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Abstract

Cross-modal similarity search is a problem about de-

signing a search system supporting querying across con-

tent modalities, e.g., using an image to search for texts

or using a text to search for images. This paper presents

a compact coding solution for efficient search, with a fo-

cus on the quantization approach which has already shown

the superior performance over the hashing solutions in the

single-modal similarity search. We propose a cross-modal

quantization approach, which is among the early attempts

to introduce quantization into cross-modal search. The ma-

jor contribution lies in jointly learning the quantizers for

both modalities through aligning the quantized representa-

tions for each pair of image and text belonging to a docu-

ment. In addition, our approach simultaneously learns the

common space for both modalities in which quantization

is conducted to enable efficient and effective search using

the Euclidean distance computed in the common space with

fast distance table lookup. Experimental results compared

with several competitive algorithms over three benchmark

datasets demonstrate that the proposed approach achieves

the state-of-the-art performance.

1. Introduction

Similarity search has been a fundamental problem in in-

formation retrieval and multimedia search. Classical ap-

proaches, however, are designed to address the single-

modal search problem, where, for instance, the text query

is used to search in a text database, or the image query is

used to search in an image database. In this paper, we deal

with the cross-modal similarity search problem, which is an

important problem emerged in multimedia information re-

trieval, for example, using a text query to retrieve images or

using an image query to retrieve texts.

We study the compact coding solutions to cross-modal

similarity search, in particular focusing on a common real-

world scenario, image and text modalities. Compact cod-

∗This work was done when Ting Zhang was an intern at MSR.

ing is an approach of converting the database items into

short codes on which similarity search can be efficiently

conducted. It has been widely studied in single-modal

similarity search with typical solutions including hash-

ing [3, 13, 21] and quantization [5, 6, 14, 27], while rela-

tively unexplored in cross-modal search except a few hash-

ing approaches [1, 8, 11, 30]. We are interested in the quan-

tization approach that represents each point by a short code

formed by the index of the nearest center, as quantization

has shown more powerful representation ability than hash-

ing in single-modal search.

Rather than performing the quantization directly in the

original feature space, we learn a common space for both

modalities with the goal that the pair of image and text lie in

the learnt common space closely. Learning such a common

space is important and useful for the subsequent quantiza-

tion whose similarity is computed based on the Euclidean

distance. Similar observation has also been made in some

hashing techniques [15, 16, 30] that apply the sign function

on the learnt common space.

In this paper, we propose a novel approach for cross-

modal similarity search, called collaborative quantization,

that conducts the quantization simultaneously for both

modalities in the common space, to which the database

items of both modalities are mapped through matrix factor-

ization. The quantization and the common space mapping

are jointly optimized for both modalities under the objec-

tive that the quantized approximations of the descriptors of

an image and a text forming a pair in the search database

are well aligned. Our approach is one of the early attempts

to introduce quantization into cross-modal similarity search

offering the superior search performance. Experimental re-

sults on several standard datasets show that our approach

outperforms existing cross-modal hashing and quantization

algorithms.

2. Related work

There are two categories of compact coding approaches

for cross-modal similarity search: cross-modal hashing and

cross-modal quantization.

Cross-modal hashing often maps multi-modal data into
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Table 1. A brief categorization of the compact coding algorithms for cross-modal similarity search. The multi-modal relations are roughly

divided into four categories: intra-modality (image vs. image and text vs. text), inter-modality (image vs. text), intra-document (corre-

spondence of an image and a text forming a document, a special kind of inter-modality), and inter-document (document vs. document).

Unified codes denote that the codes for an image and a text belonging to a document are the same, and separate codes denote that the codes

are different.

Methods
Multi-modal data relations Codes Coding methods

Intra-modality Inter-modality Intra-document Inter-document Unified Separate Hash Quantization

CMSSH [1] △ △ △

SCM [25] △ △ △

CRH [28] △ △ △

MMNN [11] △ △ △ △

SM2H [24] △ △ △ △

MLBE [29] △ △ △ △

IMH [18] △ △ △ △

CVH [8] △ △ △ △

MVSH [7] △ △ △ △

SPH [9] △ △ △ △

LSSH [30] △ △ △

CMFH [4] △ △ △

STMH [20] △ △ △

QCH [23] △ △ △

CCQ [10] △ △ △

Our approach △ △ △

a common Hamming space so that the hash codes of dif-

ferent modalities are directly comparable using the Ham-

ming distance. After mapping, each document may have

just one unified hash code, in which all the modalities of

the document are mapped, or may have two separate hash

codes, each corresponding to a modality. The main research

problem in cross-modal hashing, besides hash function de-

sign that is also studied in single-modal search, is how to

exploit and build the relations between the modalities. In

general, the relations of multi-modal data, besides the intra-

modality relation in the single modality (image vs. image

and text vs. text) and the inter-modality relation across the

modalities (image vs. text), also include intra-document

(the correspondence of an image and a text forming a doc-

ument, which is a special kind of inter-modality) and inter-

document (document vs. document). A brief categorization

is shown in Table 1.

