Nr ∈ yr)













(5)

rich literature on image matching and recognition work, including efficient

search strategies.
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or more compactly,

Lr = αrdiag({δ(n ∈ yr)}
Nr

n=1), (6)

where diag turns a vector into a diagonal matrix, Nr is the

number of frames in Yr and αr > 1 is an adjustable pa-

rameter. The structure of Lr is intuitive: if a frame is in the

summary yr, then its corresponding diagonal element is αr,

otherwise 0. It is easy to verify that Lr indeed gives rise to

the correct summarization. Note that αr > 1 is required. If

αr = 1, any subset of yr is a solution to the MAP inference

problem (and we will be getting a shorter summarization).

If αr < 1, the empty set would be the summary (as the

determinant of an empty matrix is 1, by convention).

Step 3: Transfer summary structure Our aim is now to

transfer the structures encoded by the idealized summariza-

tion kernels from the training videos to a new (test) video

Y . To this end, we synthesize L for new video Y out of

{Lr}.

Let i and j index the video frames in Y , with k and l for

a specific training video Yr. Specifically, the “contribution”

from Yr to L is given by

rij =
∑

k

∑

l

simr(i, k)simr(j, l)Lr,kl (7)

where Lr,kl is the element in Lr, and simr(·, ·) measures

frame-based (visual) similarity between frames of Y and

Yr.

Fig. 1 illustrates graphically how frame-based similar-

ity enables transfer of structures in training summaries. We

gain further insights by examining the case when the frame-

based similarity simr(·, ·) is sharply peaked — namely,

there are very good matches between specific pairs of

frames (an assumption likely satisfied in the running exam-

ple of summarizing wedding ceremony videos)

simr(i,m) ≫ simr(i, k), ∀ k 6= m

simr(j, n) ≫ simr(j, l), ∀ l 6= n.
(8)

Under these conditions,

rij ≈ simr(i,m)simr(j, n)Lr,mn. (9)

Intuitively, if Y and Yr are precisely the same video (and the

video frames in Yr are sufficiently visually different), then

the matrix L would be very similar to Lr. Consequently,

the summarization yr, computed from Lr, would be a good

summary for Y .

To include all the information in the training data, we

sum up the contributions from all Yr and arrive at

Lij =
∑

r

rij . (10)

We introduce a few shorthand notions. Let Sr be a N ×
Nr matrix whose elements are simr(i, k), the frame-based

similarity between N frames in Y and Nr frames in Yr. The

kernel matrix L is thus

L =
∑

r

SrLrS
T
r . (11)

Note that, L is for the test video with N frames — there is

no need for all the videos have the same length.

Step 4: Extracting summary Once we have computed

L for the new video, we use the MAP inference eq. (2) to

extract the summary as the most probable subset of frames.

3.3. Learning

Our approach requires adjusting parameters such as

α = {α1, α2, · · · , αR} for the ideal summarization ker-

nels and/or Ω for computing frame-based visual similarity

eq. (4). We use maximum likelihood estimation to estimate

those parameters. Specifically, for each video in the training

dataset, we pretend it is a new video and formulate a kernel

matrix

L̂q =
∑

r

Sq
rLrS

q
r

T, ∀, q = 1, 2, · · · ,R. (12)

We optimize the parameters such that the ground-truth sum-

marization yq attains the highest probability under L̂q ,

α∗ = argmax
α

R
∑

q=1

logP (yq; L̂q). (13)

We can formulate a similar criterion to learn the Ω parame-

ter for sim3(·, ·). We carry out the optimization by gradient

descent. In our experiments, we set σ for sim2 to be 1, with

features normalized to have unit norm. Additional details

are in the Suppl. and omitted here for brevity.

3.4. Extensions

Category-specific summary transfer Video datasets la-

beled with semantically consistent categories have been

emerging [38, 40]. We view categories as valuable prior in-

formation that can be exploited by our nonparametric learn-

ing algorithm. Intuitively, videos from the same category

(activity type, genre, etc.) are likely to be similar in part,

not only in visual appearance but also in high-level seman-

tic cues (such as how key events are temporally organized),

resulting in a similar summary structures. We extend our

method to take advantage such optional side information in

two ways:

• hard transfer. We compare the new video from a

category c only to the training videos from the same
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category c. Mathematically, for each video cate-

gory, we learn a category-specific set of α(c) =

{α
(c)
1 , α

(c)
2 , · · · , α

(c)
R

} such that α
(c)
r > 0 only when

the training video r belongs to category c.

