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Abstract

In this study, we present a weakly supervised approach

that discovers the discriminative structures of sketch im-

ages, given pairs of sketch images and web images. In

contrast to traditional approaches that use global appear-

ance features or relay on keypoint features, our aim is to

automatically learn the shared latent structures that exist

between sketch images and real images, even when there

are significant appearance differences across its relevant

real images. To accomplish this, we propose a deep con-

volutional neural network, named SketchNet. We firstly de-

velop a triplet composed of sketch, positive and negative

real image as the input of our neural network. To discover

the coherent visual structures between the sketch and its

positive pairs, we introduce the softmax as the loss func-

tion. Then a ranking mechanism is introduced to make the

positive pairs obtain a higher score comparing over nega-

tive ones to achieve robust representation. Finally, we for-

malize above-mentioned constrains into the unified objec-

tive function, and create an ensemble feature representa-

tion to describe the sketch images. Experiments on the TU-

Berlin sketch benchmark demonstrate the effectiveness of

our model and show that deep feature representation brings

substantial improvements over other state-of-the-art meth-

ods on sketch classification.

1. Introduction

Sketch can be seen as the abstract representation of

expressing some types of ideas. Moreover, sketch im-

age can convey information that is hard to describe using

text without requiring a tremendous amount of effort (e.g.

Sketch2photo [7]). With the popularity of touch devices,

sketch has been attracted more and more researches’ atten-

tions in the computer vision and graphic field. There exist
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(a) A group of cat images 

collected from website
(b) Some samples of sketch images

 drawn by human

Figure 1. Motivation of our proposed method. Humans draw

sketch images with their prior knowledges, which would generate

a large variations for the same category (b). Sketch classification

can be seen as the reverse processing of drawing sketch. We in-

troduce the real images (a) as the references, which can bridge the

representation gap between sketch images in the same category.

various interesting applications including sketch based im-

age retrieval [14, 34], human-computer interaction [10], and

other relevant works [31, 3, 15, 21, 22, 24, 28].

While most existing methods use global appearance [13]

or interesting points [1] based feature representations to

model sketches, recent work demonstrate that the effective

way of using localized part based representation with em-

bedding structure information [14, 2, 29]. Based on the

extracted low-level hand-crafted local features [1, 2, 13],

one way is following the process of image matching [30] to

find the most-similar image. The other way is based on the

paradigm of bag of features [17], and then train the classi-

fiers [4] of categories using histogram representations.

One of the biggest limitations of traditional methods is

the sketch image itself as shown in Fig.1 (b): 1) Without the

texture and color informations, distinct categories appear to

be similar e.g. tire and donut. 2) Different drawing styles

can cause the variation of sketches, which would further en-

large the intra-similarities. 3) The existing localized sketch

descriptors [9, 25, 1] are sensitive to the view perspectives

and some appearance cues (the stripes of tigers) of drawn
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Figure 2. Sketch classification with real image embedding using SketchNet. Given a sketch image of an object, e.g., donut, we find its

initialized category predictions (Donut, Tire and Wheel) based on the pre-trained sketch model. Then the test pairs are constructed based

on their visual similarity. Conditioned on these test pairs, we use our SketchNet model to achieve the prediction scores of each test image

pair. Finally, all the predictions are merged to make the decision to identify the sketch category.

sketches. Furthermore, the ability of learning algorithms

to train the classification models are also influenced by the

handcrafted features and the capacity of classifiers (SVM

[4]) to memorize feature information.

So, how can we achieve robust visual representation for

the sketch image, and develop the classifiers to memorize

more feature information? To this end, we need to auto-

matically identify the discriminative visual patterns in each

sketch image whose appearance may be significant differ-

ences. This is a challenging task considering the above-

mentioned factors and the limited useful information of

sketch images. Fortunately, there exists large amounts of

web image data online with weakly supervised labels as

shown in Fig.1 (a), which would be helpful to identify the

latent discriminative structure of sketch images via discov-

ering the coherent appearance between the sketch and real

images of the same category. This assumption is supported

by the process of human recognizing sketches: we can clas-

sify sketch images even without seeing any sketch images.

Given the task, deep Convolutional Neural Network (CNN)

[20] is proved to be a valuable model choice since it allows

for large scale feature representation learning.

