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Abstract

Emotion is expressed in multiple modalities, yet most re-

search has considered at most one or two. This stems in

part from the lack of large, diverse, well-annotated, multi-

modal databases with which to develop and test algorithms.

We present a well-annotated, multimodal, multidimensional

spontaneous emotion corpus of 140 participants. Emotion

inductions were highly varied. Data were acquired from a

variety of sensors of the face that included high-resolution

3D dynamic imaging, high-resolution 2D video, and ther-

mal (infrared) sensing, and contact physiological sensors

that included electrical conductivity of the skin, respiration,

blood pressure, and heart rate. Facial expression was anno-

tated for both the occurrence and intensity of facial action

units from 2D video by experts in the Facial Action Cod-

ing System (FACS). The corpus further includes derived fea-

tures from 3D, 2D, and IR (infrared) sensors and baseline

results for facial expression and action unit detection. The

entire corpus will be made available to the research com-

munity.

1. Introduction

In the last 10 years, research on facial expression analy-

sis has shifted its focus from posed behavior to non-posed

(i.e., spontaneous) behavior [34, 2, 14, 17, 23]. This shift

has increased the difficulty of such analyses, but also their

ecological validity and practical utility. In the next 10 years,

a similar shift will occur from single modality to multi-

modal analyses, with increasing research integrating 2D

and 3D videos, temperature dynamics, and physiological

responses.

Researchers are already beginning to use 3D sensors and

models to improve facial feature tracking and expression

recognition [29, 34, 21, 25, 20, 33, 32]. However, because
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of the difficulty in collecting and labeling spontaneous be-

havior, these studies mainly focused on posed expressions.

Infrared imaging technology has also been employed for

facial expression analysis [30, 15] due to its sensitivity to

skin temperature and relative insensitivity to lighting con-

ditions and skin color. However, existing work mainly uti-

lized the temperature information as a single modality. Be-

cause the temperature distribution may not align well with

facial appearance, it is challenging to extract temperature-

based features for expression recognition.

Research has also shown the correlation of the physio-

logical state to the emotion state of individuals [18, 24]. A

number of databases have been developed successfully in

recent years [13, 23, 1]. The utility of the physiological sig-

nals needs to be further investigated.

Complex human behavior can only be fully-understood

by integrating physical features from multiple modali-

ties (e.g., facial expressions and physiological responses).

Many studies have theoretically and empirically demon-

strated the advantage of integrating multiple modalities in

human emotion perception relative to using a single modal-

ity [18, 24, 13, 23]. However, the emotion-related modali-

ties are typically studied separately.

To our knowledge, there is no database of emotional

behavior that combines following multiple emotion related

modalities: 2D and 3D face visual dynamics, skin tempera-

ture dynamics, and physiological responses.

Although there are several facial expression databases

that include 3D data (e.g., BU-3DFE [33], BU-4DFE [32],

Bosphorus [21], ITC-3DRFE [25], ETH-3DAV [9], and 3D

AU-DB [5]), they are all based on posed behavior and typ-

ically include few subjects, little diversity, limited ground

truth labels, and limited metadata.

Recently, a 3D spontaneous facial expression database

(BP4D) [35] with extensive labeling, metadata, and di-

versity was released to the research community. The 2D

videos of this dataset were included in the second Facial Ex-

pression Recognition and Analysis Challenge (FERA) [28].

However, this dataset only includes 41 subjects, which lim-
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its its statistic power and discriminative capacity for emo-

tion classification.

Another recent database [1] includes multimodal data on

body motion and electromyographic signals. However, this

data is limited to multiple views other than the range data

for study of chronic pain related emotions.

In short, as of yet, there is no corpus of sufficiently large

size and ethnic diversity that includes the following infor-

mation: 2D and 3D video of spontaneous facial behavior,

thermal imaging, physiological data, expert FACS labels

[8], and derivatives (e.g., features).

These findings motivated us to develop a multimodal 3D

dynamic spontaneous emotion corpus with metadata (i.e.,

labels and feature derivatives). In this paper, we present a

corpus that includes 140 subjects from various ethnic/racial

ancestries: Black, White, Asian (including East-Asian and

Middle-East-Asian), Hispanic/Latino, and others (e.g., Na-

tive American). The emotion-related modalities include fa-

cial expressions, thermal, 2D and 3D dynamics, and physi-

ological data.