The early approach, data fusion hashing [1], is a pairwise

cross-modal similarity sensitive approach, which aligns

the similarities (defined as inner product) in the Ham-

ming space across the modalities, with the given inter-

modality similar and dissimilar relations using the maxi-

mizing similarity-agreement criterion. An alternative for-

mulation using the minimizing similarity-difference crite-

rion is introduced in [25]. Co-regularized hashing [28] uses

a smoothly clipped inverted squared deviation function to

connect the inter-modality relation with the similarity over

the projections that form the hashing codes. Similar reg-

ularization techniques are adopted for multi-modal hashing

in [12]. In addition to the inter-modality similarities, several

other hashing techniques, such as multimodal similarity-

preserving hashing [11], sparse hashing approach [24], a

probabilistic model for hashing [29], also explore and uti-

lize the intra-modality relation to learn the hash codes for

each modality.

Cross-view hashing [8] defines the distance between

documents in the Hamming space by considering the hash

codes of all the modalities, and aligns it with the given inter-

document similarity. Multi-view spectral hashing [7] adopts

a similar formulation but with a different optimization al-

gorithm. These methods usually also involve the intra-

document relation in an implicit way by considering the

multi-modal document as an integrated whole object. There

are other hashing methods exploring the inter-document re-

lation about multi-modal representation , but not for cross-

modal similarity search, such as composite hashing [26] and

effective multiple feature hashing [17].

The intra-document relation is often used to learn a uni-

fied hash code, into which a hash function is learnt for

each modality to map the feature. For example, Latent se-

mantic sparse hashing [30] applies the sign function on the

joint space projected from the latent semantic representa-

tion learnt for each modality. Collective matrix factoriza-

tion hashing [4] finds the common (same) representation for

an image-text pair via collective matrix factorization, and

obtains the hash codes directly using the sign function on

the common representation. Other methods exploring the

intra-document relation include semantic topic multimodal

hashing [20], semantics-preserving multi-view hashing [9],

inter-media hashing [26] and its accelerated version [31],

and so on. Meanwhile, several attempts [22, 19] have been

made based on the neural network which can also be com-

bined with our approach to learn the common space.

Recently, a few techniques based on quantization are

developed for cross-modal search. Quantized correlation

hashing [23] combines the hash function learning with the
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quantization by minimizing the inter-modality similarity

disagreement as well as the binary quantization simultane-

ously. Compositional correlation quantization [10] projects

the multi-modal data into a common space, and then ob-

tains a unified quantization representation for each docu-

ment. Our approach, also exploring the intra-document re-

lation, belongs to this cross-modal quantization category

and achieves the state-of-the-art performance.

3. Formulation

We study the similarity search problem over a database

Z of documents with two modalities: image and text. Each

document is a pair of image and text, Z = {(xn,yn)}
N
n=1,

where xn ∈ R
DI is a DI -dimensional feature vector de-

scribing an image, and yn ∈ R
DT is a DT -dimensional fea-

ture vector describing a text. Splitting the database Z yields

two databases each formed by images and texts separately,

i.e., X = {x1,x2, · · · ,xN} and Y = {y1,y2, · · · ,yN}.

Given a image (text) query xq (yq), the goal of cross-

modality similarity search is to retrieve the closest match

in the text (image) database: argmaxy∈Y sim(xq,y)
(argmaxx∈X sim(yq,x)).

Rather than directly quantizing the feature vectors x and

y to x̄ and ȳ, which requires a further non-trivial scheme

to learn the similarity for vectors x̄ and ȳ with different di-

mensions, we are interested in finding the common space

for both image and text, and jointly quantizing the image

and text descriptors in the common space, so that the Eu-

clidean distance which is widely-used in single-modal simi-

larity search, can also be used for the cross-modal similarity

evaluation.

