
Metric Learning as Convex Combinations of Local Models

with Generalization Guarantees

Valentina Zantedeschi, Rémi Emonet, Marc Sebban
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Abstract

Over the past ten years, metric learning allowed the im-

provement of numerous machine learning approaches that

manipulate distances or similarities. In this field, local met-

ric learning has been shown to be very efficient, especially

to take into account non linearities in the data and bet-

ter capture the peculiarities of the application of interest.

However, it is well known that local metric learning (i) can

entail overfitting and (ii) face difficulties to compare two

instances that are assigned to two different local models.

In this paper, we address these two issues by introducing a

novel metric learning algorithm that linearly combines lo-

cal models (C2LM). Starting from a partition of the space

in regions and a model (a score function) for each region,

C2LM defines a metric between points as a weighted com-

bination of the models. A weight vector is learned for each

pair of regions, and a spatial regularization ensures that the

weight vectors evolve smoothly and that nearby models are

favored in the combination. The proposed approach has the

particularity of working in a regression setting, of working

implicitly at different scales, and of being generic enough so

that it is applicable to similarities and distances. We prove

theoretical guarantees of the approach using the framework

of algorithmic robustness. We carry out experiments with

datasets using both distances (perceptual color distances,

using Mahalanobis-like distances) and similarities (seman-

tic word similarities, using bilinear forms), showing that

C2LM consistently improves regression accuracy even in

the case where the amount of training data is small.

1. Introduction

In many machine learning tasks, like classification, clus-

tering or ranking, decisions are based on distance or sim-

ilarity functions. In order to capture the peculiarities of

the data of the applications at hand, a lot of work has

gone during the past ten years into automatically optimiz-

Figure 1: Limitation of local metric learning: While two points

belonging to the same region (e.g. in R1) can be managed by

the corresponding locally-learned metric (depicted as an ellipse),

two points from different regions (e.g. in R2 and R4) cannot be

accurately compared using a single local metric.

ing those functions, topic referred to as metric learning

[9, 3, 4]. Most of the time, a unique global metric is learned

over the input space, typically taking the form of a (lin-

ear) geometric transformation. This is the case for most of

the Mahalanobis-like metric learning approaches, such as

LMNN [22] or ITML [5]. However, it turns out that for data

that present multi-modalities and/or non-linearities, local

metric learning has been shown to be very efficient because

of its flexibility to capture well geometric variations of the

input space. On the other hand, a major problem of local

metric learning is that it can entail overfitting. Some recent

solutions have been proposed based on feature space dimen-

sionality reduction [8], manifold regularization [21] or gen-

erative models [15]. However, those approaches mainly fo-

cus on improving the results locally, i.e. while comparing

instances of the “same region” of the input space. There-

fore, they are not suited to compare points far from each

other. This limitation is illustrated in Figure 1.

One of the main objectives of our paper is to address this

pitfall by learning convex combinations of local metrics that

are not only good locally, but also globally relevant. Our

algorithm, called Convex Combinations of Local Models

(C2LM), basically optimizes for any pair of regions a vector

of weights corresponding to the contribution of each local

model while computing the distance or similarity between
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two points of those regions (see Figure 2). By means of

manifold and vector similarity regularization, we constrain

the convex combinations to reflect the topological charac-

teristics of the input space and to vary smoothly. Since our

main aim is to learn the influence of each local metric, we

will assume in the rest of this paper that the input space has

been previously partitioned into regions and that on each

region a local metric has been learned to express its under-

lying geometry.

Our approach has another particularity: unlike the cur-

rent trend in metric learning, it lies in a regression set-

ting rather than in a classification framework. Indeed, it

is worth noticing that most metric learning methods use

side information brought by pairs of training examples in

the form of must-link/cannot-link constraints (also called

positive/negative pairs) or relative constraints (also called

training triplets). A metric learning method typically aims

to optimize the parameters of the metric such that it best

agrees with those constraints. It turns out that in some ap-

plications, the side information provided by the problem

of interest simply relies on pairs of examples associated to

a target score of (dis)similarity. This is the case in color

distance perception (that will constitute one of our two se-

ries of experiments), where training data take the form of

pairs of color patches and their reference perceptual dis-

tance ∆E00 [18]. This is also the case for databases made

of pairs of strings and their corresponding semantic distance

(see, e.g., the well known WordSim353 dataset1). A last

example comes from temporal sequence alignments, where

training data can be made of pairs of acoustic signals and

their corresponding optimal alignment (e.g. see [10]). In

such contexts, state of the art metric learning algorithms

face difficulties to accurately capture the idiosyncrasies of

the data. Indeed, the price to pay often implies a dramatic

increase of the number of constraints to satisfy. Here, we

overcome this issue by dealing with metric learning in a

regression setting that allows us to directly fit the target

scores.

