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Abstract

In this paper, we propose an RGB-D camera localization

approach which takes an effective geometry constraint, i.e.

silhouette consistency, into consideration. Unlike existing

approaches which usually assume the silhouettes are pro-

vided, we consider more practical scenarios and generate

the silhouettes for multiple views on the fly. To obtain a set

of accurate silhouettes, precise camera poses are required

to propagate segmentation cues across views. To perform

better localization, accurate silhouettes are needed to con-

strain camera poses. Therefore the two problems are inter-

twined with each other and require a joint treatment. Fa-

cilitated by the available depth, we introduce a simple but

effective silhouette consistency energy term that binds tradi-

tional appearance-based multiview segmentation cost and

RGB-D frame-to-frame matching cost together. Optimiza-

tion of the problem w.r.t. binary segmentation masks and

camera poses naturally fits in the graph cut minimization

framework and the Gauss-Newton non-linear least-squares

method respectively. Experiments show that the proposed

approach achieves state-of-the-arts performance on both

tasks of image segmentation and camera localization.

1. Introduction

Object scanning in 3D is an important topic in com-

puter vision with many applications. With the popularity

of consumer-level depth cameras, even untrained users are

able to scan objects at home. However, obtaining accurate

camera poses is a major challenge for existing scanning sys-

tems. Typical RGB-D camera tracking systems leverage

on either frame-to-frame matching [14] or frame-to-model

matching [19] to localize cameras. In both cases drift is

a common problem. For frame-to model tracking system

such as KinectFusion [19] where online depth images are

constantly integrated into a truncated signed distance func-

tion (TSDF) based volumetric representation [6], even small
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errors of camera poses will make the TSDF model blurry

and consequently fine details are lost.

Loop closure detection and pose graph optimization are

effective tools to address the above problem. Additional

features, such as colors [14], local features [23], and oc-

cluding contours [28] have been considered in literature.

However, another important type of constraints, i.e. geo-

metric constraints, is overlooked by these approaches. Ex-

amples of the geometric constraints include epipolar tan-

gency criterion [26] and silhouette consistency [12], which

has been proved to be very helpful in camera calibration. In

this work, we propose a method to incorporate geometric

constraints in camera localization. Specifically, we jointly

optimize the set of silhouettes and the camera poses, requir-

ing that the silhouettes and the camera poses are consistent.

Existing related approaches [12, 2, 26] usually assume

that a set of accurate silhouettes are provided. However

in practice segmenting object in all viewpoints requires te-

dious user interactions. On the other hand, automatic mul-

tiview segmentation methods may fail in general cases, or

the outputted silhouettes are not accurate enough to provide

useful constraints for localization. To cope with this issue,

our proposed method jointly perform a silhouette-consistent

multiview segmentation on the fly while optimizing camera

localization.

In multiview segmentation, accurate camera poses are

required to propagate segmentation cues across views. In

localization, accurate and silhouettes are needed to provide

useful constraints to camera poses. Therefore the two prob-

lems are intertwined with each other and a joint treatment

is preferred. Although both multiview segmentation and

RGB-D camera localization have been intensively studied

in literature, few approaches have modeled the two prob-

lems jointly.

To this aim, we describe an RGB-D object scanning

pipeline consisting of two steps, i.e. an online keyframe

collecting step and an offline joint optimization step. At

the online step, a user walks around an object with a depth

camera in hand. Meanwhile a realtime tracker, e.g. Kinect-

Fusion [19], evenly captures a set of keyframes covering the

object. At the offline step, the proposed approach is adopted
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Figure 1. System Overview

to jointly estimate the segmentation masks and the poses of

keyframes. For simplicity and without loss of generality,

we assumed the color and depth frames are already aligned.

Fig. 1 provides an overview of the system.

To model the two problem jointly, we introduce a novel

silhouette consistency term to constrain both the segmen-

tation masks and the camera poses. The silhouette consis-

tency term has following merits:

1. It effectively penalizes inconsistent labeling between

views, facilitated by the available depth.