Each subject experienced 10 tasks corresponding to 10

different emotion categories. The physiological data was

collected by a vital sign sensor (e.g., heart rate, blood pres-

sure, respiration rate, skin conductivity (EDA)). The skin

temperature was also collected by a thermal camera. To

elicit authentic and ecologically-valid emotional expres-

sions, we designed a protocol with four approaches inte-

grated seamlessly, including social interview, film watch-

ing, physical experience, and controlled activities. A 3D

dynamic imaging system is used to capture high-resolution

3D dynamic facial geometric data and video texture data.

Such high-definition 3D dynamic (aka 4D) facial represen-

tation allows us to examine the fine structural change as well

as the precise time course for spontaneous expressions. We

have also processed and analyzed the dataset to provide a

set of labels and feature derivatives in 2D/3D/IR in order to

facilitate the utility of the new corpus. FACS codes (partial

AUs) are annotated manually with respect to both their oc-

currence and intensity. The self-report and data validation

have also been reported in the database.

The contribution of this work is three-fold:

1. This is the first multimodal data corpus with a large

set of well-synchronized and aligned sensor modali-

ties including high-definition 3D geometric facial se-

quences, 2D facial videos, thermal videos, physiolog-

ical data sequences (heart rate, blood pressure, skin

conductance (EDA), respiration rate).

2. The data is significantly expanded in terms of num-

ber of subjects with diverse ethnic/racial ancestries as

compared to the existing databases. A procedure with

10 seamlessly-integrated tasks was applied by a pro-

fessional performer/interviewer, resulting in the effec-

tive elicitation of spontaneous emotions.

Ethnic/Racial Number Proportion

Latino/Hispanic 14 10.0%

White 64 45.7%

African American 15 10.7%

Asian 46 32.9%

Others 1 0.7%

Table 1: Ethnic distribution across 140 participants.

3. A large set of metadata was created, including feature

points from 2D videos, 3D videos, and thermal videos,

head pose, etc. FACS AUs were encoded in terms of

their occurrence and intensity. With 140 subjects in-

cluded in the database, there are over 10TB high qual-

ity data generated for the research community. The

data have been verified and validated through a num-

ber of applications, including expression classification,

AU detection, and thermal data classification.

The remainder of this paper gives details about the data

acquisition, organization, annotation, and validation.

2. Data Acquisition

2.1. Participants

140 subjects have been recruited to participate in data

collection at the Binghamton University. There are 58

males and 82 females, with ages ranging from 18 to 66

years old. Ethnic/Racial Ancestries include Black, White,

Asian (including East-Asian and Middle-East-Asian), His-

panic/Latino, and others (e.g., Native American). Table 1

shows the ethnic distribution. Following the IRB approved

protocol, the informed consent form was signed by each

subject before the start of data collection.

2.2. Recording System Setup and Synchronization

The data capture system (as shown in Figure 1a) includes

a 3D dynamic imaging system, a thermal signal sensor,

and a physiological signal sensor system. The 3D dynamic

imaging system (Di3D1) contains a 3D stereo imaging sen-

sor and a 2D video sensor. The thermal sensor is mounted

on the 3D dynamic imaging system with a tripod in a fixed

position (as shown in Figure 1b), and all these sensors are

positioned in the same distance to a subject. The physio-

logical signals are collected using the Biopac2 MP150 sys-

tem. It captures vital sign signals in a very high sample

rates, including blood pressure, respiration rate, heart rate

and electrodermal activity (EDA). Detailed configurations

are depicted in the following subsections. Note that the

system synchronization is critical for data collection from

various modality sensors. Due to each sensor has its own

1http://www.di4d.com
2http://www.biopac.com
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(a) System aerial view (b) Relative position of cameras

Figure 1: Recording system

machine to control, we developed a program to trigger the

recording from the start to the end across all three sensors

simultaneously. This is realized through the control of a

master machine by sending a trigger signal to three sensors

concurrently.