When proposing a new algorithm for metric learning, it

is fundamental to prove that it is theoretically well-founded.

In this paper, a lot of work has gone into deriving theoret-

ical guarantees for our method through the algorithmic ro-

bustness framework introduced in [25]. We show that this

setting is particularly adapted to our framework because it

is based on a partition of the input space as we defined it for

our problem (see Section 3).

To recapitulate, our contributions are three fold:

1. We improve local metrics by learning linear combina-

tions of local models that (i) allow one to accurately

compare any pair of points, (ii) guarantees a certain

1http://alfonseca.org/eng/research/wordsim353.

html

Figure 2: Illustration of the influence of the local models based on

region distances: the more influent a local metric for the learned

metric, the lighter the color of the associated region. For example,

the local models of regions R6, R5, R7, R1 and R11 are more

influent than those of the other regions, while computing the dis-

tance between the two points of regions R6 and R5.

continuity of the distances in the entire input space,

and (iii) do not overfit;

2. We develop our metric learning approach in a regres-

sion setting that is not usual in this field;

3. We derive theoretical guarantees for our method

through the algorithmic robustness framework.

The remainder of this paper is organized as follows: in

Section 2, we introduce a short state of the art on metric

learning; Section 3 is devoted to the presentation of our al-

gorithm for which, in Section 4, we derive a generalization

bound based on algorithmic robustness; In order to show

that C2LM is able to deal with not only distance functions

but also similarity functions, we instantiate the local models

as Mahalanobis-like distances and as bilinear similarities;

Lastly, Section 5 is dedicated to the experiments. We con-

duct two series of experiments: a first one in color distance

perception, and a second one in string semantic similarities.

2. Related Work

A classic metric learning approach consists in learning a

unique Mahalanobis-like metric of the form dA(x1, x2) =
√

(x1 − x2)TA(x1 − x2), with A positive semi-definite

(A � 0) [4]. If A = I , the metric is an Euclidean dis-

tance. If a Cholesky decomposition is applied to A (then

A = LTL), the distance function corresponds to computing

an Euclidean distance in a new space, where the data are

linearly rescaled. For instance, the authors of [24], using

pair-wise information, learn a metric that minimizes the dis-

tance between similar examples and maximizes the distance

between dissimilar ones and show that it improves results

in clustering tasks. Other common metric learning frame-

works are LMNN (Large-Margin Nearest Neighbors) pro-

posed in [22] for improving k-nearest neighbor (kNN) clas-

sification and ITML (Information-Theoric Metric Learning)

introduced in [5] for handling constraints and prior knowl-

edge on the metric by means of the LogDet regularization.
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On the other hand, a global and linear metric may not

necessarily perform well for all problems, especially for

data that present multimodality and non-linearities. In those

cases, non-linear methods are more suitable, such as kernel

learning and local metric learning approaches. For instance,

in [23], Weinberger et al. have shown that learning simulta-

neously a set of local metrics, one for each region of the in-

put space or class label, improved their LMNN framework.

If local metric learning approaches can adapt well to

variations on the input space, they are also quite sensitive

to overfitting, especially when local metrics are learned in-

dependently from each other. In order to overcome this

problem, linear or non-linear combinations of local met-

rics (instead of only one metric) or kernels (see Multiple

Kernel Learning [1] and [7]) can be used to compare in-

stances and auxiliary information can be taken into account

by means of regularization terms. For instance, the authors

of [21] proposed a regularization based on the geometric

characteristics of the instance space: they learn jointly lin-

ear combinations of basis metrics (one local metric per re-

gion and one linear combination per input instance) and

constrain them to vary smoothly over the instances. The

weight vectors of close instances are then similar and reflect

the geometric characteristics of the input space. However,

the learned metrics are no longer symmetric and they are

accurate only when comparing instances relatively close to

each other. Another example of regularization is proposed

in [8], where the authors control the rank of the matrix of

the learned combinations of metrics, i.e. the total number

of parameters of the problem. Doing so, they penalize too

complex solutions, which are probably too specialized to

the training instances and have lost generalization power on

unseen instances. Their approach is based on the pair-wise

information about the similarity between instances and the

geometric structure of the input space is not taken into ac-

count.

Both frameworks [21, 8] are not suited for regression

tasks and their choice of defining a linear combination of

metrics for each input instance affects the complexity of

their problems: the number of parameters to be learned in-

creases with the size of the dataset. We claim that the po-

tential gained accuracy is not enough to justify the computa-

tional cost and, in any case, it entails some approximations

when testing on unseen data (they both assign the weight

vector of the closest training instance in term of Euclidean

distance).

