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Abstract

Person re-identification addresses the problem of match-

ing people across disjoint camera views and extensive ef-

forts have been made to seek either the robust feature repre-

sentation or the discriminative matching metrics. However,

most existing approaches focus on learning a fixed distance

metric for all instance pairs, while ignoring the individuali-

ty of each person. In this paper, we formulate the person

re-identification problem as an imbalanced classification

problem and learn a classifier specifically for each pedes-

trian such that the matching model is highly tuned to the

individual’s appearance. To establish correspondence be-

tween feature space and classifier space, we propose a Least

Square Semi-Coupled Dictionary Learning (LSSCDL) algo-

rithm to learn a pair of dictionaries and a mapping func-

tion efficiently. Extensive experiments on a series of chal-

lenging databases demonstrate that the proposed algorithm

performs favorably against the state-of-the-art approaches,

especially on the rank-1 recognition rate.

1. Introduction

As a fundamental task in multi-camera surveillance sys-

tem, person re-identification aims to match people observed

from different cameras or across different time with a sin-

gle camera. Although has gained much attention among

researchers [11, 8, 33, 44, 16, 28, 19, 32, 42, 29, 40, 2,

20, 15, 24] in recent years, person re-identification remain-

s a challenging problem since a person’s appearance can

change significantly when large variations in view angle, il-

lumination, background clutter and occlusion are involved.

To address these challenges, a lot of approaches have

been proposed to develop robust feature representations

which are discriminative for identity, such as Ensemble of

Localized Features (ELF) [11], Symmetry-Driven Accumu-

lation of Local Features (SDALF) [8], Covariance descrip-

tor based on Bio-inspired Features (gBiCov) [29] and Local

Maximal Occurrence (LOMO) [20].

On the other hand, there are many efforts attempting to

learn optimal matching metrics under which instances be-

longing to the same person are closer than different person-

s, like Probabilistic Relative Distance Comparison (PRD-

C) [44], Keep It Simple and Straightforward Metric Learn-

ing (KISSME) [16], Local Fisher Discriminant Analysis

(LFDA) [32], Cross-view Quadratic Discriminant Analysis

(XQDA) [20], etc. Taking the person re-identification as a

relative ranking problem, some researchers [33, 24] employ

the Support Vector Machine (SVM) model to learn a rank-

ing function such that the scores of matched image pairs are

larger than unmatched ones.

However, most of the existing methods focus on learn-

ing a fixed distance metric or ranking function to measure

the similarity between all images, while ignoring the fac-

t that different instances have different feature representa-

tions, and the metric or function derived for matching all

objects may not be optimal for every single person. Since

the primary goal of person re-identification is to seek the

optimal match for each pedestrian, a sample-specific dis-

tance metric or ranking function should be more investigat-

ed. Zheng et al. [43] utilized the initial rank scores of each

sample to compute the adaptive weights for feature fusion.

The Query based Adaptive Re-Ranking (QARR) algorith-

m [27] was developed to learn a weighted combination of

a base score function and a perturbation linear function for

each query. Nevertheless, both of the query-adaptive meth-

ods learn the new weighting scheme in the re-ranking stage,

and the effectiveness of the model may be easily affected by

the initial matching results.

In this paper, we propose a novel framework for person

re-identification, where a sample-specific SVM is learned

for each pedestrian to seek the optimal match. The match-

ing function parameterized by the classifier weight vector is

highly tuned to the individual’s appearance, which can pro-

vide more discriminative measurements for finding the best

candidate. To investigate the intrinsic relationship between

the feature space and weight space, we propose a Least

Square Semi-Coupled Dictionary Learning (LSSCDL) al-

gorithm to learn a dictionary pair and a mapping function

simultaneously, through which the weight parameters of a

new sample can be easily inferred by its feature patterns.

Figure 1 shows the overview of our approach.
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Figure 1. Overview of the proposed approach for person re-identification. We first learn matching classifiers for every training individuals

by sample-specific SVMs. The classifier weight vectors are used to further learn a pair of dictionary and a mapping matrix, by which a

weight vector of a test probe image can be easily inferred from its feature representation. The re-identification is then performed based on

our proposed matching criterion with the learned weight vector.