Specifically, in this paper, we propose a novel deep con-

volutional neural network, named SketchNet for sketch

classification. To construct the auxiliary repository, the real

images are collected from the web which covers all the

sketch categories in the TU-Berlin sketch dataset [12]. To

extract the real reference images for each training sketch,

we first train an preliminary model based on Alexnet [20]

following the fine-tuning process. Afterwards, the top K

predicted category labels of each training sketch is extracted

based on the pre-trained Alexnet model. For each training

sketch, we find the most visual similar real images from

the image sets of top predicted categories to construct the

training pairs. Thus, the sketch with the real images which

are in the same class is used to generate the positive im-

age pair while the sketch with the real images which are in

distinct classes are defined as negative image pair. Next,

a triplet is constructed based on the positive and negative

pairs. Our proposed SketchNet contains three subnetworks:

R-Net is used to extract features from the real images. S-

Net is applied on the sketch images. And the C-Net is pro-

posed to discover the common structures between real im-

ages and sketches. To guarantee the positive pair achieves a

higher prediction score on the corresponding category than

the negative pair, we customize a novel loss function based

on the extracted features. In the test time as shown in Fig.

2, we feed the test pairs composing of sketches and their

similar real images into SketchNet to set the category pre-

dictions. Finally, the predictions are merged together to

achieve the final results. Extensive experiments are con-

ducted on the TU-Berlin sketch dataset [12] and the exper-

imental results show that our SketchNet can significantly

improve the performance of sketch classification by intro-

ducing the real images as the references.

The contributions of our proposed method can be sum-

marized as: (1) We propose a novel sketch feature repre-

sentation learning method named SketchNet based on the

deep convolutional neural network to address the problem

of sketch classification. (2) To learn the discriminative fea-

ture representation, we propose to construct the image pairs

to discover the shared structure between sketch and real im-

ages. (3) Our method boosts the benchmark of sketch classi-

fication, achieving the state-of-the-art performance in terms

of classification evaluation metrics. (4) We have collected

a new real image dataset which includes the correspond-

ing real images of TU-Berlin sketch benchmark [12]. This

dataset will be released at the author’s websites.

2. Related work

In this section, we review the most related work on

sketch classification. There has been a large body of re-
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search on analyzing sketch classification. Most of the works

[13, 12, 29] firstly extract the low-level features from the

sketch image, and then model the sketch representation by

using bag of feature model. These methods are limited to

a specific class of sketch with small variations, with similar

shape appearances. Moreover, in [21] the authors proposed

an ensemble matching method for sketch recognition. This

method is firstly construct the star-graph with bag of fea-

tures representation, then employ the SVM to train the cat-

egory classifiers. However, this method is still sensitive to

the variations of the sketches. On sketch retrieval, Eitz et

al. [14] propose to extract several kinds of descriptors to

construct the bag of features model, and then evaluate the

performance of these descriptors on a large scale dataset.

While Cao et al. [2] propose a flip invariant feature repre-

sentation named FISH for sketch retrieval by embedding the

symmetry structure of the sketch. But all the existed meth-

ods are based on the traditional low-level features which are

still sensitive to the sketch variations.

With the development of deep learning, we have wit-

nessed the successful of applying the deep learning frame-

work on image recognition and retrieval. The generative

and discriminative power of deep features have been used

to build deep generative model shapes [16, 18]. In [18], the

authors propose to use DBN to generate the hand-written

digits, which has achieved notable performance. While Es-

lami et al. [16] develop an object shape model method

by using the boltzmann machine. These methods are able

to efficiently handle the intra-class variations. Moreover,

Wu et al. [35] propose a novel shape representation named

3D shapeNets, which focuses on modeling the 3D shapes.

In this method [35], the authors propose to recognize the

object from the depth images and then construct a 3D

shapenets to capture the structure of 3D shapes. Different

from the existing works based on deep learning on modeling

the object shape, our method is focused on the sketch image

which has large intra-class variations and large inter-class

similarity. Another related work is Siamese network [8]

which has been widely used in text classification [33] and

speech feature classification [6]. This network contains two

identical sub-convolutional networks shared the weighting

parameters. The goal of this network is to make the output

vectors similar when the input pairs have the same label,

and dissimilar for the input pairs that are labeled dissimilar.

