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Abstract

We investigate the feature design and classification ar-

chitectures in temporal action localization. This applica-

tion focuses on detecting and labeling actions in untrimmed

videos, which brings more challenge than classifying pre-

segmented videos. The major difficulty for action localiza-

tion is the uncertainty of action occurrence and utilization

of information from different scales. Two innovations are

proposed to address this issue. First, we propose a Pyra-

mid of Score Distribution Feature (PSDF) to capture the

motion information at multiple resolutions centered at each

detection window. This novel feature mitigates the influ-

ence of unknown action position and duration, and shows

significant performance gain over previous detection ap-

proaches. Second, inter-frame consistency is further ex-

plored by incorporating PSDF into the state-of-the-art Re-

current Neural Networks, which gives additional perfor-

mance gain in detecting actions in temporally untrimmed

videos. We tested our action localization framework on the

THUMOS’15 and MPII Cooking Activities Dataset, both of

which show a large performance improvement over previ-

ous attempts.

1. Introduction

Action recognition is an active research area with many

potential applications in multimedia, home care, logistic

support and security-based applications. With the technol-

ogy advancement of network infrastructure, social media

and video-capturing devices, the explosion of video con-

tents has greatly lifted the demand of automatic content

analysis. There are considerable amounts of work on an-

alyzing human activities in videos; many pieces of work

focus on action classification, labeling human actions with

various datasets [30, 16, 34, 39, 28, 13]. It is not a easy

problem since human activities often vary in pose, inter-

action, clothing and background. During the last decade,

great progress has been made on both the dataset quality

and recognition algorithms.

Figure 1. Our framework for temporal action localization. We

encode visual features at multiple temproal resolutions, combine

with class SVM scores to form our Pyramid of Score Distribution

Features (PSDF). The features are further processed by Recurrent

Neural Networks (RNN) to produce action detection results.

Despite the great improvements in action classification,

there are still drawbacks in this field. Most human ac-

tion classification algorithms are developed on datasets of

trimmed videos [26, 30, 16, 20], where each video file is

aligned with a single human action. The videos are often

trimmed by hand. This setting simplifies the real-life video

content analysis, however it is most of the time unrealistic,

since a real video often contains multiple action instances as

well as irrelevant backgrounds, i.e. the video is untrimmed.

A more practical setting is to label every video frame with

action classes; this can be considered as a detection task

which brings in new challenges due to the uncertainty in

action occurrence, where the action label, position and du-

ration are all unknown.

This per-frame labeling process utilizes both the current

frame action information and inter-frame consistency. It can

be considered as an automatic trimming processes, includ-

ing the detection of action start / stop time and classifying

the underlying action at the same time. This task is much

more demanding than outputting a label from a video file,

and requires huge amount of temporally labeled video data.

Due to the cost of annotation, the studies in the temporal ac-
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tion localization problem are still developing at a primitive

stage [25], with a limited number of temporally annotated

datasets.

The THUMOS Action Recognition Challenge [9] is de-

veloped to address this issue. The dataset provides a large

amount of untrimmed videos from real-life human activities

with temporal annotations, with which it is viable to further

investigate temporal action localization under the realistic

setting. Yet, the problem is still difficult in practice. First,

the scale of sliding window is hard to choose. Since the true

duration can vary vastly, a single size detection window can

hardly match the effective portion of the underlying action.

Second, the multi-resolution approach to address the scaling

issue often results in high dimensionality if the multi-scale

features are simply concatenated; if the features are scored,

a simple non-maximal suppression used in [10, 25] is prone

to noise and might not well exploit the underlying feature

distribution.

To address those difficulties, we propose the Pyramid

of Score Distribution Features (PSDF) for the temporal ac-

tion localization task. This feature aims at capturing the

multi-resolution context around anchor frames. Each an-

chor frame serves as the center of context pyramid, and

each scale of the pyramid is described with action scores

extracted with Fisher Encoded Improved Dense Trajecto-

ries (IDT) [35]. This multi-resolution feature is straight

forward to understand: if one scale is close to the correct

action occurrence, its corresponding score should be high,

together with its neighboring scales. In other words, we

utilize the multi-resolution action response distribution for

each anchored detection window and explore the action in-

formation from various temporal scales centered on this an-

chor point. This multi-resolution approach is more robust

than a single scale feature representation where only the in-

formation from a fixed length window is considered. By

exploiting the distribution among these scores, we can use

a classifier to label the frames. We test our features on

the THUMOS’15 [9] Dataset and MPII Cooking Activities

Dataset [25].