As we will see, our approach (C2LM) is simple, theo-

retically founded, and accurate: it makes use of the geo-

metric characteristics of the input space and weight vectors

are learned on each pair of regions instead of each input

instance. Moreover, it can be applied for modeling both

distances and similarities; it is theoretically robust and has

good performances in practice.

3. Learning Convex Combinations of Local

Models

In this section, we present our optimization problem for

learning convex combinations of local models which takes

the form of a least absolute errors regression problem. For

the sake of clarity, we first give the few notations we will

employ in the rest of this paper.

3.1. Notations

Let X be the instance-pair space, i.e. the set of pairs

(x1, x2) ∈ U2, and y : X → Y ⊂ R a metric function

(the ground truth metric that can be a distance or a similar-

ity function). We assume that U is a compact [6] convex

metric space w.r.t. a norm ‖.‖ so that U ⊂ R
d. Thus, there

exists a constant R such that ∀x ∈ U, ‖x‖ ≤ R. We will

refer to Z = X × Y as the set of all possible valued pairs

p = (x1, x2, y(x1, x2)), where (x1, x2) ∈ X is a pair of

instances and y(x1, x2) is the associated target value. We

also denote P = {pi}ni=1 ⊂ Z the set of n training pairs.

3.2. Optimization Problem

Let us suppose that the instance space U has been de-

composed in K clusters or regions (one could perform

a Kmeans according to the Euclidean distance), denoted

{Rz}Kz=1 and, on each cluster, a local model sz : X → R

has been defined in order to compare instances belonging

to that specific cluster. Let S = {sz(.)}Kz=1 be the set of

metric functions related to the local models (which can be

distance functions, sz : U2 → R
+, or similarity functions,

sz : U2 → R). Our aim is to define on each pair of regions

(Ri, Rj) = Rij a metric function tij : X → R as a convex

combination of S and that is symmetric. The problem we

are trying to solve is how to compare instances potentially

belonging to different clusters. For each pair of regions Rij

we will learn a vector Wij of positive weights represent-

ing the contribution of each local model while estimating

the similarity between an instance x1 ∈ Ri and an instance

x2 ∈ Rj . Therefore, the new metric function tij(x1, x2)
related to that pair of regions can be expressed as follows:

tij(x1, x2) =

K
∑

z=1

Wijzsz(x1, x2). (1)

Notice that, as we want the new function to be a metric,

∀i, j = 1, ...,K tij(x1, x2) = tji(x2, x1): the K ×K ma-

trix of vectors W = [W11W12...WKK ] is symmetric, thus

∀i, j = 1...K, Wij = Wji.

We define a loss function l : Z → R over the training set

P , corresponding to the gap between tij and the ground

truth metric valued on each pair p = (x1 ∈ Ri, x2 ∈
Rj , y(x1, x2)):

l(W, p) = l(Wij , (x1 ∈ Ri, x2 ∈ Rj , y(x1, x2)))
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= |tij(x1, x2)− y(x1, x2)| . (2)

Among all the possible norms, we choose to define our loss

function as a L1-norm, i.e. the least absolute deviations,

because of its robustness to outliers. This loss is assumed to

be uniformly upper-bounded by a constant B, i.e. for any

pair p ∈ Z the deviation of the predicted value from the

expected one is finite.

We define our optimization problem, called C2LM, as fol-

lows:

argmin
W

FP (W ) = R̂l + λ1D(W ) + λ2S(W )

s.t. ∀i, j = 1, ...,K :
K
∑

z=1

Wijz = 1 andWij ≥ 0 (3)

where

R̂l =
1

n

∑

i,j,p∈Rij

l(W, p) =

=
1

n

K
∑

i=1

i
∑

j=1

∑

p∈Rij

∣

∣

∣

∣

∣

K
∑

z=1

Wijzsz(x1, x2)− y(x1, x2)

∣

∣

∣

∣

∣

(4)

is the mean loss over all training pairs, and

D(W ) =
K
∑

i=1

i
∑

j=1

∥

∥ET
ijWij

∥

∥

2

F
(5)

S(W ) =

K
∑

i=1

i
∑

j=1

K
∑

i′=1

i′
∑

j′=1

Kiji′j′ ‖Wij −Wi′j′‖22 (6)

are two regularizers used to avoid overfitting and λ1 and λ2

are the corresponding regularization parameters that have to

be tuned by cross-validation.

The first term, D(W ) takes into account the prior influ-

ence of each local model in the computing of a weight vec-

tor. For instance, for a vector Wij related to the pair of re-

gions (Ri, Rj), we penalize a solution that has big weights

associated to the local models that should not be influent in

the computing of the associated metric. As a matter of fact,

Eij is a 1 × K vector whose component Eijz represents

the prior influence of the metric sz . Eijz can be estimated

in different ways. In our work, we base this estimation on

the topological characteristics of the decomposition of the

space U . As we can see in Figure 2, a local model defined

on a region close to the pair of regions is more influent than

one far from it.