Collaborative quantization. Suppose the images and the

texts in the D-dimensional common space are represented

as X′ = [x′
1,x

′
2, · · · ,x

′
N ] and Y′ = [y′

1,y
′
2, · · · ,y

′
N ].

For each modality, we propose to adopt composite quan-

tization [27] to quantize the vectors in the common space.

Composite quantization aims to approximate the images X′

as X′ ≈ X̄ = CP by minimizing

‖X′ −CP‖2F . (1)

Here, C = [C1,C2, · · · ,CM ] corresponds to the M

dictionaries, Cm = [cm1, cm2, · · · , cmK ] corresponds to

the mth dictionary of size K and each column is a dic-

tionary element. P = [p1,p2, · · · ,pN ] with pn =
[pT

n1,p
T
n2, · · · ,p

T
nm]T , and pnm is a K-dimensional bi-

nary (0,1) vector with only 1-valued entry indicating that

the corresponding element in the mth dictionary is selected

to compose x′
n. The texts Y′ in the common space are ap-

proximated as Y′ ≈ Ȳ = DQ, and the meaning of the

symbols is similar to that in the images.

Besides the quantization quality, we explore the intra-

document correlation between images and texts for the

quantization: the image and the text forming a document

are close after quantization, which is the bridge to connect

images and texts for cross-modal search. We adopt the fol-

lowing simple formulation that minimizes the distance be-

tween the image and the corresponding text,

‖CP−DQ‖2F . (2)

The overall collaborative quantization formulation is

given as follows,

Q(C,P;D,Q) = (3)

‖X′ −CP‖2F + ‖Y′ −DQ‖2F + γ‖CP−DQ‖2F ,

where γ is a trade-off variable to balance the quantization

quality and the correlation degree.

Common space mapping. The common space mapping

problem aims to map the data in different modalities into the

same space so that the representations in cross-modalities

are comparable. In our problem, we want to map the N

DI -dimensional image data X and the N DT -dimensional

text data Y to the same D-dimensional data: X′ and Y′.

We choose the matrix-decomposition solution as in [30]:

the image data X is approximated using sparse coding as a

product of two matrices BS, and the sparse code S is shown

to be a good representation of the raw feature X; the text

data Y is also decomposed into two matrices, U and Y′,

where Y′ is the low-dimensional representation; In addi-

tion, a transformation matrix R is introduced to align the

image sparse code S with the text code Y′ by minimizing

‖Y′ − RS‖2F , and the image in the common space is rep-

resented as X′ = RS. The objective function for common

space mapping is written as follows,

M(B,S;U,Y′;R) = (4)

‖X−BS‖2F + ρ|S|11 + η‖Y −UY′‖2F + λ‖Y′ −RS‖2F .

Here |S|11 =
∑N

i=1 ‖S·i‖1 is the sparse term, and ρ deter-

mines the sparsity degree; η is used to balance the scales of

image and text representations; λ is a trade-off parameter to

control the approximation degree in each modality and the

alignment degree for the pair of image and text.

Overall objective function. In summary, the overall for-

mulation of the proposed cross-modal quantization is,

min F(θq,θm) = Q(C,P;D,Q) +M(B,S;U,Y′;R)

s. t. ‖B·i‖
2
2 6 1, ‖U·i‖

2
2 6 1, ‖R·i‖

2
2 6 1, (5)

∑M

i=1

∑M

j=1,j 6=i
pT
niC

T
i Cjpnj = ǫ1, (6)

∑M

i=1

∑M

j=1,j 6=i
qT
niD

T
i Djqnj = ǫ2, (7)

where θq and θm represent the parameters in quantization

and mapping, i.e., (C,P;D,Q) and (B,S;U,Y′;R) re-

spectively. The constraints in Equation 6 and Equation 7
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are introduced for fast distance computation as in composite

quantization [27], and more details about the search process

are presented in Section 4.3.

4. Optimization

We optimize the Problem 5 by alternatively solving two

sub-problems: common space mapping with the quanti-

zation parameters fixed: minF(θm|θq) = M(θm) +
‖X′ −CP‖2F + ‖Y′ −DQ‖2F , and collaborative quantiza-

tion with the mapping parameters fixed: minF(θq|θm) =
minQ(θq). Each of the two sub-problems is solved again

by a standard iteratively alternative algorithm.