2.2.1 3D dynamic imaging system

The 3D face model sequences and their corresponding

2D texture image sequences are captured by the Di3D dy-

namic imaging system. Associated with two symmetric

lights, the system is composed of a 3D sensor with a pair

of stereo monochrome cameras aligned vertically and an

RGB 2D color camera placed in between the stereo cam-

eras. The 3D model of each frame is created by the dense

passive stereo photogrammetry method. Each facial model

contains about 30k – 50k vertices giving much detailed ge-

ometric information at RMS accuracy of 0.2 mm. And the

resolution of each 2D texture image is 1040 × 1392 pix-

els. Consider the trade off between emotion granularity and

computing complexity, we set the frame rate to 25fps. This

is also consistent to the video rate of the thermal sensor.

2.2.2 Thermal sensor

The thermal camera that we used is FLIR3 A655sc Long-

wave infrared camera. This camera captured thermal videos

in resolution of 640× 480 per frame with 25
◦ Lens and 17

micron pixels with temperature range of −40 and 150
◦C.

The frame rate is 50 fps with the full resolution of 640 ×
480. The spectral range is 7.5− 14.0µm. In order to better

synchronize all sensors in our system, we set the capture

rate of the thermal sensor to 25 fps.

2.2.3 Physiological signal sensing system

The physiological data were collected by Biopac MP150

data acquisition system. Its measurement capacity is in

the range [-25mmHg, 300mmHg] for blood pressure, [0,

200 breaths/minutes] for respiration rate, and [30, 300

beats/minute] for heart rate. The blood pressure signal

3http://www.flir.com/

(mmHg) is captured through noninvasive blood pressure

(Biopac NIBP100D) monitoring system containing two

units, finger unit and an inflatable cuff. The finger unit cap-

tures data from an index finger and a middle finger of a hand

and an inflatable cuff is placed on an arm for calibration.

Having the blood pressure signal with peak count, the pulse

rate (beat/minute), systolic blood pressure (mmHg), and di-

astolic blood pressure (mmHg) are derived. The respiration

signal (measured in voltage) is captured by a respiration belt

wearing around the chest. Given the peak count, it derives

the parameter - respiration rate (breaths/minute).

The electrodermal activity (EDA) (measured in micro

Siemens) is captured through two leads placed on a right

palm connecting a wrist watch. The EDA signal is the indi-

cation of arousal level with various skin conductivity.

In general, the system captures physiological signals in a

very high sample rate at 1000Hz. The resulting data include

heart rate, respiration rate, systolic blood pressure, diastolic

blood pressure, and electrodermal activity (EDA).

2.3. Emotion Elicitation

In order to evoke a range of authentic emotions in a labo-

ratory environment, we designed a protocol of ten tasks with

seamless transitions. Motivated by the work [35], a profes-

sional actor was hired to host the entire interview procedure

during data collection. Interviews with a skilled interviewer

can elicit a wide range of emotional expressions and inter-

personal behavior.

Four methods were employed in the protocol, which in-

clude interpersonal conversation, film clip watching, cold

pressor, and designed physical experiences. Ten activities

(tasks T1–T10 as shown in Table 2) were conducted with a

natural transition from positive emotions to negative emo-

tions. Between any two tasks, there was a brief pause for

self-report.

Data collection started with a social interview in which

the interviewer told a joke for a relaxed and amused atmo-

sphere. Then the subject’s 3D avatar was created on-site

and displayed to the subject for a surprising effect. A nega-

tive feeling was then elicited by showing the subject a video

clip of a 911 emergency call, followed by a sudden burst of

sound for a startled expression. After a pause, the inter-

viewer posed a question to induce a skeptical expression,

followed by an embarrassment induction by asking the sub-

ject to do a silly performance. Then a fearful feeling was

generated through a dart game experience, followed by a

physical discomfort experience by having the subject sub-

merge a hand into ice water. After that, the interviewer in-

duced an upset feeling in the subject by pretending to com-

plain about the subject’s poor performance on the ice water

task. Finally, an unpleasant odor was presented to the sub-

ject to induce a disgusted feeling.

Note that this emotion elicitation protocol has more tasks
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Task Activity Target Emotion

T1
Interview: Happiness

Listen to a funny joke Amusement

T2
Graphic show: Watch

Surprise
3D avatar of participant

T3
Video clip:

Sadness
911 emergency phone call

T4
Experience Startle

a sudden burst of sound Surprise

T5
Interview:

Skeptical
True or false question

T6 Improvise a silly song Embarrassment

T7
Experience physical Fear

threat in dart game Nervous

T8
Cold pressor: Submerge

Physical pain
hand into ice water

T9
Interview: Complained

Angry
for a poor performance

T10 Experience smelly odor Disgust

Table 2: Ten tasks for spontaneous emotion elicitation.

than the other reported methods. According to the com-

pound emotions theory [7], the surprised feeling could be

positive or negative. In our experiment, a fearful surprise

was triggered by a siren in T4 and a joyful surprise was in-

duced by seeing a self 3D face in T2. We treat them in two

different categories.