3. SketchNet

In this section we introduce our proposed SketchNet on

the task of sketch classification. The training sketch im-

age is represented as S = {s1, ..., sN} ∈ R
1×N where N

denotes the number of training sketches. The correspond-

ing real images dataset is denoted as R = {r1, ..., rM} ∈
R

1×M where M is the number of real images. The category

label of these real images are T = {t1, ..., tN} ∈ R
C×M
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Figure 3. Triplet generation for each training sketch. Given the

sketch image, top 5 category predictions (dog, cat, zebra, lion and

cow) are extracted based on the pre-trained sketch model. For

each sketch image, we find one positive real image from the corre-

sponding category real image set and one negative image from the

predicted category set.

where C represent the number of categories.

3.1. Triplet construction by embedding real images

Our goal is to discover the shared structures between

sketch images and real images, and then based on the shared

feature representation learn a model to predict the label for

any new sketch images. This is a challenge problem: the

real images are not provided any localized information of

objects so we must automatically discover the relevant re-

gions in each images that correspond to the sketch image.

Moreover, the appearance of these real images may change

drastically caused by views, occlusion and scales. To ad-

dress above-mentioned problems, we exploit the fact that

for each sketch image, the nearest real images which are

in the same category would have the coherent appearance

or changing smoothly. To this end, each sketch image is

matched to its most similar real images from the auxiliary

repository to construct the image pairs. After that, we de-

velop a triplet from these image pairs which is composed

of the sketch image, the same category real image (positive

image) and different category real image (negative image).

However, considering the ratio between relevant images and

irrelevant ones, it would generate a large number of negative

pairs which makes the training data be computation ineffi-

cient and unbalanced.

Considering that problem, Alexnet [20] is firstly trained

by mixing the sketches and real images as the training data.

We follow the fine-tune process to train this sketch model

which initialize the Alexnet with the pre-trained model on

ImageNet [11]. Specifically, we set the number of cate-

gories to be 250 and the softmax loss function is employed.

The learning rate is initialized as 0.001. When the sketch

model is obtained defined as F , we extract the prediction
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Table 1. Configurations of the SketchNet with input images of size

256× 256

Net Type Filiter Size/Stride Output Size

S-Net

S cov1 11 × 11 /4 96× 54× 54

S Pool1 3 × 3 /2 96× 27× 27

S cov2 5 × 5 / 1 256× 27× 27

S Pool2 3 × 3 /2 256× 13× 13

S cov3 3 × 3 /1 384× 13× 13

R-Net

R cov1 11 × 11 /4 96× 54× 54

R Pool1 3 × 3 /2 96× 27× 27

R cov2 5 × 5 / 1 256× 27× 27

R Pool2 3 × 3 /2 256× 13× 13

R cov3 3 × 3 /1 384× 13× 13

R cov4 3 × 3 /1 384× 13× 13

C-Net

C cov1 3 × 3 /1 384× 13× 13

C cov2 3 × 3 /1 384× 13× 13

C cov3 3 × 3 /1 256× 13× 13

C Pool1 3 × 3 /2 256× 6× 6

fca 1 × 1/1 4096 × 1 × 1

fcb 1 × 1/1 4096 × 1 × 1

score of each sketch denoting as Pi ∈ R
1×C . We sort the

prediction scores and extract the top K incorrected cate-

gories P
top
i to construct the negative image pairs. In all our

experiments, we set the K = 5 by considering the computa-

tion efficiently and the performance of classification model.

As discussed aforementioned, a triplet is composed of

the sketch images, positive and negative real images. To

obtain the positive real images for each sketch, we use the

nearest neighborhood methods as Eq. 1 to extract the top 5
similarity real images from the positive training image set.

In the same method, we also extract the top 5 similarity

real images from each negative category training set. In

total, there are 5 positive real images and 25 negative real

images which would generate about C1
5×C1

25 = 125 triplets

for each training sketch images. In the following all the

experiments, we apply this method to generate the training

data.

{ri1, ..., r
i
j} = argmin

tj∈P
top

i

||Ffc7(si)−Ffc7(rj)||2, (1)

where Ffc7(·) denotes the features of the layer fc7
in Alexnet. || · ||2 represents the Euclidean distance.

{ri1, ..., r
i
j} represents the related training images for si.

3.2. SketchNet architecture

There exists significant appearance gap between sketch

images and real images, thus the traditional neural network

can not be directly transferred to our problem. To handle

those differences, we customize the AlexNet [20] to develop

a novel neural network.