4.1. Common space mapping

The objective function of the common space mapping

with the quantization parameters fixed is,

min
θm

M(θm) + ‖X′ −CP‖2F + ‖Y′ −DQ‖2F (8)

s. t. ‖B·i‖
2
2 6 1, ‖U·i‖

2
2 6 1, ‖R·i‖

2
2 6 1. (9)

The iteration details are given below.

Update Y′. The objective function with respect to Y′ is

an unconstrained quadratic optimization problem, and is

solved by the following closed-form solution,

Y′∗ = (ηUTU+ (λ+ 1)I)−1(DQ+ ηUTY + λRS),

where I is the identity matrix.

Update S. The objective function with respect to S can be

transformed to,

min
S

‖

[ √

1
λ+1X

1
λ+1 (CP+ λA)

]

−

[ √

1
λ+1B

R

]

S‖2F

+
ρ

λ+ 1
|S|11, (10)

which is solved using the sparse learning with efficient pro-

jections package1.

Update U,B,R. The algorithms for updating U,B,R are

the same, as we can see from the following formulas,

min
U

‖Y −UY′‖2F , s. t. ‖U·i‖
2
2 6 1, (11)

min
B

‖X−BS‖2F , s. t. ‖B·i‖
2
2 6 1, (12)

min
R

‖
1

λ+ 1
(CP+ λY′)−RS‖2F , s. t. ‖R·i‖

2
2 6 1.

All of the above three learning problems are minimizing the

quadratically constrained least square problem, which has

been well studied in numerical optimization field and can

be readily solved using the primal-dual conjugate gradient

method.

1http://parnec.nuaa.edu.cn/jliu/largeScaleSparseLearning.htm

4.2. Collaborative quantization

The second sub-problem is transformed to an uncon-

strained formulation by adding the equality constraints as

a penalty regularization with a penalty parameter µ,

Ψ = Q(θq) + µ
∑N

n=1
(
∑M

i 6=j
pT
niC

T
i Cjpnj − ǫ1)

2

+ µ
∑N

n=1
(
∑M

i 6=j
qT
niD

T
i Djqnj − ǫ2)

2, (13)

which is solved by alternatively updating each variable with

others fixed.

Update C (D). The optimization procedures for C and

D are essentially the same, so we only show how to op-

timize C. We adopt the L-BFGS2 algorithm, one of the

most frequently-used quasi-Newton methods, to solve the

unconstrained non-linear problem with respect to C. The

derivative of the objective function is [∂Ψ
C1

, · · · , ∂Ψ
CM

],

∂Ψ

∂Cm

= 2((γ + 1)CP−RS− γDQ)PT
m (14)

+
N
∑

n=1

[4µ(
M
∑

i 6=j

pT
niC

T
i Cjpnj − ǫ1)(

M
∑

l=1,l 6=m

Clpnl)p
T
nm],

where Pm = [p1m, · · · ,pNm].

Update ǫ1, ǫ2. With other variables fixed, it is easy to get

the optimal solution,

ǫ∗1 =
1

N

∑N

n=1

∑M

i 6=j
pT
niC

T
i Cjpnj , (15)

ǫ∗2 =
1

N

∑N

n=1

∑M

i 6=j
qT
niD

T
i Djqnj . (16)

Update P (Q). The binary vectors {pn}
N
n=1 given other

variables fixed are independent with each other, and hence

the optimization problem can be decomposed into N sub-

problems,

Ψn = ‖x′
n −Cpn‖

2
2 + γ‖Cpn −Dqn‖

2
2 (17)

+ µ(
∑M

i 6=j
pT
niC

T
i Cjpnj − ǫ1)

2. (18)

This problem is a mixed-binary-integer problem generally

considered as NP-hard. As a result, we approximately solve

this problem by greedily updating the M indicating vec-

tors {pnm}Mm=1 in cycle: fixing {pnm′}Mm′=1,m′ 6=m, pnm

is updated by exhaustively checking all the elements in Cm,

finding the element such that the objective function is min-

imized, and setting the corresponding entry of pnm to be 1

and all the others to be 0. Similar optimization procedure is

adopted to update Q.

2http://www.ece.northwestern.edu/nocedal/lbfgs.html
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4.3. Search process

In cross-modal search, the given query can be either an

image or a text, which require different querying processes.