2. Related Work

2.1. Mainstream Methods for Re­identification

Most existing approaches to tackle the person re-

identification problem are mainly carried on from two as-

pects: developing distinctive feature representations and

seeking discriminative distance metrics. Both of them aim

to compute the matching distances (or scores) which are op-

timal for matched image pairs from the gallery and probe set

respectively.

For feature representation, a number of approaches [11,

8, 29, 40, 24, 20, 4, 35, 17] have been proposed to de-

sign robust descriptors against background and illumina-

tion variations. For instance, Gray et al. [11] presented the

ELF by fusing 8 color channels with 19 texture channel-

s, while Farenzena et al. [8] employed the weighted col-

or histograms, Maximally Stable Color Regions (MSCR),

Recurrent High-Structured Patches (RHSP) to capture dif-

ferent image properties. Ma et al. [29] proposed an im-

age representation based on the combination of Biological-

ly Inspired Features (BIF) and Covariance descriptors. LO-

MO [20] extracted the maximal pattern of joint HSV color

histogram coupled with Scale Invariant Local Ternary Pat-

tern (SILTP) [22], and it is worth mentioning that LOMO

based pedestrian representation has shown impressive ro-

bustness against viewpoint changes. Chen et al. [4] pro-

posed a zero-padding based feature transformation strate-

gy to enables alignment of the feature distributions across

disjoint views, which can significantly enhance the perfor-

mance of existing matching models. Shi et al. [35] learned

mid-level semantic attributes such as hair-style, shoe-type

or clothing-style to achieve more powerful representation.

For metric learning, numerous research works [6, 12, 7,

44, 31, 16, 14, 19, 32, 20] aim to learn a metric matrix under

which the distance between images of the same pedestrian

is smaller than different ones. Zheng et al. [44] proposed the

PRDC based method where the probability of a pair of true

match having a smaller distance than that of a wrong match

pair is maximized. Pedagadi et al. [32] employed the LF-

DA algorithm to maximize the inter-class separability while

preserving the multiclass modality. Li et al. [19] develope-

d the Locally-Adaptive Decision Functions (LADF), which

combines the distance metric with a locally adaptive thresh-

olding rule for each pair of sample images. KISSME [16]

derived a Mahalanobis metric by computing the difference

between the intra-class and inter-class covariance matrix.

As an improvement, XQDA [20] learned a more discrimina-

tive distance metric and a low-dimensional subspace simul-

taneously. Although has achieved inspiring re-identification
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reults, these methods did not give sufficient consideration to

the individuality of each pedestrian when learning a generic

distance metric for all instances. In this paper we propose to

learn a matching metric specifically for every person, such

that each individual could have the matching model that best

suits his or her appearance.

2.2. SVM learning for Re­identification

Some researchers formulated the person re-identification

problem as a ranking problem and managed to learn a rank-

ing function parameterized by a weight vector to order rele-

vant images pairs before irrelevant ones. Prosser et al. [33]

developed the Ensemble RankSVM where a set of weak

RankSVMs were learned on different subsets and then com-

bined into a stronger ranker using a boosting principle.

In [24], the structural SVM was employed to score correct

matches higher than all incorrect ones by a margin.

Although based on SVM learning, our approach differs

substantially from these two methods. Instead of computing

a fixed weight vector for all pedestrians, we learn specific

weight parameters such that the ranking function is high-

ly tuned to the individual’s appearance. Furthermore, the

previous methods employ the relative ranking relationship-

s for SVM learning, while the proposed algorithm tackles

person re-identification as an absolute classification prob-

lem, which greatly enlarges the gap between matched and

unmatched image pairs.

2.3. Dictionary Learning Methods

SCDL The Semi-Coupled Dictionary Learning (SCDL)

algorithm [38] was originally intended to solve the cross-

style image synthesis problems, and it assumed that there

exists a dictionary pair over which the coding coefficients

of the two representations have a stable mapping.

SSCDL To bridge the appearance variations across cam-

eras, Liu et al. [23] developed the Semi-Supervised Coupled

Dictionary Learning (SSCDL) algorithm where the coupled

dictionaries for gallery and probe images are learned jointly.

SLD
2
L Based on the observation that gallery images

are high-resolution (HR) while probe images are low-

resolution (LR), Jing et al. [15] proposed the Semi-coupled

Low-rank Discriminant Dictionary Learning (SLD2L) al-

gorithm to learn a pair of HR and LR dictionaries and a

matrix to map the feature from LR to HR.