Specifically, our proposed SketchNet is composed of S-

Net, R-Net and C-net. S-Net is defined to extract the fea-

tures from the sketch images. With the consideration of lim-

ited information on the sketch images, we set three convo-

lution layers and two pooling layers as shown in Fig. 4 in

the green bounding box. Similarly, R-Net is used to ex-

tract the features from positive and negative real images. To

achieve the relative similarities, R-Net should be able to ex-

tract different features from positive and negative images.

Furthermore, one more convolution layers are added on the

R-Net comparing with S-Net. There are four convolution

layers and two pooling layers as shown in Fig. 4 in the

blue bounding box. The reason is that in the step of loss

back propagation, sketch images should be more sensitive

to the loss. C-Net is developed to merge the feature maps

between sketch and real images. We concatenate the layer

of ”R conv4” and ”S cov3” as the input of C-Net. More-

over, two full connected layers are added in this net. Thus,

three convolution layers and one pooling layers constitute

the C-Net as shown in Fig. 4 in the red bounding box. We

also make the C-Net in the structure of Siamese architec-

ture [8] to let positive pair have a higher classification score

comparing with the negative ones. The overall architecture

between layers are shown in Fig. 4. Furthermore, the spe-

cific parameters of each layer are displayed in Table 1.

The reasons to choose three nets to form the SketchNet

are: firstly, the corresponding real images of each sketch in-

clude more appearance and color information than sketch

images, we need to use different number of convolution

layers to extract their features to narrow the gap between

sketches and real images. Moreover, from the loss back

propagation perspective, sketch images should have more

impact on the loss than real images to determine the com-

mon latent structures. Secondly, considering that positive

and negative real images should have distinct structures

with the sketch image, we design their nets sharing the same

parameters to make sure that positive image pair could gen-

erate the higher scores in the prediction. Last but not the

least, to adopt our task of sketch classification, we design

the novel loss function to discover the discriminative fea-

tures of different training pairs. Specifically, we need the

learned features to be able to get smaller intra-class vari-

ances and bigger inter-class differences.

3.3. Loss function

We propose to use different loss functions to adopt to

different tasks using our SketchNet. For sketch classifica-

tion, we develop a novel loss function which is composed of

two components. The first component is the traditional loss

function softmax which has demonstrated its strong ability

on image classification. In our neural network, we use this

loss function to achieve the prediction score of the input im-

ages. Specially, we can use this loss function to obtain the

initialization prediction results on positive pair and negative
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Figure 4. Architecture of our SketchNet. As described in Section 3.2, there are three components R-Net (in the blue box), S-Net(in the

green box) and C-Net (in the red box) to construct our neural network. Given the training triplet, we apply the sketch into the S-Net and

real images into the R-net. In particular, positive and negative images share the same R-net. Then, the positive and negative sketch pairs

are fed into the C-Net. Finally, we use our defined loss function to back propagation.

pairs. The definition of softmax is following:

Lc(x
i, yi,Wc) = −logP (yi = k|xi,Wc) (2)

= −log
e−fk(xi,Wc)

∑C

l=1 e
−f l(xi,Wc)

where xi represent the input image data and yi denotes the

label of the input image xi, and C is the number of sketch

categories. k is the category label of current input image

and Wc denotes the weights in the fully connected layers

which is used to map the extract deep features to the labels.

Based on the softmax loss function we can separately

extract the predictions of positive and negative pair images.

However, there do not exist evidence that the score of posi-

tive pair could be higher than the negative ones. To this end,

we introduce the second loss function which is based on the

prediction scores of the positive and negative image pairs.

In this loss function, we constrain the score of correct cate-

gory label should be higher than all the other labels, which

could be seen as a ranking loss. We set p+ as the prediction

score of positive image pair and p− as the prediction score

of negative pair. Then the loss function is defined as:

Lr(p
i
+,p

i
−
, yi) = max(0, 1− (p− − p+)) (3)

This loss function is the variation of ranking loss which is

the convex.

Finally, the loss function of our proposed SketchNet for

sketch classification is:

LSketchNet = Lr + λ ∗ Lc (4)

where λ is the weights parameters to balance the values of

two components in the objective function. Moreover, the

loss function is convex function which can be easily com-

puted its gradients.