2. It is sub-modular, enabling an efficient optimization.

Due to the silhouette consistency term, the joint seg-

mentation and localization problem can be decoupled into

two sub-problems and efficiently solved using off-the-shelf

approaches, i.e. color model-based segmentation methods

[20, 7, 8] and graph-based RGB-D SLAM model [14]. Op-

timization is iterated between estimating the binary fore-

ground and backgorund labeling, whose objective is sub-

modular and naturally fits in the graph cut framework

[3, 20], and refining the camera poses, which naturally fits

in the Gauss-Newton non-linear least-squares method.

2. Related Work

2.1. Multiview segmentation

Object segmentation from images has been studied in-

tensively in literature and has been extended from monoc-

ular case [3, 20, 13, 7] to object co-segmentation [24, 25]

and to multiview configuration [17, 8, 9]. Existing multi-

view segmentation methods can be broadly classified in two

streams. The first stream focuses on a volumetric 3D recon-

struction of the object, and then computes the segmentation

as a byproduct by reprojecting the 3D model back to each

view [15, 11, 22, 4]. These approaches suffer from the vol-

ume size limit and are not pixel-accurate for high-resolution

inputs. The second stream works on image domain. Some

solve a binary MRF for each view using the unary term to

carry information propagated by other views [17, 9]. Some

optimize an MRF containing all views and randomly gen-

erated 3D samples [8]. Our approach falls into this stream,

and solves an MRF simultaneously for all views. But un-

like existing methods, we explicitly model silhouette con-

sistency w.r.t. camera poses.

2.2. Camera localization

RGB-D SLAM is also an intensively studied problem,

in which typical systems usually consist of two steps, i.e.

online tracking and offline optimization. For online track-

ing, many approaches have been developed, e.g. frame-

to-model matching [19] and frame-to-frame matching [14].

Beyond depth, additional features such as colors [14], local

features [23], undistorted depth [27] and contour informa-

tion [28], have been explored. The work of Zhou et al. [28]

is the most related one to ours, which explicitly takes con-

tour information into consideration when matching a frame

to a model in the KinectFusion [19] framework. However,

this work is an online tracking method which does not con-

sider all frames globally as in an offline optimization pro-

cess. A major problem of online tracking is pose drift. Loop

closure detection and pose graph optimization are effective

tools to address the problem in an offline optimization pro-

cess [14, 27, 18]. Our approach is a kind of offline optimiza-

tion method. Different from existing techniques, we exploit

another type of constraint, i.e. silhouette consistency, and

enforce it in a new way by a proposed silhouette consis-

tency energy term facilitated by the available depth.
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3. Formulation

Figure 1 shows the pipeline of the proposed approach

which consists of an online data capture component and an

offline optimization component. The offline optimization

component consists of two modules, i.e. multiview seg-

mentation and RGB-D image alignment. We first present

the two modules independently, and then introduce a new

silhouette consistency term which enables a joint optimiza-

tion between them.

3.1. Notation

The input is a multiview sequence of keyframes con-

taining N RGB-D images {Ii}
N
i=1, {Di}

N
i=1, and initial

poses {Ti}
N
i=1, which are usually obtained by a continuous

tracker, e.g. KinectFusion [19]. The variables we want to

optimize are

• {Si}
N
i=1, the set of binary-valued silhouettes, where

Si(p) = 1 denotes p is a foreground pixel, and Si(p) =
0 denotes background;

• {θfgd
i }Ni=1, {θbgd

i }Ni=1, the set of foreground and back-

ground color models;

• {Ti}
N
i=1, the set of camera poses that map local coor-

dinates to world coordinates.

For convenience we denote them collectively as S,θ,T re-

spectively. In the following, we will use i, j to index im-

ages, and p, q to index pixels.

3.2. Multiview Segmentation w.r.t. S,θ

As a common objective in object segmentation, we want

the binary labeling to agree with the foreground/background

color models [20], which is enforced by the appearance en-

ergy

EAppearence(S,θ) =
∑

i

∑

p∈Ωi

−Prob(Ii(p) | Si(p), θ
bgd
i , θfgd

i )

(1)

where Ωi denotes the set of pixels in the i-th image, and

Prob(Ii(p) | Si(p), θ
bgd
i , θfgd

i ) denotes the probability that

color Ii(p) belongs to the foreground color model θfgd
i if

Si(p) = 1, or the probability that Ii(p) belongs to θbgd
i if

Si(p) = 0. For each view, we train a Gaussian Mixture

Model (GMM) for foreground and background respectively.