2.4. Self Report

As stated in Section 2.3, immediately after each task, ev-

ery participant was provided with a short period to report

the feeling that he/she had experienced.

A tablet was used to choose emotions and their intensi-

ties from a list of possible choices (e.g., relaxed, surprised,

sad, happy/amusement, skeptical, physical pain, disgusted,

embarrassed, nervous, scared/fear, angry/upset, frustrated,

and startled/shocked). 5-point Likert-type scales from “very

slightly” to “extremely” were used to rate the emotion inten-

sity. Participants were allowed to choose multiple emotion

categories as well as to input other emotion categories if

none of provided options fit their experience.

Among the data collected, we conducted statistical tests

on all ten tasks. The top three emotions voted by all par-

ticipants of each task are displayed in Figure 2. As seen in

Figure 2, the majority vote of each task fits well with the

emotion that the task was intended to elicit, which demon-

strates that the designed elicitation protocol was effective.

3. Database Organization

The new corpus is structured by participants. Each

participant is associated with 10 tasks including high-

resolution 3D model sequences, 2D RGB videos, thermal

Figure 2: Emotion distribution from self-report.

Figure 3: Database overall structure

videos, and sequences of physiological signals (i.e., respi-

ration rate, blood pressure, EDA, and heart rate). Figure 3

shows the overall structure of database. The average size of

each subject is about 100GB, resulting in over 10TB with

about 1.4 million frames in total. Figure 4 illustrates sam-

ple data sequences of four modalities from a subject.

In addition, the metadata are also generated, includ-

ing manually labeled action units (both occurrence and in-

tensity) on four tasks, automatically tracked head poses,

and 3D/2D/IR facial landmarks. Detailed annotations and

method will be described in the next section.

4. Data Annotation and Descriptive Statistics

4.1. FACS Coding

Expert FACS coders annotated facial action units dur-

ing four tasks (i.e., happiness/amusement, embarrassment,

fear/nervous, and physical pain) for all 140 subjects. There-

fore, we have 560 (i.e., 4× 140) data sessions coded.

4.1.1 AU occurrence

Segments of the most facially-expressive 20 seconds of

each task and a total of 34 facial action units were occur-

rence coded by five expert FACS coders. Coders annotated

onsets when the action units reached the B-level of inten-

sity (as defined by the FACS manual) and offsets when they
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Figure 4: Sample data sequences from a participant in-

cluding original 2D texture (first row), shaded model

(second row), textured model (third row), thermal image

(fourth row), physiology signal(fifth row: respiration rate,

blood pressure, EDA, heart rate) and corresponding action

units(last row).

Figure 5: Occurrence reliability with two kinds of metrics.

dropped below it. Table 3 shows the base rate for all 34

action units.

To assess inter-rater reliability, 94 sessions were ran-

domly selected for comparison coding. Two or more of the

five coders coded these videos. Across the action units with

base rates higher than 5%, the mean value (S) as seen from

Figure 5 was 0.79, ranging from 0.59 for AU 11 to 0.94

for AU 4. Among all chance-adjusted reliability indices,

the S index is robust to the most problems (e.g., skewed

base rates) and is especially suited to binary occurrence cod-

ing [37]. According to Altman’s benchmarks, these results

indicate very good reliability (>0.8) for 8 action units, good

reliability (>.6)for 5 action units, and moderate reliability

(>.4)for 1 action unit. For consistency with the past, results

are also presented in Figure 5 using the overall Matthew’s

Correlation Coefficient (MCC).