3.4. Testing of SketchNet

In the test time, we have obtained the SketchNet model

to extract the sketch feature representations. However, the

category of test sketch images are unknown, we can not de-

velop the triplet as the training time. Different from the

training process as shown in Fig. 4, in the test time, our

SketchNet shrink to contain One R-Net, S-Net and One C-

Net as shown in Fig. 2. So, a sketch image is firstly fed into

the pre-trained Alexnet model to achieve the top 5 predic-

tion labels. After that, we extract 5 similar real images for

each prediction label from auxiliary repository to develop

the sketch pairs. In total, each test sketch image would gen-

erate 25 image pairs. One of the test pairs on sketch classi-

fication are shown in Fig. 5. Afterwards, we can adaptive

the pre-trained sketchnet model to extract augmented fea-

ture representation of test sketch images. The feature maps

of each layer could be used as the feature representation of

test images.

The straight way to get the prediction results of the test

sketch is to sum the feature maps of the last layer of test im-

age pairs. However, this would generate the biased results

since in the training time we only use a small of image pairs

comparing to the possible combinations. We need to learn

a metric that could make the positive pairs achieve a higher

prediction scores on the correct label than the negative ones.

Specifically, A validation image set composed of sketch im-

ages and all the auxiliary real images is extracted from the

training part. Similarly, we generate the test pairs which
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Figure 5. Examples of generating test pairs. The first column im-

age shows the test sketch image “cake”. The top 5 prediction re-

sults are displayed in the second columns and the rest columns of

images correspond to the related real images which are used to

construct the test pairs.

contains the sketch and its nearest real images. Then, the

feature map is constructed based on the prediction scores

of each test pair. After that we apply the metric SVM [26]

based on the feature maps of full connected layers (FCb) for

each image pairs to compute the metric weighting. Finally,

the prediction score combining with the learned metric pa-

rameters are used to propagate the label of test images.

4. Experiments

In this section, we conduct extensive evaluations of the

proposed method on the task of sketch classification. We

implement the proposed method based on the opensource

Caffe[19]. We change sketch images from one channel to

three by copying themselves three times. In all experiments,

our networks are trained by stochastic gradient descent with

0.9 momentum. We initiate learning rate to be 0.0001 and

decrease it by 0.1 after finishing about 30 epochs. The

weight decay parameter is 0.0005. The training time is

proportional to the total number of triplets and the number

of epochs. Overall training it takes approximately 2 days

based on a PC with 2.8GHz CPU and GTX TITAN Black

GPU. The mini-batch size of images is 64. Considering the

total number of triplets is very large, the training time is

sensible.

The ImageNet ILSVRC-2012 dataset [27] is utilized to

pre-train the CNN model by optimizing multinomial logis-

tic regression objective function in the image classification

task. This dataset contains about 1.2 million training im-

ages and 50, 000 validation images, roughly 1, 000 images

in each of 1, 000 categories. We use the pre-trained param-

eters of convolutional layers and fully-connected layers to

initialize the CNN part of SketchNet in our method.

4.1. Dataset

TU-Berlin sketch benchmark1 [12] is proposed for

sketch classification and recognition. There are 250 object

categories in this dataset, which cover mostly daily objects

in the life, e.g. car, horse. For each category, 80 sketch

images are collected without any common templates and

each sketch was defined by the person drawing it. After the

dataset was constructed, there was a phase where humans

tried to recognize the sketches and the mean recognition ac-

curacy over all the 250 categories is 73%.

Furthermore, we also propose a new sketch dataset

which extends the TU-Berlin sketch benchmark by intro-

ducing the real images for each category. This extended

dataset can be used for sketch classification and retrieval.

To construct this dataset, for each sketch category we find

its corresponding class in the ImageNet and directly col-

lect these real images to extend. While for these categories

which are not overlapping with ImageNet, we collect the

real images by using Google image search based on their

category labels. Finally, we collect 191, 067 real images in

total, and average 764 images for each category. To guar-

antee the wide variety of real images, we do not add any

constrains on collecting the real images.

Evaluation criteria: In our experiment, we use the

aforementioned dataset and measure the performance using

the following criteria: we use the average precision (AP)

to calculated the classification accuracy for each category.

Then to compare with other existing work on sketch classi-

fication, Mean Average Precision (MAP) is computed.

4.2. Sketch classification

In this section, to validate the effectiveness of our

SketchNet, we show the sketch classification results on the

TU-Berlin sketch benchmark. We firstly split this dataset

into training and testing parts. Following the related work

[12], 9 kinds of training splits are collected by selecting dif-

ferent number of sketch images for each categories which

are {8, 16, 24, 32, 40, 48, 56, 65, 72}. The training sketch

images for each class are randomly chosen from the dataset.