• soft transfer. We relax the requirement in hard transfer

such that α
(c)
r > 0 even if the rth training video is

not from the category c. Note that while we utilize

structural information from all training videos, the way

we use them still depends on the test video’s category.

Subshot-based summary transfer Videos can also be

summarized at the level of subshots. As opposed to se-

lecting keyframes, subshots contain short but contiguous

frames, giving a glimpse of a key event. We next extend our

subset selection algorithm to select a subset of subshots.

To this end, in our conceptual diagram as in Fig. 1, we

replace computing frame-level similarity with subshot-level

similarity, where we compare subshots between the training

videos and the new video. We explore two possible ways to

compute the frame-set to frame-set similarity:

• Similarity between averaged features. We represent

the subshots using the averaged frame-level feature

vectors within each subshot. We then compute the sim-

ilarity using the previously defined sim(·, ·).

• Maximum similarity. We compute pairwise similar-

ity between frames within the subshots and select the

maximum value as the similarity between the subshots.

Both of these two approaches reduce the reliance on frame-

based similarity defined in the global frame-based descrip-

tors of visual appearance, loosening the required visual

alignment for discovering a good match—especially with

the latter max operator, in principle, since it can ignore

many unmatchable frames in favor of a single strong link

within the subshots. Moreover, the first approach can sig-

nificantly reduce the computational cost of nonparametric

learning as the amount of pairwise-similarity computation

now depends on the number of subshots, which is substan-

tially smaller than the number of frames.

3.5. Implementation and computation cost

Computing Sr in eq. (11) is an O(N ×
∑

r Nr) opera-

tion. For long videos, several approaches will reduce the

cost significantly. First, it is a standard procedure to down-

sample the video (by a factor of 5-30) to reduce the number

of frames for keyframe-based summarization. Our subshot-

based summarization can also reduce the computation cost,

cf. section 3.4. Generic techniques should also help —

sim(·, ·) computes various forms of distances among visual

feature vectors. Thus, many fast search techniques apply,

such as locality sensitive hashing or tree structures for near-

est neighbor searches.

4. Experiment

We validate our approach on five benchmark datasets. It

outperforms competing methods in many settings. We also

analyze its strengths and weaknesses.

4.1. Setup

Data For keyframe-based summarization, we experiment

on three video datasets: the Open Video Project (OVP)

[1, 4], the YouTube dataset [4], and the Kodak consumer

video dataset [31]. All the 3 datasets were used in [10] and

we follow the procedure described there to preprocess the

data, and to generate training ground-truths from multiple

human-created summaries. For the YouTube dataset, in the

following, we report results on 31 videos after discarding

8 videos that are neither “Sports” nor “News” such that we

can investigate category-specific video summarization (cf.

sec. 3.4). In Suppl., we report results on the original dataset.

For subshot-based summarization (cf. sec. 3.4), we ex-

periment on three video datasets: the portion of MED with

160 annotated summaries [38], SumMe [11] and YouTube.

Videos in MED are pre-segmented into subshots with the

Kernel Temporal Segmentation (KTS) method [38] and we

observe those subshots. For SumMe and YouTube, we

apply KTS to generate our own sets of subshots. MED

has 10 well-defined video categories allowing us to experi-

ment with category-specific video summarization on it too.

SumMe does not have semantic category meta-data. In-

stead, its video contents have a large variation in visual ap-

pearance and can be classified according to shooting style:

still camera, egocentric, or moving. Table 1 summarizes key

characteristics of those datasets with details in the Suppl.

Features For OVP/YouTube/Kodak/SumMe, we encode

each frame with an ℓ2-normalized 8192-dimensional

Fisher vector [37], computed from SIFT features. For

OVP/YouTube/Kodak, we also use color histograms. We

also experimented with features from a pre-trained convo-

lutional nets (CNN), details in the Suppl. For MED, we use

the provided 16512-dimensional Fisher vectors.