AU BR Events Frames AU BR Events Frames

1 10% 514 19083 20 15% 808 29197

2 8% 438 16145 22 2% 425 4160

4 6% 374 11419 23 17% 1614 32941

5 1% 59 1352 24 4% 331 7699

6 50% 774 98021 27 0% 6 179

7 66% 804 130693 28 2% 141 4631

9 4% 223 7046 29 0% 0 0

10 65% 848 127636 30 3% 189 5084

11 41% 833 80936 31 0% 22 544

12 58% 773 113704 32 0% 41 933

13 0% 14 329 33 0% 6 141

14 60% 1044 118533 34 0% 2 48

15 11% 865 21132 35 0% 0 0

16 33% 1828 64794 36 0% 0 0

17 13% 1216 25576 37 0% 7 66

18 0% 66 982 38 1% 163 2487

19 1% 104 1332 39 1% 77 1005

Table 3: AU occurrence for 140 subjects(BR = base rate).

Figure 6: Percentage of frames at each intensity level.

4.1.2 AU intensity

AUs 6, 10, 12, 14, and 17 were intensity coded for a sub-

set from the whole database. Coding was completed by two

expert coders. The distribution of intensity levels was sim-

ilar across action units, with B-level frames being the most

common, followed by C-level frames, D-level frames, A-

level frames, and E-level frames, in descending order. Al-

though occurrence coders delimited events at the B-level,

intensity coders annotated additional frames before and af-

ter each event. Many of these additional frames were A-

level frames.

Percentage of frames at each intensity level is illustrated

in Figure 6. Across the action units that were coded for

intensity, the mean inter-rater reliability (weighted S) was

0.76, ranging from 0.70 for AU 6 to 0.84 for AUs 10 and 12

(Table 4). Although many interval-level performance met-

rics (e.g., PCC, ICC, and MSE) have been used to calculate

the reliability of intensity coding, intensity codes are ordinal

in nature and require a categorical reliability metric. Here,

we apply ordinal weighting to the S index. According to

Altman’s benchmarks, these results indicate good reliabil-

ity for three AUs and very good reliability for two AUs.
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AU 06 10 12 14 17

Weighted S 0.7 0.84 0.84 0.71 0.71

Table 4: Intensity reliability across 5 action units.

Figure 7: Samples of feature points tracking on 3D models

(1st row: 83 feature points tracked by SI-SSM), 2D texture

sequences (2nd row: 49 feature points tracked by zface),

and thermal frames (3rd row: 28 feature points).

This analysis is based on redundant coding of 9 sessions by

both coders; the sessions selected differ between AUs.

4.2. Feature Point Tracking

4.2.1 3D feature tracking

To track feature points from the 3D geometric face sur-

face directly, we apply a so-called shape index-based sta-

tistical shape model (SI-SSM) [3] for such a task. Similar

to [3], 83 landmark points are defined on the face surface

including the eyes, nose, mouth, eyebrows, and face con-

tour. Utilizing the SI-SSM allows us to track a range of

dynamic expressions and model transformations (transla-

tion, rotation, etc.), by making use of both the global and

local shapes of the input face model. The global face shape

is constructed by a parameterized model SG from a set of

training data, each with 83 patches centered at 83 feature

landmarks. Similarly, the local face shape SL is repre-

sented by the shape index values of each patch. PCA is ap-

plied to both the global and local shape models to learn the

modes of variation from the training data. Both the global

and local feature vectors are then combined into one model

SGL = {SG, SL}, representing the face surface shape with

expression deformation more adaptively.

To detect and track features on 3D face models, the clas-

sic cross correlation template matching scheme is applied to

compute the correlation score between the each patch of the

SI-SSM and the input mesh model patches. We compared

the tracked features from the SI-SSM approach to manually

annotated ground truth resulting in a mean squared error of

2.5. Example tracked frames can be seen in Figure 7 (first

row).

4.2.2 2D feature tracking

Two-dimensional facial expression sequences were auto-

matically tracked using the zface software [12]. By apply-

ing cascade regression to person-independent 3D registra-

tion (inferred from the 2D video), zface tracked 49 facial

feature points with various head poses in each video frame.

Using this approach, facial feature points remain invariant

across head pose over a range of approximately 60 degrees.

Figure 7 (second row) shows several sample frames with

tracked points.

4.2.3 Thermal feature tracking

In order to make three modalities face data (3D, 2D, IR

(Infra-red)) easy to align each other, we have also tracked

the 28 facial landmarks from the thermal temperature data

directly.

Initially we pre-process the thermal temperature data to

increase their local contrast. Then the Constrained Local

Model (CLM) [6] is applied to sequentially perform in-

dependent facial landmark detection and global refinement

based on the face shape pattern constraint. In detection, we

first initialize the facial landmark locations using the mean

face shape based on the initialized thermal eye locations.