However, the SCDL model is designed for photo-sketch

synthesis and requires large time consumption to solve the

sparse coding problem, therefore we propose the LSSCDL

algorithm to solve the cross-modal problem with higher ef-

ficiency. In contrast with SSCDL and SLD2L which di-

rectly learn a dictionary pair for two camera views or two

resolutions, the LSSCDL model attempts to investigate the

intrinsic relationship between feature patterns and ranking

parameters.

3. The Proposed Algorithm

3.1. Sample­Specific SVM Learning

Given the probe set Dp = {xp
i }

N
i=1 and the gallery set

Dg = {xg
j}

N
j=1, we respectively denote i and j to be the

identity label of pedestrians from the two groups. A probe-

gallery image pair with a matching label is constructed as

{(xp
i ,x

g
j ), y

p
j }, where y

p
j =+1 represents that (xp

i ,x
g
j ) is a

correct matching pair, while y
p
j =−1 indicates the incorrect

matches.

We explicitly consider the problem of person re-

identification as a binary classification problem. Given a

probe image x
p
i , we attempt to learn a sample-specific clas-

sifier Fp
i on the probe-gallery set {(xp

i ,x
g
1), ..., (x

p
i ,x

g
N )}

such that

Fi(x
p
i ,x

g
j ) =

{

≥ 0, ypj = +1

< 0, ypj = −1
j = 1, ..., N (1)

We define the classification function with the following

form
Fi(x

p
i ,x

g
j ) = w

p
i · φ(x

p
i ,x

g
j ) + bi (2)

where w
p
i denotes the weight vector of x

p
i and bi is the bias.

φ(xp
i ,x

g
j ) is defined as a feature map of the image pair with

the following form

φ(xp
i ,x

g
j ) = [(xp

i )
⊤, |xp

i − x
g
j |

⊤, (xg
j )

⊤]⊤ (3)

where
∣

∣x
p
i − x

g
j

∣

∣ = (|xp
i (1)−x

g
j (1)|, ..., |x

p
i (d)−x

g
j (d)|)

⊤

is the absolute difference vector [44] and d is the feature

dimension. This feature map not only takes the image d-

ifference into consideration, but also exploits the nature of

image itself to enhance the distinctiveness of an image pair.

The traditional SVM model [5] is employed to solve

the binary classification problem, where the relevant im-

age pairs are separated from all the irrelevant ones by the

largest possible margin. Consider that the number of cor-

rect matches (positive set) is much smaller than incorrec-

t ones (negative set), we impose different penalty param-

eters [36] to handle the imbalance. Learning the sample-

specific classifier is equivalent to optimizing the following

objective function:

min
w

p

i

1

2
‖ w

p
i ‖2 + C+

∑

y
p

j
=+1

ξj + C−
∑

y
p

j
=−1

ξj

s.t. y
p
j (w

p
i · φ(x

p
i ,x

g
j ) + bi) ≥ 1− ξj ,

ξj ≥ 0, j = 1, ..., N

(4)

where C+ > 0 and C− > 0 are regularization parameters

for positive and negative classes, respectively, and ξj is the

slack variable.

Generally, the linear SVM model has good interpretabil-

ity in the sense that it seeks a direction that can explain the

biggest difference between the two classes. Therefore, the

binary classification strategy for pedestrian matching actu-

ally attempts to find the weight vector maximally enlarging
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the gap between matched and unmatched pairs to improve

the rank-1 recognition rate [42], which is consistent with

the primary goal of person re-identification. Moreover, the

positive image pair is separated from its corresponding neg-

ative pairs in each sample-specific classifier, under which

the instance-level information is effectively utilized to make

the matching model highly tuned to the individual’s appear-

ance, leading to more powerful discrimination.

Note that the weight vector w
p
i plays a key role in or-

dering the relevant image pairs before irrelevant ones, here

we define a score function without changing the ranks of

matching candidates by omitting the bias in (2).

fi(x
p
i ,x

g
j ) = w

p
i · φ(x

p
i ,x

g
j ) (5)

where fi(x
p
i ,x

g
j ) denotes the matching score of x

p
i and x

g
j .

The higher the score is, the more likely that the two images

represent the same person. In the following sections we

only focus on the discussion of weight vectors.