Image query. If the query is an image, xq , we first obtain

the representation in the common space, x′
q = Rs∗,

s∗ = argmin
s

‖xq −Bs‖22 + ρ|s|1. (19)

The approximated distance between the image query

xq and the database text yn (represented as Dqn =
∑M

m=1 Dmqnm) is,

‖x′
q −Dqn‖

2
2 =

∑M

m=1
‖x′

q −Dmqnm‖22 (20)

−(M − 1)‖x′
q‖

2
2 +

∑M

i 6=j
qT
niD

T
i Djqnj . (21)

The last term
∑M

i 6=j q
T
niD

T
i Djqnj is constant for all the

texts due to the introduced equality constraint in Equation 7.

Hence given x′
q , it is enough to compute the first term

∑M
m=1 ‖x

′
q − Dmqnm‖22 to search for the nearest neigh-

bors, which furthermore can be efficiently computed and

takes O(M) by looking up a precomputed distance table

storing the distances: {‖x′
q −dmk‖

2
2 |m = 1, · · · ,M ; k =

1, · · · ,K}.

Text query. When the query comes as a text, yq , the repre-

sentation y′
q is obtained by solving,

y′
q = argmin

y
‖yq −Uy‖22. (22)

Using y′
q to search in the image database is similar to that

in the image query search process.

5. Discussions

Relation to compositional correlation quantization. The

proposed approach is close to compositional correlation

quantization [10], which is also a quantization-based

method for cross-modal search. In fact, our approach dif-

fers from it in two ways: (1) we find a different mapping

function to project the common space; (2) we learn separate

quantized centers for a pair using two dictionaries instead of

the unified quantized centers in compositional correlation

quantization [10] imposed with a harder alignment using

one dictionary. Hence, during the quantization stage, our

approach can obtain potentially smaller quantization error,

as the quantized center is more flexible, and thus produce

better search performance. The empirical comparison illus-

trating the effect of dictionary is shown in Figure 2.

Relation to latent semantic sparse hashing. In our for-

mulation, the common space is learnt in a similar manner

with latent semantic sparse hashing [30]. After the com-

mon space mapping, latent semantic sparse hashing applies

a simple sign function directly on the common space, which

can result in large information loss and hence weaken the

search performance. Our approach, however, adopts the

quantization technique that has more accurate distance ap-

proximation than hashing, and produces better cross-modal

search quality than latent semantic sparse hashing, which is

verified in our experiments shown in Table 2 and Figure 3.

6. Experiments

6.1. Setup

Datasets. We evaluate our method on three benchmark

datasets. The first dataset, Wiki3 consists of 2,866 im-

ages and 2,866 texts describing the images in short para-

graph (at least 70 words), with images represented as

128-dimensional SIFT features and texts expressed as 10-

dimensional topics vectors. This dataset is divided into

2,173 image-text pairs and 693 quries, and each pair is

labeled with one of the 10 semantic classes. The sec-

ond dataset, FLICKR25K4, is composed of 25,000 images

along with the user assigned tags. The average number of

tags for an image is 5.15 [19]. Each image-text pair is as-

signed with multiple labels from a total of 38 classes. As

in [19], the images are represented by 3857-dimensional

features and the texts are 2000-dimensional vectors indi-

cating the occurrence of the tags. We randomly sampled

10% of the pairs as the test set and use the remaining as

the training set. The third dataset is NUS-WIDE5 [2] con-

taining 269,648 images with associated tags (6 in average),

each pair is annotated with multiple labels among 81 con-

cepts. As done in previous work [4, 28, 30], we select 10

most popular concepts resulting in 186,577 data pairs. The

images are represented by 500-dimensional bag-of-words

features based on SIFT descriptors, and the texts are 1000-

dimensional vectors of the most frequent tags. Follow-

ing [30], We use 4000 (≈ 2%) randomly sampled pairs as

the query set and the rest as the training set.

Evaluation. In our experiments, we report the results of

two search tasks for the cross-modal search, i.e., the im-

age (as the query) to text (as the database) task and the

text to image task. The search quality is evaluated with

two measures: MAP@T and precision@T . MAP@T is

defined as the mean of the average precisions of all the

queries, and the average precision of a query is computed

as, AP (q) =
∑

T

t=1
Pq(t)δ(t)∑

T

t=1
δ(t)

, where T is the number of re-

trieved items, Pq(t) is the precision at position t for query

q, and δ(t) = 1 if the retrieved tth item has the same label

with query q or shares at least one label, otherwise δ(t) = 0.