Then, we search for each facial landmark independently in

the local region with the Gabor wavelet, phase-based dis-

placement estimation method [38], and a pre-built offline

feature databases. Given the independent facial landmark

detection results, the face shape is refined with the Active

Shape Model [4]. In tracking, the facial landmarks are ini-

tialized as the locations in the last framework. For local

independent landmark searching, both the online template

from the last frame and the offline databases are combined

for better prediction. ASM is also applied to refine the in-

dependent detection results. We tested the thermal facial

landmark tracking approach on the thermal sequences of

the database, and calculated the landmark tracking error as

the distance between the tracked landmark locations and the

manually annotated ground truth landmark locations, which

is normalized by the inter-ocular distance. If we consider

the images with error less than 10% of the inter-ocular dis-

tance as successfully detected images, the detection rate is

91.57%. Figure 7 (third row) shows the tracking result on a

sample set of thermal images with different participants.

4.3. Head Pose

Head pose is an important cue for understanding emo-

tional expressions. It is tracked and included in the database

as one of the meta-data. Three orientations (yaw, roll and

pitch) are estimated through video sequences. Since the

head pose information can be derived directly from our

tracked 3D points on the 3D face model sequences, here we
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Figure 8: Head pose variations under different tasks.

focus on tracking the head pose from 2D videos. A cylin-

drical head tracker [11] is used to get head pose from 2D

videos. The tracker works person-independently, and has

concurrent validity with 2D+3D AAM [16] with magnetic

motion capture device [11].

We randomly select 60 subjects for the statistical anal-

ysis. As shown in Table 6a, over 90% of frames are less

than 10 degree with respect to the front view. To show the

head pose variations with different emotions, we compute

the standard derivations of all 60 subjects across 10 tasks. In

Figure 8, vertical axis stands for standard derivation of head

pose. Among all 10 tasks, tasks T6-T10 have clearly larger

pose variations in pitch than the other tasks. Except for T3-

T4, the pitch variation is more dramatic than roll and yaw.

Except for T2, the roll variation appears to be the small-

est among the three orientations, meaning that the rolling

head is not common nor comfortable for exhibiting emo-

tions. Having such a finding, pitch could be used for dis-

closing more clues on emotional status than the other head

orientations. The physical experience method in the pro-

cess of emotion elicitation could have more dramatic head

motions than the other emotion induction methods.

5. Experiments and Validation

5.1. 3D Dynamic Spontaneous Expression Analysis

To validate the usefulness of the data, we applied the

approach reported by Huang et al. [10] to adapt a generic

model to the model sequences. The hybrid approach us-

ing two vertex mapping algorithms, displacement mapping

and point-to-surface mapping, and a regional blending algo-

rithm are used to reconstruct the facial surface detail. The

adapted models have the same number of vertices across

the corresponding 3D video sequence. Thereby, the vertex

correspondence across the range model sequence is estab-

lished. The vertices on the adapted model can be tracked by

finding the displacement of tracked vertices of two neigh-

boring frames.

In order to make it comparable to the state of the art

[35, 26], we implemented the 3D dynamic facial expres-

sion descriptor based on primitive feature labels and HMM

classifier as described in [26]. 60 subjects were selected

for performance evaluation. Among ten tasks, six tasks

(T1, T3, T4, T7, T9, and T10, corresponding to six pro-

totype expressions) of each subject were used for classifi-

cation. A 10-fold cross validation procedure was applied

with 90% subjects for training and 10% subjects for testing.

The result shows that the average correct recognition rate is

74.8%. As comparison, the same approach was applied to

the BP4D database [35], resulting in a 73.7% recognition

rate for classifying spontaneous 3D dynamic expressions

(joy, anger, surprise, disgust, fear, and sadness) on average.

We have also applied the same approach to 3D dynamic

posed expressions using a public database BU-4DFE [32],

where 81.2% recognition rate was achieved for classifying

six posed expressions. Apparently, our new dataset has the

comparable quality to the BP4D database in terms of the

3D modality. The 3D dynamic spontaneous facial expres-

sions show much more variety and subtlety in appearance

and timing than the posed expressions. This still poses a big

challenge for analysis of naturally occurred facial behavior.