3.2. Least Square Semi­Coupled Dictionary Learn­
ing

Since there is a one-to-one correspondence between the

feature vector and weight vector, it is reasonable to assume

that the feature patterns and weight parameters of a specific

person should have similar intrinsic structures, and there ex-

ists a mapping function through which one type of the repre-

sentation can be inferred by the other. It is hard to define the

mapping function between the two styles of representation

directly, while the linear reconstruction pattern of each pair

of samples in their respective space can be related to some

extent. As suggested in [38], for two different styles of rep-

resentations indicating the same scene, there exist coupled

dictionaries over which the coding coefficients of two styles

have a stable mapping.

In this paper, we propose a Least Square Semi-Coupled

Dictionary Learning (LSSCDL) algorithm to learn a pair of

dictionaries and a mapping function efficiently, where the t-

wo dictionaries respectively depict the intrinsic structures of

the feature space and weight space, and the mapping func-

tion characterizes the relationship between the two spaces.

Given the training probe set Xp = (xp
1,x

p
2, ...,x

p
N ) ∈

R
d×N with each column representing a probe im-

age, and the corresponding learned weight set W
p =

(wp
1,w

p
2, ...,w

p
N ) ∈ R

3d×N , we denote Dx ∈ R
d×k,

Dw ∈ R
3d×k and M ∈ R

k×k to be the feature dictionary,

the weight dictionary, and the mapping matrix, respective-

ly. Here k indicates the dictionary size. Then the problem

of jointly optimizing the dictionaries and mapping function

can be formulated as follows.

min
{Dx,Dw,M}

Φ(Dx,Dw,M,Λx,Λw) (6)

with

Φ = Edata(Dx,X
p) + Edata(Dw,W

p)

+ Emap(M) + Ereg(Λx,Λw,M,Dx,Dw)
(7)

where Λx and Λw denote the coding coefficients.

Edata(·, ·) is the representation fidelity term indicating the

reconstruction error, Emap(·) is the mapping fidelity term

to represent the mapping error between the coding coeffi-

cients, Ereg is the regularization term to regularize the cod-

ing coefficients, mapping matrix and dictionaries.

Following the assumption that dictionaries are overcom-

plete, many previous methods [38, 15] impose ℓ1-norm reg-

ularization on coding coefficients to select a few atoms of

the learned dictionary to describe a sample. In person re-

identification, however, feature dimension is usually much

larger than the number of samples, and the sparse represen-

tation may be insufficient to capture the correlation structure

of data with large variations. Furthermore, it is not efficien-

t to solve the ℓ1-minimization problem for each instance.

To address these issues, we present the Least Square Semi-

Coupled Dictionary Learning (LSSCDL) algorithm with the

following form.

min{Dx,Dw,M} ‖ X
p −DxΛx ‖2F + ‖ W

p −DwΛw ‖2F

+λ‖ Λw −MΛx ‖2F +λΛ ‖ Λx ‖2F +λΛ ‖ Λw ‖2F

+λM ‖ M ‖2F +λD ‖ Dx ‖2F +λD ‖ Dw ‖2F
(8)

where ‖ · ‖F indicates the Frobenius norm, λ, λΛ, λD, and

λM are regularization parameters to balance the terms in the

objective function.

Note that (8) is a non-convex optimization problem with

all the matrices Dx, Dw, M, Λx, Λw, but it is convex with

respect to each of the variables when the others are fixed.

Therefore the optimization problem can be solved by con-

ducting the following steps iteratively until convergency.

1. Fix Dx, Dw, M, Λw, let ∂Φ
∂Λx

= 0 , we have

Λx =(D⊤

x Dx+λM
⊤
M+λΛI)

−1(D⊤

x X
p+λM

⊤
Λw)

(9)
2. Fix Dx, Dw, M, Λx, let ∂Φ

∂Λw

= 0 , we obtain

Λw =(D⊤

wDw + (λ+ λΛ)I)
−1(D⊤

wW
p + λMΛx) (10)

3. Fix Λx, Λw, M, let ∂Φ
∂Dx

= 0 and ∂Φ
∂Dw

= 0, we get

Dx = X
p
Λ

⊤
x (ΛxΛ

⊤
x + λDI)

−1 (11)

Dw=W
p
Λ

⊤
w(ΛwΛ

⊤
w+ λDI)

−1 (12)

4. Fix Dx, Dw, Λx, Λw, let ∂Φ
∂M

= 0, we have

M = ΛwΛ
⊤
x (ΛxΛ

⊤
x +

λM

λ
I)−1 (13)

The optimization algorithm for solving (8) is summa-

rized in Algorithm 1.