The second term, S(W ), expresses the correlations be-

tween different weights’ vectors. Through it, we force the

space of weights’ vectors to be smooth. In other words, we

constrain the vectors defined on close pairs of regions to

be similar. As for the prior influence, we base the estima-

tion of the similarity between two vectors Wij and Wi′,j′ ,

Figure 3: Similarity of a pair of regions: based on proximity, the

vector W56 should be more similar to the vector W11 than to the

vector W49.

Figure 4: Minimum Spanning Tree: the distance between two

regions corresponds to the number of edges of the shortest path

connecting them. E.g., dist(R5, R7) = 1, dist(R56, R4) =
dist(R5, R4) + dist(R6, R4) = 4 and dist(R56, R49) = 5.

expressed by the parameter Kiji′j′ , on the geometric char-

acteristics of the instance space U (see Figure 3).

In order to evaluate the prior influence of local mod-

els and the similarity between vectors of weights, we

need to define a distance function between regions. We

chose to build the Minimum Spanning Tree of the com-

plete graph of region centroids (computed using the Eu-

clidean distance), then to express the distance between

two regions as the number of edges of the shortest path

connecting them (see Figure 4). Therefore, for our ex-

periments, we will consider Eijz directly proportional to

dist(Rij , Rz) = dist(Ri, Rz) + dist(Rj , Rz) and the

similarity Kiji′j′ = exp(−dist(Rij , R
′
i′j)) exponentially

decreasing with dist(Rij , Ri′j′) = min(dist(Ri, Ri′) +
dist(Rj , Rj′), dist(Ri, Rj′) + dist(Rj , Ri′)).

The learned combinations of local models are convex, as

we fix their weights to be non-negative and to sum up to

1, and the resulting optimization problem is convex. Note

that the number of parameters to learn depends on the num-

ber of regions K defined on the input space and is directly

proportional to K3, then the number of constraints is also

directly proportional to K3. This is a main advantage of

applying C2LM to problems providing pairs of instances

and their target score, if we consider the fact that K ≪ n:

in order to adapt the state of the art approaches (meant for

classification tasks) to this kind of problems, a number of

constraints directly proportional to the number of instances
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of the dataset has to be added.

4. Robustness and Generalization Bound

In this section, we study the generalization ability of our

algorithm according to the notion of algorithmic robustness

introduced in [25]. This framework allows us to derive gen-

eralization bounds when the variation in the loss associated

with two nearby training and testing examples is bounded.

The closeness of two examples is based on the notion of

covering number. By making use of the Bretagnolle-Huber-

Carol inequality and proving that the metric functions sz(.)
are lipschitz continuous, we can can derive a PAC general-

ization bound for C2LM.

4.1. Theoretical guarantees

Let us define a partition of the space Z = X × Y of

all possible valued pairs p = (x, x′, y(x, x′)) in order to

establish if two pairs of instances are close. The partition is

based on the notion of covering number.

Definition 1 (Covering Number [20]) For a metric

space (S, ρ), and T ⊂ S, we say that T̂ ⊂ T is a γ-cover of

T if ∀t ∈ T , ∃t̂ ⊂ T̂ such that ρ(t, t′) ≤ γ. The γ-covering

number of T is

N (γ, T, ρ) = min{|T̂ | : T̂ is a γ-covering of T}. (7)

In other words, the γ-covering number of a metric space

corresponds to the minimum number of regions of radius at

most γ > 0 needed to cover it.

In order to define the closeness between instances of

a metric space Z = X × Y , both the input X and

the target Y spaces have to be partitioned. In most

works [2, 13, 12, 14], Y is the finite set of labels, so its

covering number is exactly equal to |Y | and two instances

are considered close if they have the same label. In our

setting, we partition the space X into N (γ1/2, X, ‖.‖
2
)

subsets and the space Y into N (γ2/2, Y, |.|), so that

any region of X (resp. Y ) has a diameter smaller than

γ1 (resp. γ2). In this way, if p = (x1, x2, y(x1, x2))
and p′ = (x′

1, x
′
2, y(x

′
1, x

′
2)) belong to the same subset

of Z , then ‖x1 − x′
1‖2 ≤ γ1, ‖x2 − x′

2‖2 ≤ γ1 and

|y(x1, x2) − y(x′
1, x

′
2)| ≤ γ2. In the rest of this paper, we

will refer to H = N (γ1/2, X, ‖.‖
2
)N (γ2/2, Y, |.|) as the

covering number of Z .