5.2. Facial Expression Analysis on Thermal Data

To validate the utility of the thermal data, we have also

conducted experiments on facial expression recognition us-

ing the thermal videos of randamly selected 60 subjects.

We applied the thermal video descriptor reported in [15]

for such a task. The face region of each thermal video clip

is warped to the frontal view based on scale-invariant fea-

ture transform(SIFT) flow, generating a corresponding SIFT

flow video clip. Then, the thermal video cuboids are seg-

mented from each thermal video clip based on max pooling

and motion video cuboids are segmented from each SIFT

flow video clip based on average pooling. Thermal video

words and motion video words are clustered by k-means

cluster. Finally, each video is represented by a histogram

of the bag of SIFT Flow and facial temperature changes

video words. The resulting histogram is used as a descriptor

for classification by the support vector machine(SVM). The

recognition accuracy is 91%.

For comparison, we have also applied a state-of-the-art

approach reported in [31] to test on our database. The

features derived from the temperature difference matrix on

forehead, left cheek and right cheek were used. The recog-

nition accuracy is 62%. We further compared the two meth-

ods on randomly selected 22 subjects from USTC-NVIE

database [30] and achieved recognition accuracy 71% and

59%, respectively, on classifying six prototype expressions.

5.3. Task Classification on Physiological Data

To validate the utility of the collected physiological data,

we conducted emotion recognition experiments based on

those data. In our experiments, we randomly selected 45

3444



subjects, and classify the 10 tasks (emotions) from the set

of features [18] extracted from the physiological signals, in-

cluding 8 features from EDA (i.e., mean and variance of

the normalized signal (Mn, Vn), mean and RMS of the 1st

derivative (Md, RMSd), average rising time and recover

time of SCRs, average of negative derivative, and their pro-

portion to all derivative values), and 7 features from blood

pressure signals (i.e., Mn, Vn, Md, RMSd, and pulse rate,

diastolic blood pressure, systolic blood pressure variance),

and 5 features from respiration signals (i.e., Mn, Vn, Md,

RMSd, and respiration rate variance).

In our first experiment we have selected five tasks (Tasks

1, 3, 4, 7, and 10) which target happiness, sadness, startle,

fear and disgust emotions. Using 10-fold cross validation

and RBF kernel SVM, the average accuracy of five-class

emotion recognition is 59.5%. Moreover, we mapped the

emotion classes into binary classes of low and high arousal

using the emotion semantic space described in [22]. Based

on the new classes, we used the same classifier and achieved

60.5% accuracy in classifying 10 tasks (emotions) from our

database.

5.4. AU Detection and Recognition

We performed experiments to detect and recognize

FACS Action Units based on 3D dynamic facial model se-

quences. We developed a log-normal (LN) based 4D poly-

nomial fitting approach for generating spatio-temporal fea-

tures [19]. Given the 3D dynamic model sequences, depth

information is extracted for each frame, and the neighbor-

hood around each spatio-temporal point is fit to a 4D poly-

nomial (using the best-fitting log-normal function to model

temporal behavior). The dynamic curvature values, the

static curvature values, and the shape index values are com-

puted from each feature, and histogram for each spatial re-

gion is formed from the corresponding features. More de-

tails of the algorithm (the LN-based 4D feature approach)

can be found in [19].

Action units are tested for individually in subsequences

(31 frames long) extracted from the full video sequences.

Positive samples are subsequences that contain a single

AU preceded and followed by the absence of that partic-

ular AU. For classification, the Leave-One-Subject-Out ap-

proach was employed using SVM. Subsequences for 7 AUs

were extracted, which resulted in 213 sample subsequences

extracted from a subset of the database. The method au-

tomatically finds the “best” 7-frame window in a 31-frame

subsequence (referred to LN(31)). We also list the results

from using only the 7-frame windows containing the AUs

on both our approach (referred to as LN(7)) and LBP-TOP

[36] (referred to as LBP(7)). The results are presented in

Table 5. We also performed a cross-database test by train-

ing on data extracted from the BP4D-Spontaneous database

[35] and testing on the new data. AUs 1, 2, 6, 16, and 17

AUC F1

AU LBP(7) LN(7) LN(31) LBP(7) LN(7) LN(31)