Each GMM has five components in all experiments. Our ex-

periments showed that in most indoor environment where

RGB-D images are usually captured, the number compo-

nents are good enough to model the color distributions.

The color models are efficiently learned from the initial

set of silhouettes, which is obtained by projecting the visual

hull induced by all image rectangles back to 2D. A user can

additionally place a bounding box or draw scribbles to fur-

ther constrain the problem. It is noted that the user only

need to provide guidance in a few views, since our silhou-

ette consistency term introduced in section 3.4 is able to

effectively propagate these information across views. Dur-

ing the segmentation process, more guidance can be given

in each iteration if the user is not satisfied with the results.

We also encourage the labeling to be smooth and aligned

with image edges

ESmooth(S) =
∑

i

∑

p,q∈N4

wpq||Si(p)− Si(q)||
2 (2)

where N4 denotes a 4-neighborhood on image grid, wpq =
exp(−||Ii(p) − Ii(q)||/γ1 − ||Di(p) − Di(q)||/γ2) is a

weight to encourage discontinuity on edges. For pixels

without depth, wpq only considers color.

3.3. RGBD Image Alignment w.r.t. T

We adopt the frame-to-frame matching approach pro-

posed by Kerl et al. [14] to model both color and depth

alignment error

EColorAlign(T) =
∑

i

∑

p∈Ω̃i

∑

j∈Ni

||Ii(p)− Ij(q)||
2 (3)

EDepthAlign(T) =
∑

i

∑

p∈Ω̃i

∑

j∈Ni

||Di(p)−Dj(q)||
2 (4)

where Ω̃i is the set of pixels with valid depths, Ni is the

set of neighboring cameras of the i-th keyframe in a pose

graph, and

q = πj(T
−1
j Tiπ

−1
i (p,Di(p))) (5)

is pixel p’s correspondence in image j, with πj , π
−1
i being

the corresponding projection and inverse-projection respec-

tively. Note that the poses T are parametrized in se(3) dur-

ing optimization [1].

Before the global optimization, we need to construct

a graph of keyframes, in which an edge connecting two

keyframes means that the two frames view a large overlap

of the common surface. Due to the trajectory drift problem,

we need to carefully establish graph edges containing nec-

essary loop-closures. Specifically, for each keyframe we

collect candidates of neighbor frames by checking the an-

gles of principal axis and distances of camera positions. If

the two cameras meet a condition (e.g. angle ≤ 60◦ and

distance ≤ 0.5m), we further validate it by doing a dense

alignment, i.e. minimizing Eq. (3) and (4) over a two-

node graph. After the alignment, we count the number of

matched pixels (e.g. difference of depths ≤ 0.5cm and an-

gle of normals ≤ 15◦). And if the ratio of matched pixels to

total pixels with valid depth is above a threshold (e.g. 0.6),

we establish an edge to connect them in the pose graph.
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Figure 2. Silhouette consistency term constrains both near and far views. A pixel inside the silhouette of a back view is projected to a near

(side) view and a far (front) view via depth and camera poses. The left figure shows a consistent case, while the right figure shows an

inconsistent case which introduces a cost λsil.

Since in object scanning, images are usually captured in

an outside-in mode, the trajectory of cameras is not as com-

plex as in large-scale scene modeling [14, 27], and seldom

drifts significantly. The loop-closure detection in object

scanning is less challenge than in large-scale scene mod-

eling. The above simple strategy successfully detected nec-

essary loop-closures in all our experiments.

3.4. Silhouette Consistency w.r.t. S,T

So far camera localization and multiview segmentation

are modeled independently, but as we have argued a joint

treatment would benefit them from each other. To this aim,

we introduce the following silhouette consistency term

ESilConsistency(S,T) =
∑

i

∑

p∈Ω̃i

∑

j 6=i

Si(p)·||Si(p)−Sj(q)||
2

(6)

Eq. (6) looks very similar to Eq. (3) and (4). Readers may

understand as that a silhouette is only an additional channel

beyond depth and color, which supplement object contour

information to the optimization. However, it is significantly

different from color and depth channels due to the following

properties.