Definition 2 (Algorithmic Robustness [25]). An

algorithm A is said (H, ǫ(.))-robust, for H ∈ N and

ǫ : Z → R if Z can be partitioned into H disjoint subsets,

denoted by {Ci}Hi=1, such that the following holds for all

samples P ∈ Z:

∀p ∈ P, ∀p′ ∈ Z, ∀i = 1, ..., H

if p, p′ ∈ Ci then |l(A, p)− l(A, p′)| ≤ ǫ(P ).
(8)

The following concentration inequality provides a prob-

ability bound on the deviation of a multinomial random

variable from its expected value. We will use it for

obtaining information about the theoretical distribution of

the valued pairs p ∈ Z over the regions of the partition.

Proposition 1([20]) Let (|N1|), ..., |NH |) an IID (In-

dependent and Identically Distributed) multinomial ran-

dom variable with parameters n and (p(C1), ..., p(CH)).
By the Bretagnolle-Huber-Carol inequality we have:

P(
∑H

i=1

∣

∣

∣

|Ni|
n

− p(Ci)
∣

∣

∣
≥ λ) ≤ 2H exp −nλ2

2
, hence with

probability at least 1− δ,

H
∑

i=1

∣

∣

∣

∣

p(Ci)−
|Ni|
n

∣

∣

∣

∣

≤
√

2H ln 2 + 2 ln(1/δ)

n
. (9)

We denote Rl the true loss Rl = Ep∼Z l(W, p) and R̂l

the empirical loss R̂l = Ep∼P l(W, p) .

We can now derive a PAC generalization bound for

C2LM. We first prove that our algorithm is robust that

requires to prove that ∀z = 1, ...,K : sz(.) is θz-lipschitz.

According to the nature of the local metric functions sz(.),
the proof of θz-lipschitzness varies. In Sections 4.2 and 4.3,

we will instantiate sz(.) with Mahalanobis-like distances

and bilinear similarities.

Lemma 1 If ∀z = 1, ...,K, sz(.) is θz-lipschitz

w.r.t. the norm ‖.‖
2
, the optimization problem (3) is

(H, θ
√
2γ1 + γ2)-robust, with θ = maxz=1..K θz .

Proof. We can partition Z into H =
N (γ1/2, X, ‖.‖

2
)N (γ2/2, Y, |.|) disjoint subsets, such that

if p = (x1, x2, y(x1, x2)) and p = (x′
1, x

′
2, y(x

′
1, x

′
2))

belong to the same subset Ch, then x1, x
′
1 ∈ Ri so

‖x1 − x′
1‖2 ≤ γ1, also x2, x

′
2 ∈ Rj so ‖x2 − x′

2‖2 ≤ γ1
and |y(x1, x2)− y(x′

1, x
′
2)| ≤ γ2. We have, then:

|l(Wij , p)− l(Wij , p
′)| = (10)

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

K
∑

z=1

Wijzsz(x1, x2)−y(x1, x2)

∣

∣

∣

∣

∣

−
∣

∣

∣

∣

∣

K
∑

z=1

Wijzsz(x
′

1, x
′

2)−y(x′

1, x
′

2)

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

≤
∣

∣

∣

∣

∣

K
∑

z=1

Wijzsz(x1, x2)−
K
∑

z=1

Wijzsz(x
′

1, x
′

2)−y(x1, x2)+y(x′

1, x
′

2)

∣

∣

∣

∣

∣

(11)

≤
∣

∣

∣

∣

∣

K
∑

z=1

Wijz(sz(x1, x2)−sz(x
′

1, x
′

2))

∣

∣

∣

∣

∣

+
∣

∣y(x1, x2)−y(x′

1, x
′

2)
∣

∣

≤
K
∑

z=1

|Wijz|
∣

∣sz(x1, x2)− sz(x
′

1, x
′

2)
∣

∣+ γ2 (12)

≤
K
∑

z=1

|Wijz| θz
∥

∥

∥

∥

∥

(

x1

x2

)

−
(

x′
1

x′
2

)∥

∥

∥

∥

∥

2

+ γ2 (13)

≤ θ

∥

∥

∥

∥

∥

(

x1

x2

)

−
(

x′
1

x′
2

)∥

∥

∥

∥

∥

2

K
∑

z=1

Wijz + γ2 (14)
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≤ θ
√
2γ1 + γ2 . (15)

Eq. 11 is due to the reverse triangle inequality. Inequality

13 is valid because sz is multi-variate θz-lipschitz continu-

ous w.r.t. the norm ‖.‖
2

(see below). In Eq. 14, we define

θ = max∀z=1..K θz and recall that ∀i, j = 1, ...,K : Wij ≥
0. Eq. 15 is due to

∑K

z=1
Wij = 1.