And the rest images of this dataset are used as the test. To

train the metric parameters as discussed in Sec. 3.4, we ran-

domly select 20% training data as the validation dataset.

Each training sketch image is firstly used to construct

a triplet, and we would obtain 125 triplets for each sketch

image. Similarly, the test sketch image is asked to construct

the test pair by computing the similarity between sketch and

real images. Specially, in the test time, we extract the top

5 prediction categories and for each category 5 related real

images are extracted to construct 25 test pairs. All the pa-

rameters of SketchNet are defined as shown in Table 1. Fur-

thermore, S-Net and R-Net is initialized based on the two

1http://cybertron.cg.tu-berlin.de/eitz/projects/classifysketch/
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Table 2. The comparison classification results on TU-Berlin sketch benchmark

Methods 8 16 24 32 40 48 56 64 72

SketchNet 58.04% 64.43% 67.89% 72.01% 73.54% 75.18% 76.08% 77.33% 80.42%

SketchNet(no metric) 55.69% 64.37% 66.20% 71.19% 69.57% 73.62% 73.43% 76.50% 77.41%

AlexNet(mixed real images) 51.96% 59.22% 63.80% 65.97% 68.58% 69.80% 70.46% 72.31% 73.25%

AlexNet [20] 54.8% 62.3% 67.6% 68.12% 69.86% 71.65% 72.62% 74.02% 75.02%

GoogLeNet [32] 52.01% 59.61% 62.45% 67.48% 69.19% 70.5% 71.5% 72.4% 75.25%

NIN [23] 51.4% 61.9% 65.50% 68.05% 70.61% 71.50% 72.02% 73.82% 74.40%

VGGNet [5] 53.85% 60.65% 63.05% 65.54% 67.34% 69.54% 73.83% 75.17% 76.53%

FisherVector size 24 (SP) [29] 43% 52% 56% 59% 62% 65% 66% 67% 68%

FisherVector size 24 [29] 41% 50% 53% 56% 60% 62% 64% 64% 65%

FisherVector size 16 (SP) [29] 44% 50% 55% 57% 60% 63% 64% 65% 66%

FisherVector size 16 [29] 39% 45.5% 50% 53% 56% 59% 60% 61% 62%

Eitz et al. [12] (SVM soft) 33% 41% 44% 46% 50% 51% 54% 55% 55%

Eitz et al. [12] (SVM hard) 32% 37% 42% 45.5% 48% 49% 50.8% 53% 53%

Eitz et al. [12] (Knn soft) 26% 31% 34.8% 36% 39% 40.5% 42% 43% 44%

Eitz et al. [12] (knn hard) 22% 26% 28% 31% 33% 34.5% 35% 36% 37.5%

different pre-trained sketch models.

We select two kinds of baselines to compare with our

method. We firstly compare our method with these exist-

ing neural network which only use the sketch images as the

training images. We also compare the propose SketchNet

with other methods on sketch classification based on hand-

crafted features [12, 29]. Specially, we select Alexnet [20],

GoogLeNet [32], Network in Network [23] and VGGnet

[5] as the baselines which use the deep features. And for

these methods using shadow features, we select the meth-

ods proposed in [29] which is used the fisher vector as the

sketch representation. Moreover, four kinds of feature rep-

resentations are selected. We also select the method de-

scribed in [12] which uses the soft mapping and hard map-

ping. Since there do not exist the open source code for these

hand-crafted methods, we copy their reported classification

results in the corresponding papers [29]. While for the deep

features, we implement their corresponding neural network

by treating the sketch images as the training data with soft-

max as the loss function. Considering the limited number of

training images, we adopt the fine-tune strategy to train the

neural network based on the ImageNet model using Caffe.

We also show the classification result without using metric

learning (SketchNet no metric). We first sum the predic-

tions of test pairs, and then find the maximal response label

as the test image label.