1 .926 .868 .860 .817 .817 .725

2 1.000 1.000 1.000 .750 .873 .733

6 1.000 1.000 .920 .899 1.000 .899

8 .944 1.000 .972 .916 .829 .916

14 .838 .949 .865 .802 .918 .849

16 .952 .824 .927 .853 .790 .852

17 .891 .828 .701 .786 .786 .666

WA .895 .904 .857 .818 .859 .803

Table 5: AU Depth Data Results (WA = Weighted Average

based on AU sequence counts)

Angle Pitch Yaw Roll

< 5
◦ 72.8 64.5 82.6

< 10
◦ 92.7 92.2 97.6

< 15
◦ 98.7 98.1 99.6

< 20
◦ 99.5 99.6 99.9

(a) Proportion of frames with

certain range of rotation angles

AU Acc. AUC F1

1 .818 .876 .817

2 .875 .938 .873

6 .900 .920 .899

16 .765 .875 .765

17 .714 .780 .714

WA .776 .850 .776

(b) AU Depth Cross-Database

Results

Table 6: Statistics of head pose and AU recognition

were tested. The results can be seen in Table 6b. These ex-

periments again used the 31-frame subsequences with the

LN(31) approach.

6. Conclusion and Future Work

In this paper, we have presented a new multimodal spon-

taneous emotion database (MMSE) for the research com-

munity in order to facilitate the research of the field. We

have employed the state-of-the-art algorithms to label and

validate the data. Partial data have also been used success-

fully for application of video-based heart rate estimation

[27]. However, our current work has certain limitations,

which give rise to our future work as follows: (1) we will

expand the database from several aspects, including more

subjects, AUs, and intensity coding; (2) we will also extract

the physiological features and study the cross-correlation of

multimodal data and their fusion schemes. As a result, the

database will be sustained and updated progressively by in-

cluding all the derivatives for the research community.

Acknowledgement

This material is based upon the work supported in part

by the National Science Foundation under grants CNS-

1205664 and CNS-1205195. We would like to thank Nicki

Siverling for technical assistance. We would also like to

thank Dr. Peter Gerhardstein for his help in data collection.

3445



References

[1] M. S. Aung, S. Kaltwang, B. Romera-Paredes, M. Pantic,

et al. The automatic detection of chronic pain-related ex-

pression: requirements, challenges and a multimodal dataset.

IEEE Trans. on Affective Computing, 2015. 1, 2

[2] M. S. Bartlett, G. C. Littlewort, et al. Automatic recogni-

tion of facial actions in spontaneous expressions. Journal of

multimedia, 1(6):22–35, 2006. 1

[3] S. Canavan, L. Yin, et al. Landmark localization on 3d/4d

range data using a shape index-based statistical shape model

with global and local constraints. Computer Vision and Im-

age Understanding (CVIU), 139:136–148, 2015. 6

[4] T. F. Cootes, C. J. Taylor, et al. Active shape mod-

els&mdash;their training and application. CVIU, 1995. 6

[5] D. Cosker, E. Krumhuber, and A. Hilton. A facs valid 3d dy-

namic action unit database with applications to 3d dynamic

morphable facial modeling. In ICCV, 2011. 1

[6] D. Cristinacce and T. Cootes. Automatic feature localisa-

tion with constrained local models. Pattern Recognition,

41(10):3054 – 3067, 2008. 6

[7] S. Du, Y. Tao, and A. Martinez. Compound facial expres-

sions of emotion. Proc. of the NAS, 111(15), 2014. 4

[8] P. Ekman and W. V. Friesen. Manual for the facial action

coding system. Consulting Psychologists Press, 1978. 2

[9] G. Fanelli, J. Gall, H. Romsdorfer, T. Weise, and

L. Van Gool. A 3-d audio-visual corpus of affective com-

munication. IEEE Trans. on Multimedia, 2010. 1

[10] Y. Huang, X. Zhang, L. Yin, et al. Reshaping 3d facial scans

for facial appearance modeling and 3d facial expression anal-

ysis. Image and Vision Computing, 30(10), 2012. 7

[11] J. S. Jang and T. Kanade. Robust 3d head tracking by online

feature registration. In IEEE International Conference on

Automatic Face and Gesture Recognition (FG), 2008. 7

[12] L. A. Jeni, J. F. Cohn, and T. Kanade. Dense 3d face align-

ment from 2d videos in real-time. In IEEE International

Conference on Automatic Face and Gesture Recognition,

2015. 6
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