√
2γ1 is the maximum

‖.‖
2

distance between the two vectors.

In the previous proof, we made use of the notion of

Multi-variate Lipschitz continuity.

Definition 3 (Multi-variate Lipschitz continuity). A func-

tion f : U2 ⊂ R
d × R

d → R, with U a convex space, is

said θ-lipschitz w.r.t. the norm ‖.‖
2

if ∃ θ ∈ R, θ > 0 that

∀x1, x2, x
′
1, x

′
2 ∈ U :

‖f(x1, x2)− f(x′
1, x

′
2)‖2 ≤ θ

∥

∥

∥

∥

(

x1

x2

)

−
(

x′
1

x′
2

)
∥

∥

∥

∥

2

. (16)

Roughly speaking, a function that is lipschitz continuous

varies slightly within a certain interval. This property is fun-

damental for the robustness of our algorithm: the fact that

the functions S = {sz(.)}Kz=1 are θz-lipschitz continuous

implies that any linear combination of them returns similar

values when evaluated on instances belonging to the same

region of the partition. According to [26], the constant θ
can be estimated considering the fact that

θ = max
∀x1,x2,x

′

1
,x′

2
∈U

(

‖f(x1, x2)− f(x′
1, x

′
2)‖2

∥

∥

∥

(

x1

x2

)

−
(

x′

1

x′

2

)

∥

∥

∥

2

)

=

= max
∀x1,x2∈U

‖∇f(x1, x2)‖2 . (17)

We can now derive the generalization bound of C2LM.

Lemma 2 As FP (W ) is (H, θ
√
2γ1 + γ2)-robust

and the training set P is obtained from n IID draws
according to a multinomial random variable, for any δ > 0
with probability at least 1− δ, we have:

|Rl − R̂l| ≤ θ
√
2γ1 + γ2 +B

√

2H ln 2 + 2 ln 1/δ

n
. (18)

Proof: See Supplementary Material.

It is worth noting that this bound tends to zero as the

covering number H increases (γ1 → 0 and γ2 → 0) and the

number of samples n → ∞. In the following subsections,

we will instantiate sz(.) with two different metric functions:

first as a Mahalanobis-like distance and then as a bilinear

similarity. For both of them, we will need to prove their θz-

lipschitz continuity and estimate their constant θz as defined

in Def. 3.

4.2. Derivation for Mahalanobis­like Local Models

The Mahalanobis distance of a pair (x1, x2) valued

for a local model z can be written as sz(x1, x2) =
dMz

(x1, x2) =
√

(x1 − x2)TMz(x1 − x2) with Mz the

corresponding (learned) PSD matrix. Thus, our objective

function takes the following form:

FP (W ) =
1

n

K
∑

i=1

i
∑

j=1

∑

p∈Rij

∣

∣

∣

∣

∣

K
∑

z=1

WijzdMz
(x1, x2)− y(x1, x2)

∣

∣

∣

∣

∣

+ λ1D(W ) + λ2S(W ) (19)

where M = {M1, ..,MK} is a set of Mahalanobis metrics.

Lemma 3 ∀z = 1, ...,K the Mahalanobis distance

dMz
(x1, x2) is θz-lipschitz w.r.t. the norm ‖.‖

2
, with

θz =
√
2 ‖Lz‖2.

Proof: See [26].

Lemma 4 FP (W ) is (H, 2γ1 ‖L‖2 + γ2)-robust and for

any δ > 0 with probability at least 1− δ, we have:

|Rl − R̂l| ≤ 2γ1 ‖L‖2 + γ2 +B

√

2H ln 2 + 2 ln 1/δ

n
.

(20)

The constant ‖L‖
2

corresponds to max∀z=1..K ‖Lz‖2 so

that θ =
√
2 ‖L‖

2
, because θz =

√
2 ‖Lz‖2.

4.3. Derivation for Bilinear Similarity Local Models

The bilinear similarity of a pair (x1, x2) can be written

as sz(x1, x2) = xT
1 Mzx2. Thus, our problem becomes:

FP (W ) =
1

n

K
∑

i=1

i
∑

j=1

∑

p∈Rij

∣

∣

∣

∣

∣

K
∑

z=1

Wijzx
T
1 Mzx2 − y(x1, x2)

∣

∣

∣

∣

∣

+ λ1D(W ) + λ2S(W ) (21)

where M = {M1, ..,MK} is a set of bilinear similari-

ties.

Lemma 5 ∀z = 1, ...,K the bilinear similarity

sz(x1, x2) = xT
1 Mzx2 is θz-lipschitz w.r.t. the norm ‖.‖

2
,

with θz =
√
2 ‖Mz‖2 R.