Evaluation metrics As in [10, 11, 12] and other prior

work, we evaluate automatic summarization results (A) by

comparing them to the human-created summaries (B) and

reporting the standard metrics of F-score (F), precision (P),

and recall (R) — their definitions are given in the Suppl.

For OVP/YouTube/Kodak, we follow [10] and utilize the

VSUMM package [4] for finding matching pairs of frames.

For SumMe, we follow the procedure in [11, 12]. More

details are in the Suppl.

Implementation details For each dataset, we randomly

choose 80% of the videos for training and use the remain-
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Table 1. Key characteristics of datasets used in our empirical studies. Most videos in these datasets have a duration from 1 to 5 minutes.

Dataset
# of

video
# of

category

# of Training

videos
# of Test

video

Type of

summarization
Evaluation metrics
F-score in matching

Kodak 18 - 14 4 keyframe
selected frames

OVP 50 - 40 10 keyframe

Youtube 31 2 31 8 keyframe; subshot selected frames; frames in selected subshots

SumMe 25 - 20 5 subshot frames in selected subshots

MED 160 10 128 32 subshot matching selected subshots

ing 20% for testing, repeating for 5 or 100 rounds so that

we can calculate averaged performance and standard errors.

To report existing methods’ results, we use prior published

numbers when possible. We also implement the VSUMM

approach [4] and obtained code from the authors for se-

qDPP [10] in order to apply them to several datasets. We

follow the practices in [10] so that we can summarize videos

sequentially. For MED, we implement KVS [38] ourselves.

4.2. Main Results

We summarize our key findings in this section. For more

details, please refer to the Suppl.

In Table 2, we compare our approach to both supervised

and unsupervised methods for video summarization. We

report published results in the table as well as results from

our own implementation of some methods. Only the best

variants of all methods are quoted and presented; others are

deferred to the Suppl.

On all but one of the five datasets (OVP), our nonpara-

metric learning method achieves the best results. In gen-

eral, the supervised methods achieve better results than the

unsupervised ones. Note that even for datasets with a vari-

ety of videos that are not closely visually similar (such as

SumMe), our approach attains the best result—it indicates

our method of transferring summary structures is effective,

able to build on top of even crude frame similarities.

4.3. Detailed analysis

Advantage of nonparametric learning Nonparametric

learning enjoys the property of generalizing locally. That

is, as long as a test video has enough correctly annotated

training videos in its neighborhood, the summary structures

of those videos will transfer. A parametric learning method,

on the other end, needs to learn both the locations of those

local regions and how to generalize within local regions. If

there are not enough annotated training videos covering the

whole range of data space, it could be difficult for a para-

metric learning method to learn well.

We design a simple example to illustrate this point. As

it is difficult to assess “similarity” to derive nearest neigh-

bors for video, we use a video’s category to delineate those

“semantically near”. Specifically, we split YouTube’s 31

videos into two piles, according to their categories “Sports”

or “News”. We then construct seqDPP, a parametric learn-

ing model [10], using all the 31 videos, as well as “Sports”

Table 3. Advantage of nonparametric summary transfer

Type of seqDPP Ours

test video all same as test all same as test

Sports 52.8 54.5 53.5 54.4

News 67.9 67.7 66.9 69.1

Table 4. Video category information helps summarization

Setting YouTube MED SumMe

w/o category 60.0 28.9 39.2

category-specific hard 61.5 30.4 40.9

category-specific soft 60.6 30.7 40.2

or “News” videos only to summarize test videos from ei-

ther category. We then contrast to our method in the same

setting. Table 3 displays the results.

The results on the “News” category convincingly sug-

gest that the nonparametric approach like ours can leverage

the semantically-close videos to outperform the parametric

approach with the same amount of annotated data—or even

more data. (Note that, the difference on the “Sports” cate-

gory is nearly identical.)

Advantage of exploiting category prior Table 3 already

alludes to the fact that exploiting category side-information

can improve summarization (cf. contrasting the column of

“same as test” to “all”). Now we investigate this advantage

in more detail. Table 4 shows how our nonparametric sum-

mary transfer can exploit video category information, using

the method explained in section 3.4.

Particularly interesting are our results on the SumMe

dataset, which itself does not provide semantically mean-

ingful categories. Instead, we generate two “fake” cate-

gories for it. We first collapse the 10 video categories in

the dataset TVSum2 [40] into two super-categories (details

in Suppl.) — these two super-categories are semantically

similar within each other, though they do not have obvious

visual similarity to videos in the SumMe.