Following [30, 4, 10], we report MAP@T with T = 50 and

T = 100. We also plot the precision@T curve which is ob-

tained by computing the precisions at different recall levels

3http://www.svcl.ucsd.edu/projects/crossmodal/
4http://www.cs.toronto.edu/ nitish/multimodal/index.html
5http://lms.comp.nus.edu.sg/research/NUS-WIDE.htm
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Table 2. MAP@50 comparison of different algorithms on all the benchmark datasets under various code lengths. We also report the results

of CMFH and CCQ (whose code implementations are not publicly available) in their corresponding papers and we distinguish those results

by parenthesis (). “——” is used in the place where the result under that specific setting is not reported in their papers. Different setting

refers to different datasets, or (and) different features, or (and) different bits, and so on.

Task Method
Wiki FLICKR25K NUS-WIDE

16 bits 32 bits 64 bits 128 bits 16 bits 32 bits 64 bits 128 bits 16 bits 32 bits 64 bits 128 bits

Img

to

Txt

CMSSH [1] 0.2110 0.2115 0.1932 0.1909 0.6468 0.6616 0.6681 0.6624 0.5243 0.5210 0.5211 0.4813

CVH [8] 0.1947 0.1798 0.1732 0.1912 0.6450 0.6363 0.6273 0.6204 0.5352 0.5254 0.5011 0.4705

MLBE [29] 0.3537 0.3947 0.2599 0.2247 0.6085 0.5866 0.5841 0.5883 0.4472 0.4540 0.4703 0.4026

QCH [23] 0.1490 0.1726 0.1621 0.1611 0.5722 0.5780 0.5618 0.5567 0.5090 0.5270 0.5208 0.5135

LSSH [30] 0.2396 0.2336 0.2405 0.2373 0.6328 0.6403 0.6451 0.6511 0.5368 0.5527 0.5674 0.5723

CMFH [4] 0.2548 0.2591 0.2594 0.2651 0.5886 0.6067 0.6343 0.6550 0.4740 0.4821 0.5130 0.5068

(CMFH [4]) (0.2538) (0.2582) (0.2619) (0.2648) —— —— —— —— —— —— —— ——

(CCQ [10]) (0.2513) (0.2529) (0.2587) —— —— —— —— —— —— —— —— ——

CMCQ 0.2478 0.2513 0.2567 0.2614 0.6705 0.6716 0.6782 0.6821 0.5637 0.5902 0.5990 0.6096

Txt

to

Img

CMSSH [1] 0.2446 0.2505 0.2387 0.2352 0.6123 0.6400 0.6382 0.6242 0.4177 0.4259 0.4187 0.4203

CVH [8] 0.3186 0.2354 0.2046 0.2085 0.6595 0.6507 0.6463 0.6580 0.5601 0.5439 0.5160 0.4821

MLBE [29] 0.3336 0.3993 0.4897 0.2997 0.5937 0.6182 0.6550 0.6392 0.4352 0.4888 0.5020 0.4425

QCH [23] 0.1924 0.1561 0.1800 0.1917 0.5752 0.6002 0.5757 0.5723 0.5099 0.5172 0.5092 0.5089

LSSH [30] 0.5776 0.5886 0.5998 0.6103 0.6504 0.6726 0.6965 0.7010 0.6357 0.6638 0.6820 0.6926

CMFH [4] 0.6153 0.6363 0.6411 0.6504 0.5873 0.6019 0.6477 0.6623 0.5109 0.5643 0.5896 0.5943

(CMFH [4]) (0.6116) (0.6298) (0.6398) (0.6477) —— —— —— —— —— —— —— ——

(CCQ [10]) (0.6351) (0.6394) (0.6405) —— —— —— —— —— —— —— —— ——

CMCQ 0.6397 0.6474 0.6546 0.6593 0.7248 0.7335 0.7394 0.7550 0.6898 0.7086 0.7194 0.7254

through varying the number of retrieved items.

Compared methods. We compare our approach, Cross-

Modal Collaborative Quantization (CMCQ), with three

baseline methods that only use the intra-document relation:

Latent Semantic Sparse Hashing (LSSH) [30], Collective

Matrix Factorization Hashing (CMFH) [4], and Composi-

tional Correlation Quantization (CCQ) [10]. The code of

LSSH is generously provided by the authors and we imple-

mented the CMFH carefully by ourselves. The performance

of CCQ (without public code) is presented partially using

the results in its paper. In addition, we report the state-of-

the-art algorithms whose codes are publicly available: (1)

Cross-Modal Similarity Sensitive Hashing (CMSSH) [1],

(2) Cross-View Hashing (CVH) [8], (3) Multimodal Latent

Binary Embedding (MLBE) [29], (4) Quantized Correlation

Hashing (QCH) [23]. The parameters in above methods are

set according to the corresponding papers.