Proof: See [26].

Lemma 6 FP (W ) is (H, 2γ1 ‖M‖
2
R)-robust and

for any δ > 0 with probability at least 1− δ, we have:

|Rl − R̂l| ≤ 2γ1 ‖M‖
2
R+ γ2 +B

√

2H ln 2 + 2 ln 1/δ

n
(22)

‖M‖
2
= max∀z=1..K ‖Mz‖2 so that θ =

√
2 ‖M‖

2
R,

because θz =
√
2 ‖Mz‖2 R.
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5. Experiments

In this section, we aim at showing that C2LM is well

suited to deal with both distance and similarity functions.

Therefore, we empirically evaluate our method on two ap-

plications: first on the estimation of perceptual color dis-

tances and then on the estimation of semantic similarities

between words.

5.1. Applications and Datasets

Modeling perceptual color distances It is known

that a human observer cannot distinguish all the shades

corresponding to the different mixtures of light wave-

lengths. He is more sensitive to medium wavelengths (to

green/yellow colors) than to short and large wavelengths

of the visible spectrum. Moreover, human perception

strongly depends on variations of visual conditions, such

as brightness, luminance, background changes, and so

on. The perceived difference between colors cannot be

modeled using an additive color space as the RGB space,

because the corresponding distance is not proportional to

the Euclidean distance on that space.

In the past, several perceptual color spaces have been

proposed to better model the human color perception :

CIELuv and CIELab (see [19]) are two examples of such

efforts to model uniform perceptual spaces. However, these

spaces are still sensitive to some visual variations and can

be used only under standard image acquisition conditions.

This is because the camera configuration, such as white

balance, demosaicing and gamma correction, have a huge

impact on the final perception of the color distances.

We claim that, by means of C2LM, we can model a

perceptual color distance that is invariant to acquisition

conditions. For our experiments, we use the dataset built

by Perrot et al. [17]. We have at our disposal 29580

color patches, expressed in their RGB coordinates and

uniformly distributed in the RGB cube, and 41800 pairs of

color patches, taken under several viewing conditions and

with 4 different cameras, with their reference perceptual

distance ∆E00. Such a target distance corresponds to the

perceptual color distance and has been computed using

the CIEDE2000 color-difference formula [18] based on

CIELab space. However, it is reliable only under standard

viewing conditions (illuminant D65, illuminance of 1000

lx, etc. defined by the International Commission on

Illumination CIE) so it cannot be used in all circumstances.

Our proposal is to approximate the true perceptual distance

between two colors no matter the viewing conditions. For

this aim, the color patches are clustered using k-means

(using the Euclidean distance on the RGB space) and

on each so-found region a local model is learned as a

Mahalanobis-like distance (using the color pairs whose

patches both belong to that region). We then apply our

method for learning linear combinations of those distance

functions with manifold regularization, as detailed in sec-

tion 3. We compare our method to [17], where the authors

learn a set of Mahalanobis-like metrics independently from

each other: they cluster the color patches using k-means

and learn a local metric on each cluster and a global one

with the color pairs whose patches belong to different

clusters; they compute the distance between two colors

using the local distance if they belong to the same cluster

or the global distance if they do not. As [17], we evaluate

our method on two different tasks (testing on unseen colors

and on color pairs from unseen cameras).

Modeling semantic similarities The semantic similar-
ity between words is defined as the measure of closeness
in meaning between two terms. It is a measure defined
by human perception and it cannot be expressed by exact
rules. Nevertheless, it can be estimated by representing the
words as vectors of a continuous space (word embedding)
and computing their distance or similarity, for instance the
Euclidean distance or the cosine similarity. We show how
a word embedding can be enhanced using our method. As
in the previous application, we learn a local model on each
cluster of words (the clustering procedure accomplished us-
ing k-means with the Euclidean distance on the word em-
bedding) and then we apply C2LM on the learned local
models, which, in this case, are bilinear forms (see 4.3)
computed independently using the following optimization
problem:

argmin
Bz

1

n

∑

p∈Rzz

∣

∣

∣
xT
1 Bzx2 − y(x1, x2)

∣

∣

∣
+ ‖Bz‖F . (23)

For our experiments, we extracted the word embedding

from the Reuters News stories2 text corpus using the

Hellinger PCA as presented in [11]. We then evaluate dif-

ferent methods on the WordSim353-similarity dataset: it is

composed of 353 pairs of english words and for each pair

we have at our disposal its semantic similarity as estimated

by a human expert. We will compare our method with com-

puting the cosine similarity directly on the embedding and

with learning a set of local bilinear similarities and a global

one. Because the cosine similarity is capable of predicting

scores only in the interval [−1, 1] and the similarity scores

of the dataset are between 0 and 10, we first normalized the

target scores into the interval [−1, 1].