The comparison results are shown in Table 2. Several ob-

servations can be drawn from the results. First of all, for all

the cases, the proposed SketchNet consistently outperforms

the baselines reaching 80.42%. This can demonstrate that

real images as the reference plays an important role on judg-

ing the category of sketches. Moreover, our proposed label

propagation method can help making decisions. Secondly,

we could find that these very deep methods e.g. GoogLenet

[32] and VGGnet [5] do not achieve much better classifica-

tion accuracies comparing with Alexnet [20]. For example,

when the number of training images for each category is 32,

Alexnet obtains 68.12% comparing with GoogLenet up to

67.48% and VGGnet 65.54%. While the number grows to

72, they all get higher results than AlexNet. The main rea-

son may be the limited number of training images on each

category which may cause over-fitting. Thirdly, the classifi-

cation performance is improving with the number of train-

ing images growing. Obviously, our SkechtNet can gain

better performance even with smaller amount of training

images as shown in Table 2. Furthermore, when the extra

real image are added into the neural network, the classifi-

cation accuracy is significantly improved. For example, for

comparison the impact caused by introducing the real im-

ages as the context information, we can find that SketchNet

obtain a higher accuracy comparing with AlexNet. Com-

paring with these baselines without discovering the correla-

tion between sketch and real images, our proposed method

based on triplets is able to effectively improve the classifica-

tion accuracy. Comparing with Alexnet(mixed real images)

whose training data are mixed of sketch and real images, our

SketchNet achieves about 7% improvement. It is interest-

ing to observe that the overall performance of hand-crafted

features on this dataset is worse than the results based on

the deep features. Last but not the least, the performance

of using deep features is beyond human with enough train-

ing images. For example, for our SketchNet, we achieve

73.54% when the number of training images for each cate-

gory is 40. While for VGGnet the number of training im-

ages is 56. This can further demonstrate the representation

ability of learned deep features.

We believe three possible reasons may explain such ob-

servations: (i) Similar with the human to recognize the con-
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Figure 6. Examples of correctly classified sketches on test case with the real images as the references. The first column shows the test

sketch, and the top 5 category predictions are displayed from the top row to the bottom in sequence. Specifically, each row of real image

represents the nearest visual similarity images in their category.

tent of sketch images, our proposed SketchNet can imitate

this process by introducing the most similarity real images.

(ii) With our designed loss function, our SketchNet can not

only discover the latent structure between sketches and real

images, but also obtain the discriminative feature represen-

tation. The second component of our proposed loss func-

tion can be seen as ranking regularization to serve as fea-

ture selection. (iii) As the experiment results show, deep

features have a significantly discriminative ability than the

traditional hand-crafted feature representation.

4.3. Discussion

Although the overall sketch classification performance

can be boosted by introducing the real image as the context,

there are still existing some limitations influencing the per-

formance of specific categories. Some results are displayed

in Fig. 6 and Fig. 7. As shown in Fig. 7, we can observe

that because of the drawing perspective, the sketch “cake”

is more similar with “submarine” than a cake. The second

factor is the real images in the repository, which need cover

the object in multi-views. In this case, we can not find the

same view perspective real images from the cake image set.

This demonstrates that the repository should include real

images of different views. Last but not the least, the aspect

ratio of sketch images also contain important categorical in-

formation. However in our work we ask the images show

be fixed to 256 × 256 which lead to some unexpected situ-

ations. As shown in Fig. 7, the top five prediction includes

trombone which is dissimilar with the query sketch. Fur-

thermore, from the classification results we can observe that

Human can recognize almost sketches without sketch train-

ing data. While for computer, with enough training sketches

it can achieve much better classification accuracy even be-

yond human on sketch classification.

5. Conclusion

In this paper, we have proposed a novel method to de-

velop sketch feature representation, named SketchNet based

Cake

Cake

Tromo-

bone

Space

shuttle

Speed

boat

Sub-

marie

Test Sketch
Top 5

Prediction Top 5 Nearest  real images

Figure 7. Examples of incorrect classification case based on our

SketchNet. The first column shows the test sketch image “cake”.

The top 5 prediction results are displayed in the second columns

and the rest columns of images are shown the related real images

which are used to construct the test pairs.

on the deep convolutional neural network. We use the real

web images as the reference to discover the latent discrim-

inative structures of sketch images. To that end, a triplet is

constructed as the input of our SketchNet. Moreover, we

customize the novel neural network with our defined loss

function to extract the discriminative feature representation

of sketch images. In the step of testing, we introduce a

metric learning method to merge the scores of test pairs.

Empirical evaluations on sketch classification show that the

proposed method has achieved superior performance gains

over state-of-the-arts. Nevertheless, there exist many other

factors e.g. view perspectives which influence the perfor-

mance of classification. This can be solved by introducing

the 3D shape models which would be our future work.
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