First, the silhouette consistency depends on both the seg-

mentation S and the poses T, therefore it connects and reg-

ularize both S and T; Second, the subscript j in (6) ranges

over all images instead of only the neighboring views as in

(3)(4). This property is crucial and helps to prevent incre-

mental pose drift during optimization. As shown in Fig. 2,

even a back view of the object provides constraints (for both

segmentation and localization) and hints (for segmentation)

to a front view; Third, the penalty on a pixel p is active only

when Si(p) = 1, i.e. when p is a foreground pixel. This

is coherent with the mathematical definition of silhouette

consistency, i.e. any 3D point that lies on the object’s sur-

face must project inside all other silhouettes in 2D, while a

3D point that lies outside the surface could project to either

inside or outside of other silhouettes.

3.5. Overall Energy

Putting all the pieces together, we obtain the overall ob-

jective function

EAll(S,θ,T) = EAppearence(S,θ) + ESmooth(S) (7)

+ EDepthAlign(T) + EColorAlign(T)

+ ESilConsitency(S,T)

Without the silhouette consistency term (6), segmentation

and localization would have become two independent prob-

lems as the binary masks and the camera poses would have

nothing to interact on. The silhouette consistency term en-

ables a joint formulation of the two problems, which pro-

vides constraints and hints for both tasks.

4. Optimization

The objective function depends on both discrete and con-

tinuous sets of variables, whose minimization is challeng-

ing. Luckily the overall objective can be decomposed into

two subproblems, namely segmentation and localization

ESegmentation = EAppearance + w1ESmooth + λSilESilConsistency

(8)

ELocalization = EDepthAlign + w2EColorAlign + λSilESilConsistency

(9)

which can be optimized using off-the-shelf methods, i.e.

Graph Cut [16] and Gauss-Newton non-linear least-squares

method [10]. Minimization of the original problem is then

reduced to solving the two subproblems iteratively. Alg. 1

provides an overview of the optimization. We set the coef-

ficients w1 = 50, w2 = 0.1, and λSil = 0.1 in all experi-

ments.
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Figure 3. (Left) Segmentation Graph of our approach, labeling of all views are solved simultaneously. (Right) Segmentation graph of

[20, 17, 9]. A single graph cut is run independently for each image. Possible multiview segmentation cues are preprocessed and encoded

in unary terms.

Algorithm 1 Optimize EAll

Initialize S,θ by any monocular segmentation method.

Initialize T by minimizing EDepthAlign + EColorAlign using

non-linear least squares [10].

repeat

repeat

Fix T, S, minθ ESegmentation by GMM EM learning.

Fix T, θ, minS ESegmentation by Graph Cut [16].

until converged

Fix S,θ, minT ELocalization by non-linear least squares.

until converged

4.1. Optimize Segmentation

We optimize the segmentation subproblem in a block

gradient descent fashion, as shown in Alg. 1. When keep-

ing the foreground masks S fixed, the parameters of each

image’s GMM color model can be re-estimated by EM al-

gorithm.

When optimizing ESegmentation w.r.t. segmentation masks

S, it becomes a discrete optimization problem. Both

EAppearance and ESmooth are widely used submodular ener-

gies. And it is easy to check that the ESilConsistency is also

submodular

ESilConsistency(0, 1) + ESilConsistency(0, 1) = 1 (10)

> ESilConsistency(0, 0) + ESilConsistency(1, 1) = 0 (11)

Therefore the subproblem can be efficiently solved by graph

cut [16].

Fig. 3 compares the segmentation graph of our approach

to some of the existing approaches [20, 17, 9]. Our sil-

houette consistency term acts as a kind of smoothness con-

straints to regularize labeling across images. In contrast

to [20, 17, 9], our approach segments all images simulta-

neously by one graph cut. Labeling cues in one view are

effectively propagated to all other views via known depth

and camera poses. Hard-to-segment regions in one view,

e.g. regions close to silhouette boundaries where depth usu-

ally misses, will get hints from other views, in which corre-

sponding regions may have depth and be easy to segment.