5.2. Implementation and results

We implemented our algorithm using the Cvxpy library3

and its SCS solver (see [16]). For our experiments,

we computed the best values for parameters λ1 and λ2

executing a grid search hyperparameter optimization

by cross-validation: we fixed them to λ1 = 0.01 and

2http://about.reuters.com/researchandstandards/

corpus/
3cvxpy.readthedocs.org/en/latest/
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Figure 5: Comparison of our method and local metric learning approaches, such as Perrot et al.’s method, for the application on perceptual

color distances (5a and 5b) and for the application on word semantic similarities (5c). The used criterion is the loss over the test instances.

λ2 = 10000 for the first application and to λ1 = 0.0001
and λ2 = 100 for the second one.

For the application on unseen colors, we show the mean

results of a 6-fold cross validation of the color patches set,

iterated five times. In Figure 5a, we represent the varia-

tion of the test loss over the number of clusters. We notice

that as the number of clusters increases the empirical test

loss decreases: a set of local metrics captures much better

the underlying geometry of the color space than a unique

global metric (K = 1). Moreover, with a small number of

clusters, the learned linear combinations are more expres-

sive than the local metrics: thanks to the prior influence

and similarity regularizations, we successfully prevent the

model from overfitting the training instances. This trend is

more and more important as the number of clusters grows.

For the application on unseen cameras, Figure 5b shows the

mean results of a 4-fold cross validation (leave one camera

out) of the color pairs set, iterated 3 times. Once again, our

method outperforms the state of the art. For both tasks, we

can note that with a very limited number of clusters, that is

only 5, our test loss is always smaller than every test loss

the approach of [17] could attain, even with 30 clusters. In

addition, we use the learned color metrics to perform image

segmentation and provide illustrations in the supplementary

material.

Concerning the application on semantic similarity, Fig-

ure 5c presents the mean results of a 6-fold cross validation,

iterated five times. We can note that learning metrics on the

word embedding gives better results than applying directly

the cosine similarity, but also that the local metrics fail to

improve the test error with respect to a global bilinear form.

On the contrary, C2LM converges with a limited number

of clusters to an enhanced test error. We also notice that,

against the trend, the test error increases when passing from

one to two clusters. This can be explained by the fact that

the quality of the local models is so poor that the learned

convex combinations of them cannot be good.

6. Conclusion

In this paper, we proposed a new method for learning

convex combinations of local models given a prior knowl-

edge on their correlations. We proved that our learning al-

gorithm is theoretically founded w.r.t. the algorithmic ro-

bustness framework. Empirically, our approach has better

results than the state of the art to estimate perceptual color

distances and semantic word similarities.

So far, we assumed that the local models were provided. A

possible perspective of this work is to jointly learn the lo-

cal metrics and their linear combinations. The optimization

problem would take the form of a double regression, one

over the points belonging to the same region and one for all

the others. In this way, we could guarantee that the local

models perform well both locally and globally speaking by

means of regularization.
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[6] M. Fréchet. Sur les fonctionnelles continues. In Annales Sci-

entifiques de L’Ecole Normale Superieure, volume 27, pages

193–216, 1910.

[7] S. Hauberg, O. Freifeld, and M. J. Black. A geometric take

on metric learning. In Advances in Neural Information Pro-

cessing Systems, pages 2024–2032, 2012.

[8] Y. Huang, C. Li, M. Georgiopoulos, and G. C. Anagnos-

topoulos. Reduced-rank local distance metric learning. In

Machine Learning and Knowledge Discovery in Databases,

pages 224–239. Springer, 2013.

[9] B. Kulis. Metric learning: A survey. Foundations and Trends

in Machine Learning, 5(4):287–364, 2012.

[10] R. Lajugie, D. Garreau, F. R. Bach, and S. Arlot. Metric

learning for temporal sequence alignment. In Advances in

Neural Information Processing Systems 27: Annual Confer-

ence on Neural Information Processing Systems 2014, De-

cember 8-13 2014, Montreal, Quebec, Canada, pages 1817–

1825, 2014.

[11] R. Lebret and R. Collobert. Word emdeddings through

hellinger pca. arXiv preprint arXiv:1312.5542, 2013.

[12] Y. Mansour and M. Schain. Robust domain adaptation. An-

nals of Mathematics and Artificial Intelligence, 71(4):365–

380, 2014.

[13] E. Morvant, A. Habrard, and S. Ayache. Parsimonious unsu-

pervised and semi-supervised domain adaptation with good

similarity functions. Knowledge and Information Systems,

33(2):309–349, 2012.

[14] M.-I. Nicolae, M. Sebban, A. Habrard, É. Gaussier,
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