Implementation details. The data for both modalities

are mean-centered and then normalized to have unit Eu-

clidean length. We use principle component analysis to

project the image into a lower dimensional (set to 64) space,

and the number of bases in sparse coding is set to 512

(B ∈ R
64×512). The latent dimension of matrix factor-

ization for text data is set equal to the number of code

bits, e.g., 16, 32 etc. The mapping parameters (denoted

as θm) are initialized by solving a relatively easy problem

minM(θm) (similar algorithm with that presented in solv-

ing minF(θm|θq)). Then the quantization parameters (de-

noted as θq) are initialized by conducting composite quan-

tization [27] in the common space.

There are five parameters balancing different trade-offs

in our algorithm: the sparsity degree ρ, the scale-balance

parameter η, the alignment degree in the common space λ,

the correlation degree of the quantization γ, and the penalty

parameter µ. We simply set µ = 0.1 in our experiments as

it has already shown satisfactory results. The other four pa-

rameters are selected through validation (by varying one pa-

rameter in {0.1, 0.3, 0.5, 0.7} while keeping others fixed) so

that the MAP value, when using the validation set (a subset

of the training data) as the queries to search in the remain-

ing training data, is the best. The sensitive analysis of these

parameters is presented in Section 6.3.

6.2. Results

Results on Wiki. The comparison in terms of MAP@100
and the precision@T curve is reported in Table 2 and the

first row of Figure 3. We can find that our approach, CMCQ,

achieves better performance than other methods over the

text to image task. While over the image to query task, we

can see from Table 2 that the best performance is achieved

by MLBE with 16 bits and 32 bits, and CMFH with 64

bits and 128 bits. However, the performance of MLBE de-

creases as the code length gets longer. Our approach, on the

other hand, is able to utilize the additional bits to enhance

the search quality. In comparison with CMFH, we can see

that our approach gets the similar results.

Results on FLICKR25K. The performance on the

FLICKR25K dataset is shown in Table 2 and the second

row of Figure 3. It can be seen that the gain obtained by our

approach is significant over both cross-modal search tasks.

Moreover, we can observe from Table 2 that the results of

our approach with the smallest code bits perform much bet-

ter than other methods with the largest code bits. For ex-

ample, over the text to image task, the MAP@50 of our ap-

proach, CMCQ with 16 bits, is 0.7248, about 2% larger than

0.7010, the best MAP@50 obtained by other baseline meth-

ods with 128 bits. This indicates that when dealing with

high-dimensional dataset, such as FLICKR25K with 3857-

dimensional image features and 2000-dimensional text fea-

tures, our method keeps much more information than other

hashing-based cross-modal techniques, and hence produces

better search quality.
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Table 3. Comparison with SePH (in terms of MAP@50).
(A) Comparison between ours and SePHkm (the best version of SePH)

Dataset Task Method 32 64 128

NUS-WIDE

Img to Txt
SePHkm 0.586 0.601 0.607
CMCQ 0.590 0.599 0.610

Txt to Img
SePHkm 0.726 0.746 0.746
CMCQ 0.709 0.719 0.725

(B) Generalization to “newly-coming classes”: ours outperforms SePHkm

NUS-WIDE

Img to Txt
SePHkm 0.442 0.436 0.435
CMCQ 0.495 0.501 0.535

Txt to Img
SePHkm 0.448 0.459 0.455
CMCQ 0.551 0.568 0.580

Results on NUS-WIDE. Table 2 and the third row of Fig-

ure 3 show the performance of all the methods on the largest

dataset of the three datasets, NUS-WIDE. One can observe

that the proposed approach again gets the best performance.

In addition, it can be seen from the figure that in most cases,

the performance of our approach barely drops with increas-

ing value of T . For instance, the precision@1 of our ap-

proach over the text to image task with 32 bits is 68.17%,

and the precision@1K is 64.55%, which suggests that our

method consistently keeps a large portion of the relevant

items retrieved as the number of retrieved items increases.