We can see from (8) that the learned dictionaries Dx and

Dw transfer the representations from two different spaces

into a common coding space, and the coding coefficients

of Xp and W
p can be related by the mapping matrix M.

Therefore, the weight vector for a new sample can be easily

inferred from its feature pattern with the learned dictionary

pair and mapping function.
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Algorithm 1: The Optimization of LSSCDL

Input: probe image matrix X
p, weight matrix W

p, pa-

rameters λ, λΛ, λD, and λM.

Output: feature dictionary Dx, weight dictionary Dw,

mapping matrix M.

Initialize: Dx, Dw, M, Λx and Λw .

Repeat:

1: Fix Dx, Dw, M, Λw, update Λx by (9).

2: Fix Dx, Dw, M, Λx, update Λw by (10)

3: Fix Λx, Λw, M, update Dx, Dw by (11) and (12).

4: Fix Dx, Dw, Λx, Λw, update M by (13).

Until: convergency.

3.3. Pedestrian Matching

Assuming that we have the test probe set and test gallery

set denoted as T p = {xp
t }

M
t=1 and T g = {xg

t′}
M ′

t′=1, where

t and t′ indicate the identity label, respectively. Given a

test probe image x
p
t , the corresponding weight vector w

p
t

can be derived with the learned dictionary pair Dw, Dx and

mapping matrix M.

We first compute the coding coefficients αx of x
p
t by

solving the following problem.

min{αx} ‖ x
p
t −Dxαx ‖2F +λΛ ‖ αx ‖2F

(14)

then the coding vector αw of w
p
t is derived by

αw = Mαx (15)

and the weight vector w
p
t of xp can be reconstructed by

w
p
t = Dwαw (16)

Finally, we compute the matching score of a test prob-

gallery image pair (xp
t ,x

g
t′) with (5).

4. Experimental Results

In this section, we show the performance of the pro-

posed person re-identification algorithm on the VIPER

datatset [10], the QMUL GRID dataset [26], the PRID

450S dataset [34], the CUHK01 dataset [42], the CUHK03

dataset [18] and the OpeRID dataset [21]. Comparison-

s of the Cumulative Matching Characteristic (CMC) [10]

results demonstrate that our approach performs favorably a-

gainst other state-of-the-art methods, especially on the rank-

1 recognition rate.

4.1. Feature Extraction and Parameter Settings

Feature Extraction For each image, we extract the LO-

MO descriptors to represent the human appearance. The

LOMO extractor has shown impressive robustness against

viewpoint changes and illumination variations by concate-

nating the maximal pattern of joint HSV histogram and

SILTP descriptor. Consider that the dimensionality of LO-

MO is extremely high, we employ [20] for dimensionality

reduction, which can greatly save the time and memory.

Parameter Settings There are 7 parameters in our ap-

proach, C+, C−, k, λ, λΛ, λM and λD. In our experiments,

we set C+=300, C−=0.1C+, k = N , λ=0.1, λΛ=0.01,

λM=0.01, λD=0.01 for all the databases. We find that our

experimental results are not sensitive to parameter changes,

and please refer to the supplementary material for more de-

tails.

4.2. VIPeR Dataset

The VIPER datatset [10] contains 632 pairs of pedestri-

an images captured from two different cameras in outdoor

academic environment, with only one image per person in

each view and all the images normalized to 128×48 pixels.

Suffering from significant viewpoint changes, pose varia-

tion, and illumination difference across cameras, it is one of

the most challenging database for person re-identification.

Following the experimental protocol of [20], we random-

ly divide all the pedestrian pairs into two equal parts, with

one part for training and the other for testing. These pro-

cedures are repeated for 10 trails and the average matching

rates are summarized in Table 1. We can see that the pro-

posed approach achieves comparable performance with oth-

er methods. Although the matching rates are a little inferior

to MirrorRep [4] and Semantic [35] , the proposed approach

achieves the second best rank-1 recognition rate of 42.66%.

Table 1. Comparison of state-of-the-art results on the VIPeR

dataset (P=316). The cumulative matching scores (%) at rank 1,

10, and 20 are listed.