4.2. Optimize Localization

With S,θ fixed, the localization subobjective ELocalization

is the sum of all quadratic terms with T and therefore

can be effectively solved by the Gauss-Newton non-linear

least-squares method. Specifically, we parameterize Ti by

a 6-vector ξi = (ai, bi, ci, αi, βi, γi) that represents an in-

cremental transformation relative to the current Ti. Here

(ai, bi, ci) is a translation vector, and (αi, βi, γi) can be in-

terpreted as angular velocity. Stacking all ξi together, we

get a 6N -dimensional variable ξ. To solve each iteration

we calculate the linearized least-squares solution

argmin
ξ

‖Jξ + r‖2
2

(12)

where J is the Jacobian and r is the residual vector. Both J

and r are linear combinations of three terms computed from

term (3), (4) and (6). Solving the linear equation yields an

improved camera transformation

T k+1
i = exp(ξ̂i)T

k
i (13)

Details of derivation on the Jacobian are provided in the

supplementary material.

To prevent poses from trapping in bad local minimal

and to improve optimization speed, we adopt a three level

coarse-to-fine pyramid scheme. Blocks of the combined

measurement Jacobian Ji and residual ri can be computed

in GPU, and reduce to a single 6N × 6N linear equation.

Then we solve it on CPU by the Cholesky decomposition.

5. Experiment

To evaluate the proposed approach, we collected ten

RGB-D datasets with the ASUS Xtion sensor. Fig. 4

shows some sample color frames. The KinFu tracker [19]

is used to continuously track the online stream, and a new

keyframe is saved when its relative rotation or translation
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to the last keyframe is larger than 10◦ or 10cm. Each se-

quences consists of about 60 keyframes of 640× 480 depth

and color images, with their corresponding initial poses.

The proposed approach takes about 200s to run on a reg-

ular PC and outputs refined camera poses, silhouettes, and

a high-quality 3D mesh model. All keyframes are manu-

ally segmented to generating ground truth silhouettes. We

set γ1 = 30 and γ2 = 30. Results are not very sensitive

to these two parameters. To balance any two energy terms

λ1E1 + λ2E2 = λ1

∑
k e

k
1 + λ2

∑
k e

k
2 in Eq. (8) and (9),

we determine the medians emed
1 , emed

2 of {ek1}, {ek2} respec-

tively, and set λ1/λ2 = emed
2 /emed

1 . This strategy works well

in practice.

5.1. Segmentation

An important feature of our object scanning system is it

is able to generate a set of silhouettes on the fly. Given the

keyframes as input, initial silhouettes are generated by pro-

jecting the commonly visible part of 3D space back to each

image, which is the intersection of all viewing cones in-

duced by the image rectangles. Here, we assume the object

completely appears in all views. Although our system en-

ables a user to provide bounding boxes or scribbles to guide

the segmentation, we did not make use of the user input in

experiments. The GMM color models are initialized from

these initial masks.

Tbl. 1, provides a quantitative evaluation of the seg-

mentation results among Grabcut [20], Djelouah’13 [8],

Diebold’15 [7] and ours. Accuracy is measured by the

percentage of mislabled pixels compared to hand-labeled

ground truths. Grabcut performs inferior compared to all

methods since multiview geometric cues are not explored.

In some cases, masks in Djelouah’13 appear to be inflating

since the 3D consistency enforced by its sparse 3D sam-

ples does not penalize background pixels being labeling

foreground. To achieve accurate results, Diebold’15 needs

about 5.3 scribbles for each image in average since it can-

not leverage on results/guidance of other views. Our results

outperform the others, since the silhouette consistent term

makes substantial use of the available depth and enforce the

consistency among multiple views explicitly.