We then build a binary classifier trained on TVSum

videos but classify the videos in SumMe as “super-category

I” and “super-category II” and then proceed as if they are

ground-truth categories, as in MED and YouTube. De-

spite this independently developed dichotomy, the results

on SumMe improve over using all video data together.

2We choose this one as it has raw videos for us to extract features and

have a larger number of labeled videos for us to build a category classifier
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Table 2. Performance (F-score) of various video summarization methods. Numbers followed by citations are from published results. Others

are from our own implementation. Dashes denote unavailable/inapplicable dataset-method combinations.

Unsupervised Supervised

VSUMM1 VSUMM2 DT STIMO KVS Video MMR SumMe Submodular seqDPP Ours

[4] [4] [34] [6] [38] [25] [11] [12] [10]

Kodak 69.5 67.6 - - - - - - 78.9 82.3

OVP 70.3 69.5 57.6 63.4 - - - - 77.7 76.5

YouTube 58.7 59.9 - - - - - - 60.8 61.8

MED 28.9 28.8 - - 20.6 - - - - 30.7

SumMe 32.8 33.7 - - - 26.6 39.3 39.7 - 40.9

Table 5. Subshot-based summarization on YouTube

Category Frame- Subshot-based

-specific based Mean-Feature Max-similarity

No 60.0 60.7 60.9

Yes 61.5 61.6 61.8

Subshot-based summarization In section 3.4, we dis-

cuss an extension to summarize video at the level of se-

lecting subshots. This extension not only reduces com-

putational cost (as the number of subshots is significantly

smaller than that of frames), but also provides additional

means of measuring similarity across videos beyond frame-

level visual similarity inferred from global frame-based de-

scriptors. Next we examine how such flexibility can ul-

timately improve keyframe-based summarization. Con-

cretely, we first perform subshot summarization, then pick

the middle frame in each selected subshot as the output

keyframes. This allows us to directly compare to keyframe-

based summarization using the same F-score metric.

Table 5 shows the results. Subshot-based summarization

clearly improves frame-based — this is very likely due to

the more robust similarity measures now computed at the

subshot-level. The improvement is more pronounced when

a category prior is not used. One possible explanation is that

measuring similarity on videos from the same categories is

easier and more robust, whereas across categories it is nois-

ier. Thus, when a category prior is not present, the subshot-

based similarity measure benefits summarization more.

Other detailed analysis in Suppl. We summarize other

analysis results as follows. We show how to improve frame-

level similarity by learning better metrics. We also show

deep features, powerful for visual category recognition, is

not particularly advantageous comparing to shallow fea-

tures. We also show how category prior can still be ex-

ploited even we do not know the true category of test videos.

4.4. Qualitative analysis

Fig. 2 shows a failure case by our method. Here the test

video depicts a natural scene, while its closest training video

depicts beach activities. There is a visual similarity (e.g., in

the swath of sky). However, semantically, these two videos

do not seem to be relevant and it is likely difficult for the

transfer to occur. In particular, our results miss the last two

Ours 

(F = 60) 

Summary of nearest training video 

Ground-truth 

seqDPP 

(F = 62) 

Figure 2. A failure case by our approach. Our summary misses the

last two frames from the ground-truth (red-boxed) as the test video

(nature scene) transfers from the nearest video with a semantically

different category (beach activity). See text.

frames where there are a lot of grass. This suggests one

weakness in our approach: the formulation of our summa-

rization kernel for the test video does not directly consider

the relationship between its own frames — instead, they in-

teract through training videos. Thus, one possible direction

to avoid unreliable neighbors in the training videos is to rely

on the visual property of the test video itself. This suggests

future work on a hybrid approach with parametric and non-

parametric aspects that complement each other.

Please see the Suppl. for more qualitative analysis and

example output summaries.

5. Conclusion

We propose a novel supervised learning technique for

video summarization. The main idea is to learn non-

parametrically to transfer summary structures from training

videos to test ones. We also show how to exploit side (se-

mantic) information such as video categories and propose

an extension for subshot-based summarization. Our method

achieves promising results on several benchmark datasets,

compared to an array of nine existing techniques.
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