Method rank=1 rank=10 rank =20

Ours 42.66 84.27 91.93

MirrorRep [4] 42.97 87.28 94.84

Semantic [35] 41.60 86.20 95.10

LOMO+XQDA [20] 40.00 80.51 91.08

IDLA [1] 34.81 75.63 84.49

PolyMap [2] 36.80 83.70 91.70

SLD2L [15] 16.86 58.06 79.00

ECM [24] 38.90 78.40 88.90

QALF [43] 30.17 62.44 73.81

QARR-RSVM [27] 22.53 62.20 75.82

SCNCD [40] 37.80 81.20 90.40

gBiCov [29] 31.11 70.71 82.45

Mid-level Filter [42] 29.11 65.95 79.87

MtMCML [30] 28.83 75.82 88.51

SSCDL [23] 25.60 68.10 83.60

LADF [19] 30.22 78.92 90.44

SalMatch [41] 30.16 65.54 79.15

KISSME [16] 19.60 62.20 77.00

PCCA [31] 19.27 64.91 80.28

PRDC [44] 15.66 53.86 70.09

SDALF [8] 19.87 49.37 65.73

RankSVM [33] 14.00 51.00 67.00

ELF [11] 12.00 44.00 61.00
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4.3. QMUL GRID Dataset

The QMUL GRID dataset [26] consists of person im-

ages recorded from 8 disjoint cameras installed in an un-

derground station. The probe set contains 250 pedestrians,

with each one having a matching image in the gallery set.

Besides, there are 775 additional images in the gallery set

that do not match any person in the probe set, which in-

creases the difficulty of seeking the optimal match for each

probe image. We normalize all the images to 128× 48 pix-

els, and adopt the experimental setting of 10 random trials

for this dataset. In each trial, we randomly select 125 image

pairs for training and use the remaining 125 pairs coupled

with 775 irrelevant images for testing.

Table 2 compares the matching rates of our approach

with previous methods. The comparison shows that the

proposed algorithm improves the rank-1 recognition rate

from 16.56% to 22.40% and produces about 10 percents

improvement on rank-10 and rank-20 matching rate, show-

ing significant advantage in person re-identification.

Table 2. Comparison of state-of-the-art results on the QMUL

GRID database (P=900). The cumulative matching scores (%) at

rank 1, 10, and 20 are listed.

Method rank=1 rank=10 rank =20

Ours 22.40 51.28 61.20

LOMO+XQDA [20] 16.56 41.84 52.40

PolyMap [2] 16.30 46.00 57.60

MtMCML [30] 14.08 45.84 59.84

LCRML [3] 10.68 35.04 46.48

MRank-PRDC [25] 11.12 35.76 46.56

MRank-RankSVM [25] 12.24 36.32 46.56

PRDC [44] 9.68 32.96 44.32

RankSVM [33] 10.24 33.28 43.68

4.4. PRID 450S Dataset

The PRID 450S dataset [34] includes 450 single-shot

pedestrian image pairs captured from two disjoint camer-

a views. It is also a challenging person re-identification

dataset due to the background interference, partial occlusion

and viewpoint changes. In our experiments, all the images

are normalized to the size of 128× 64 pixels. We randomly

select half of the dataset for training and the remaining for

testing, and repeat the procedures for 10 times to report the

average performance.

We also implement the LOMO+XQDA [20] algorithm

on the PRID 450S dataset under the same protocol, and the

results comparison are summarized in Table 3, from which

one can see that the proposed approach performs well a-

gainst the existing methods and achieves the second best

one of 60.49% on the rank-1 recognition rate, showing com-

petitive performance on this dataset.

Table 3. Comparison of state-of-the-art results on the PRID 450S

database (P=225). The cumulative matching scores (%) at rank 1,

10, and 20 are listed.

Method rank=1 rank=10 rank =20

Ours 60.49 88.58 93.60

LOMO+XQDA [20] 61.42 90.84 95.33

MirrorRep [4] 55.42 87.82 93.87

Semantic [35] 44.90 77.50 86.70

ECM [24] 41.90 76.90 84.90

SCNCD [40] 26.90 64.20 74.90

KISSME [16] 33.00 71.00 79.00

EIML [13] 35.00 68.00 77.00

ELF [11] 30.60 73.60 84.20

4.5. CUHK01 Dataset

The CUHK01 Dataset [42] is captured in a campus envi-

ronment with two camera views. It contains 971 individu-

als and each of them has two images in every camera view.