5.2. Localization

Directly evaluating the accuracy of camera poses is a

challenging task since ground truth poses are difficult to ob-

tain in general. Instead, we evaluate poses by two indirect

measures, i.e. the calibration ratio [2] and accuracy of the

reconstructed 3D model. Calibration ratio is based on the

observation that given a set of perfect silhouettes and per-

fect camera poses, the viewing ray of every foreground pixel

should intersect with the silhouette-induced viewing cones

of all the other views in a common intersection. And the

ratio for image i is defined as

Ci =
1

|Mi| (N − 1)

∑

p∈Mi

Φ(rp) (14)

where Mi is the set of foreground pixels of image i, N
is the number of cameras. rp is the induced viewing ray

of pixel p, and Φ(rp) is the maximum number of cameras

whose viewing cones induced by their own silhouettes have

at least one common interval along rp. Therefore, if both

camera poses and silhouettes are perfect, calibration ratio

is equal to one, otherwise, it will be less than one. Since

camera poses and silhouettes are the only two reasons that

affect the calibration ratio, if we fix the silhouettes to be the

manually labeled ground truth, calibration ratio is a good

measure of the accuracies of camera poses.

Tbl. 2 shows the averaged calibration ratios over all

cameras in each iteration. The Calibration ratios steadily

increase along iteration, which indicates that the poses are

becoming more and more accurate. Calibration ratios con-

verges after four iterations in almost all cases we tested.

Fig. 7 provides a visual comparison of the reconstructed

models. Without the silhouette consistent energy, our ap-

proach reduce to the RGB-D alignment approach presented

in Section 3.3, which is itself a typical offline optimization

method for improving camera poses [14]. There for we use

it as a baseline. As shown in the figure, models generated

by our joint optimization preserve more fine details, such

as the keyboard on the belly of Tomcat. Beyond the usage

in calibration, silhouettes can help depth integration [5] and

mesh optimization [21] to preserve fine structures. Further

discussion on this direction is beyond scope of this work.

We scanned the Tomcat and MusicBox by a commercial

high-quality 3D scanner1 whose precision is about 1mm

in general. Fig. 6 shows model errors of Kinfu, RGB-D

alignment only and the joint optimization. As shown in the

figure, our model obtains significantly lower errors. Since

Kinfu has no offline optimization, drift of camera poses sig-

nificant hurts model qualities.

6. Conclusion

We have presented an RGB-D camera localization ap-

proach that effectively exploits the silhouette constraints.

Unlike existing silhouette-based calibration approaches

which usually assume accurate silhouettes are provided, our

system is able to generate object silhouettes on the fly dur-

ing optimization, making its usage very practical. Exper-

iments demonstrated large improvements on both tasks of

object segmentation and camera localization.

1Artec3D, http://www.artec3d.com
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Figure 4. Sample keyframes of our collected datasets.

Tomcat Musicbox Donkey Dragon Chair Horse Plant Gundam Bag Bag2

GrabCut [20] 5.31 4.78 5.63 4.24 0.98 5.20 5.98 9.31 3.38 6.17

Djelouah’13 [8] 1.54 1.46 1.63 1.27 0.26 1.50 4.20 3.00 0.85 1.92

Diebold’15 [7] 0.35 0.37 0.31 0.29 0.14 0.63 2.73 0.52 0.20 0.39

Ours 0.35 0.35 0.28 0.20 0.13 0.41 2.03 0.48 0.23 0.31

Table 1. Comparison of error rates of generated silhouettes.

(a) Color image (b) Grabcut [20] (c) Djelouah’13 [8] (d) Diebold’15 [7] (e) Ours

Figure 5. Examples of generated silhouettes.

Figure 6. Quantitative evaluation of model error. Row 1-3 show results of Kinfu [19], RGB-D alignment only (i.e. our approach with

silhouette consistency term disabled) and joint optimization, respectively.
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Tomcat Musicbox Donkey Dragon Chair Horse Plant Gundam Bag Bag2

Initial 0.75 0.79 0.66 0.78 0.56 0.63 0.55 0.51 0.66 0.77

Iter 1 0.83 0.84 0.82 0.88 0.74 0.81 0.69 0.87 0.89 0.93

Iter 2 0.89 0.91 0.90 0.90 0.89 0.94 0.77 0.90 0.93 0.94

Iter 3 0.97 0.94 0.92 0.92 0.95 0.98 0.88 0.92 0.95 0.96

Table 2. Averaged calibration ratios increase with iterations.

Figure 7. Visual comparison of generated meshes. Row 2-4 are meshes generated by Kinfu [19], RGB-D alignment only (i.e. our approach

with silhouette consistency term disabled) and joint optimization. Row 5-7 show close-up views of the respective models.
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