6.3. Empirical analysis

Comparison with semantics-preserving hashing. An-

other challenging competitor for our approach is the re-

cent semantics-preserving hashing (SePH) [9]. The com-

parison is shown in Table 3 (A). The reason of SePH out-

performing ours is that SePH exploits the document-label

information, which our method doesn’t use for two reasons:

(1) the image-text correspondence information comes nat-

urally and easily, while the label information is expensive

to get; (2) exploiting label information may tend to overfit

the data and not generalize well to newly-coming classes.

To show it, we conducted an experiment: split the NUS-

WIDE training set into two parts: one with five concepts

for training, and the other with other five concepts for the

search database whose codes are extracted using the model

trained on the first part. Our results as shown in Table 3 (B)

are better than SePH, indicating that our method can well

generalize to newly-coming classes.

The effect of intra-document correlation. The intra-

document correlation is imposed in our formulation over

two spaces (the quantized space and the common space)

by two regularization terms controlled respectively by pa-

rameter γ and λ. In fact, it is possible to just add one such

term and set the other to be 0. Specifically, if γ = 0, our

approach will degenerate to conducting composite quanti-

zation [27] separately on each modality, and if λ = 0, the

proposed approach will lack the explicit connection in the

common space. In either case, the bridge that links the pair

of image and text would be undermined, resulting in re-

duced cross-modal search quality. The experimental results

shown in Figure 1, validate this point: the performance of

our approach when considering both of the intra-document
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Figure 1. Illustrating the effect of the intra-document relation. The

MAP is compared among CMCQ, CMCQ (γ = 0) (without cor-

relation in the quantized space), and CMCQ (λ = 0) (without

correlation in the common space) on the three datasets denoted as

W (Wiki), F (FLICKR25K), and N (NUS-WIDE) in the legend.
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Figure 2. Illustrating the effect of the dictionary. The MAP is com-

pared between CMCQ and CMCQ (C = D) (using one dictionary

for both modalities) on the three datasets.

correlation terms is much better.

The effect of dictionary. One possible way for our ap-

proach to better catch the intra-document correlation is to

use the same dictionary to quantize both modalities, i.e.,

adding constraint C = D in the Formulation 3, which is

similar to [10]. This might introduce a closer connection

between a pair of image and text, and hence improve the

search quality. However, our experiments shown in Fig-

ure 2 suggest that this is not the case. The reason might be

that using one dictionary for two modalities in fact reduces

the approximation ability of quantization when using two

dictionaries.

Parameter sensitive analysis. We also conduct the param-

eter sensitive analysis to show that our approach is robust to

the change of parameters. The experiments are conducted

on FLICKR25K and NUS-WIDE using a validation set, to

form which we randomly sample a subset of the training

dataset. The size of the validation set is 1000 and 2000 re-

spectively for FLICKR25K and NUW-WIDE. To evaluate

the sensitive of the parameter, we vary one parameter from

0.001 to 10 (1 for ρ) while keep others fixed.

The empirical results on the two search tasks (task1: im-

age to text and task2: text to image) are presented in Fig-

ure 4. It can be seen from the figure that our approach can

achieve superior performance under a wide range of the pa-
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Figure 3. Precision@T (T is the number of retrieved items) curve of different algorithms on the (a) Wiki, (b) FLICKR25K, and (c)

NUS-WIDE dataset encoded with 32 bits and 64 bits over two search tasks: image to text and text to image.
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Figure 4. Parameter sensitive analysis of our algorithm with respect to (a) γ, (b) ρ, (c) η, and (d) λ over image to text (task1) and text to

image (task2) on two datasets: FLICKR25K (F) and NUS-WIDE (N) with 32 bits. The dashdot line shows the best results obtained by

other baseline methods and is denoted as B, e.g., B-Task1F denotes the best baseline results the image to text task on FLICKR25K.

rameter values. We notice that when the parameter ρ gets

close to 1, the performance drops suddenly. The reason

might be that with a larger sparsity degree value ρ, the learnt

image representation in the common space would carry lit-

tle information since the learnt S is a very sparse matrix.

7. Conclusion

In this paper, we present a quantization-based com-

pact coding approach, collaborative quantization, for cross-

modal similarity search. The superiority of the proposed

approach stems from that it learns the quantizers for both

modalities jointly by aligning the quantized approximations

for each pair of image and text in the common space, which

is simultaneously learnt with the quantization. Empirical

results on three multi-modal datasets indicate that the pro-

posed approach outperforms existing methods.
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