Taking the evaluation method in [42], we normalized all the

images to 160×60 pixels, and conduct the experiments over

10 random partitions for this dataset, where 485 persons are

randomly sampled for training and the rest are utilized for

testing.

Figure 2 (a) plots the CMC curves of our method and ex-

isting state-of-the-art algorithms. Our approach reports the

best rank-1 recognition rate of 65.97%, with an improve-

ment of 2.76% over LOMO+XQDA [20].

4.6. CUHK03 Dataset

The CUHK03 dataset [18] consists of 13,164 images of

1,360 pedestrians captured with six surveillance cameras.

Each individual is observed by two disjoint camera views,

and there are 4.8 images on average for each identity in each

view. Apart from the manually labeled pedestrian bounding

boxes, this database also provides the samples detected with

a pedestrian detector [9], which causes some misalignments

and body part missing for a more realistic setting.

Following the experimental settings in [18], we partition

the dataset into a training set of 1,160 and a test set of 100

persons. All the experiments are conducted with 20 random

splits and the average results are presented.

Figure 2 (b) plots the CMC curves of all the methods

on the CUHK03 dataset with the labeled bounding boxes.

we can see that proposed algorithm achieves comparable

results with XQDA [20], and IDLA [1] reports the best per-

formance from rank-2 to rank-30. The best rank-1 recogni-

tion rate reported to date is 54.74%, while we have achieved

57.00% with an improvement of 2.26%. Figure 2 (c) com-

pares the performance of our approach with other state-of-

the art methods using automatically detected bounding box-

es. Although the performance on detected CUHK03 is in-

ferior to labeled CUHK03 due to the misalignment and in-
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Figure 2. CMC curves and rank-1 identification rates on different datasets.

completeness caused by the detector, the proposed algorith-

m still shows great advantages over previous method, with

a rank-1 recognition rate of 51.20% compared with the sec-

ond best one of 46.25%.

4.7. OPeRID Dataset

The OpeRID dataset [21] contains 7,413 images of 200

persons collected from a real outdoor surveillance scenari-

o with a network setting of 6 cameras. Each of the person

has at least 2 associated camera views and a person may

have up to 5 camera views. Lighting changes, viewpoint

variations, low resolution and blur can be observed from

the images, which are segmented from a interactive label-

ing software [37]. According to the experimental settings

and evaluation protocols in [21], we scale all the images to

128 × 48 pixels, calculate the detection and identification

rates (DIR) and false accept rate (FAR) for evaluation. Al-

l the procedures are repeated for 10 trials, and the average

performance are reported.

Table 4 summarizes the DIR values at rank 1, 10 under

FAR=1% and FAR=10%. We can see that the proposed al-

gorithm is a little inferior to the rate of 3.99% and 4.35%
of RRDA [21] at FAR=1%, which achieves the best perfor-

mance of 15.08% and 18.17% at FAR=10%. The DIR val-

ues on open-set dataset are pretty low for all the methods,

and there are still much work to do for real applications.

Table 4. Comparison of Detection and identification rates (%) on

the OPeRID dataset. The DIR values at rank 1, 10 under FAR=1%

and FAR=10% are listed.

FAR=1% FAR=10%

rank=1 rank=10 rank =1 rank =10

Ours 3.15 3.76 15.08 18.17

RRDA [21] 3.99 4.35 14.51 16.72

LADF [19] 1.53 1.74 9.11 10.82

KISSME [16] 1.82 1.92 9.99 11.46

MAHAL [16] 1.89 1.99 10.50 11.97

ITML [6] 1.18 1.21 8.39 9.27

LMNN [39] 0.41 0.41 3.97 4.58

5. Comparative Experiments

To better understand the function of each part in the pro-

posed algorithm, we conducted further comparative experi-

ments in two aspects: sample-specific SVM vs fixed SVM,

feature map vs feature difference and LSSCDL vs SCDL.

The complexity analysis in terms of running time and con-

vergence performance are also presented in this section.

5.1. Sample­specific SVM vs Fixed SVM

We compare the results of our approach with the method

of learning a fixed SVM. Specifically, the second method

employs all matched and unmatched pairs as positive and

negative class respectively, and learns a common weight

vector for all pedestrians. Figure 3 (a) shows the rank-1

recognition rate comparisons of the two methods. From

the results one can easily confirm that learning specific

weight vector for each sample significantly outperforms the

method of learning fixed weight parameters, by improv-

ing the rank-1 accuracy from 34.64% to 42.66% on the

VIPER database, 16.24% to 22.40% on the GRID database,

52.58% to 60.49% on the PRID 450S database, and 57.34%
to 65.97% on the CUHK01 database. This comparison

demonstrates that by taking the appearance individuality in-

to consideration, the proposed algorithm can learn more op-

timal ranking function for each pedestrian.

5.2. Feature Map vs Feature Difference

To demonstrate the effectiveness of the proposed feature

map φ(xp
i ,x

g
j )=[(xp

i )
⊤, |xp

i −x
g
j |

⊤, (xg
j )

⊤]⊤, we compare

the experimental results with feature map φ(xp
i ,x

g
j ) and

feature difference φ′(xp
i ,x

g
j )= |xp

i −x
g
j |. From Figure 3 (b)

we can see that, the re-identification performance can be

obviously improved by the proposed feature map, especial-

ly with a great improvement of 9.71% on the CUHK01

dataset. This indicates that the proposed feature map is able

to learn more distinctive weight parameters by exploiting

both the difference information and natural characters of the

pairwise feature representation.
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Figure 3. Rank-1 recognition rate comparison of (a)Sample-specific SVM vs Fixed SVM; (b) Feature Map vs Feature Difference; (c)

LSSCDL vs SCDL.

5.3. LSSCDL vs SCDL

In our framework, the LSSCDL algorithm aims to cap-

ture the intrinsic relationship between feature space and

ranking function space. It can be seen as an improved

version of SCDL [38] in person re-identification tasks for

higher efficiency. The rank-1 recognition rate comparison-

s of the two dictionary learning strategies are shown in

Figure 3 (c), from which one can see that SCDL achieves

a rank-1 rate of 40.82% on VIPER, 20.88% on GRID,

56.58% on PRID 450S and 59.40% on CUHK01 dataset. In

contrast, the LSSCDL improves the performance by 1.84%,

1.52%, 3.91% and 6.57% on the four datasets, respectively.

The performance of SCDL on small datasets is a slightly

lower than LSSCDL, while the running time of SCDL is

about five times slower than LSSCDL, which will be dis-

cussed in the next section.

5.4. Complexity Analysis

We conduct the proposed approach with Matlab imple-

mentation on a desktop PC with Intel i7-4790K @4.00GHz

CPU and 32GB RAM, and report the running time of each

stage averaged over 10 random trials on the VIPER dataset.

The computation time of learning sample-specific SVM-

s for all training images is 4.52 seconds, and it should be

noted that learning a fixed weight vector costs 41.79 sec-

onds. This demonstrates that solving multiple small SVM

learning problems is actually more efficient than solving a

large scale classification problem. The optimization time of

LSSCDL is about 2.89 seconds, showing notable acceler-

ation compared to 11.88 seconds of the SCDL algorithm.

However, the testing time for one probe image is only 0.001

seconds, which indicates good applicability of the proposed

approach in real applications.

To investigate the convergence effect of the proposed

LSSCDL algorithm, we visualize the change of objective

function value during optimization on the VIPER dataset in

Figure 4. We initialize Dx, Dw, Λx, Λw to be random ma-

trices, and M to be the unit matrix in all experiments. From

the figure one can see that the objective function value de-

creases quickly at first and then reaches a minimal, which

demonstrates the feasibility of the proposed algorithm.
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Figure 4. Change of objective function value during LSSCDL op-

timization on the VIPER dataset.

6. Conclusion

In this paper, we propose a novel and effective method

for person re-identification. Motivated by the insight that

different matching functions should be designed for differ-

ent individuals, we formulate the person re-identification

problem into a binary classification problem and learn a

classifier specifically for each pedestrian. To capture the

intrinsic relationship between feature patterns and ranking

parameters, we propose an efficient LSSCDL algorithm to

learn a pair of dictionary and a mapping function simulta-

neously. Experimental results on five challenging person

re-identification datasets demonstrate the superiority of the

proposed algorithm over state-of-the-art methods. In the fu-

ture work, we will focus on applying the proposed algorith-

m to more matching applications.
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