To further explore the temporal consistency, we com-

bine our PSDF descriptor with the state-of-the-art Recur-

rent Neural Networks (RNN). RNN is widely used in se-

quential data analysis, with a natural Markovian structure

to utilize context information. The PSDF focuses on con-

fidence level at current, while the combination with RNN

gives a better modeling of its temporal transition - both con-

sistency over one action and switching between different ac-

tions. Sometimes the windows at current frame appear to be

noisy, nonetheless the representation can be much more ro-

bust with the propagation of previous multi-resolution con-

texts. We use two types of RNN, the Elman-Net [7] and

Long Short Term Memory (LSTM) [12] networks on our

PSDF descriptor for detection tasks; these non-linear classi-

fiers have higher precision over linear ones, with utilization

of temporal feedbacks. The framework is shown in Fig-

ure 1.

The rest of this paper is organized as follows: Section 2

briefly introduces the related work on human action recog-

nition. Section 3 describes our Pyramid of Score Distribu-

tion Features (PSDF) for temporal action localization. The

further refinements on action detection with Elman-Net and

LSTM networks are covered in Section 4. The experiment

results are reported in Section 5. Section 6 proposes poten-

tial improvements to our framework as future studies. Sec-

tion 7 concludes this paper.

2. Related Work

A substantial amount of work has been developed in the

area of action recognition. There are various human action

datasets built for algorithm development, on sources from

movies, surveillance videos as well as daily captures [25].

An extensive list can be found in [2]. The KTH, UCF-

101, HMDB-51 and Hollywood2 [26, 30, 16, 20] datasets

are frequently used in human activity classification. The

Coffee and Cigarettes, High Five, MSR Action Dataset and

MEXaction2 [18, 21, 41, 31] are datasets with action detec-

tion tasks. Some datasets, like the MPII Cooking Activities

Dataset [25], are developed for both classification and de-

tection tasks.

Many datasets for temporal action localization are small,

and with highly unbalanced action classes. This is due to the

high cost of temporal annotation, and often results in over-

fitting in detection algorithms. Thus the studies of temporal

localization are still quite primitive. The THUMOS Action

Recognition Challenge [9], first held in 2013, is a signifi-

cant attempt to bring in large scale dataset for both classi-

fication and detection; it has become an important platform

for exploring new approaches in action studies. The THU-

MOS’15 dataset contains over 430 hours of video data and

45 million frames [9] for untrimmed action classification

and temporal localization, based on which we develop our

localization framework.

The methodologies for action recognition have been de-

veloping fast. Earlier attempts include space-time features

like STIP [17] and extensions on classical image descrip-

tors [27, 37, 14, 40]. Heng Wang and Cordelia Schmid [34]

proposed the Dense Trajectories (DT), which is widely used

in subsequent action recognition studies. This feature tracks

points on dense optical flow field, and encodes the trajecto-

ries with local descriptors. They further improved their DT

features (IDT) by offsetting camera motion, and use Fisher

Encoding to improve the classification performance [35].

Minh Hoai et al. [11] proposed a score ranking method for

action classification. They partitioned the video at global

level with different granularity, formed Fisher Vectors [22]

(FV) and ranked the action scores to an ordered distribution
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Figure 2. Our temporal localization framework. The boxes in the first row are generated with features from training set.

for classification. Our PSDF is partially inspired by their

work, while we use score distribution locally rather than

globally; it is extracted at anchor frames at multiple scales

to form a robust descriptor for action localization.

For detection tasks, the High Five [21] and Coffee and

Cigarettes [18] datasets are earlier attempts for action local-

ization. Both focus on spatial-temporal detection which is

more challenging, however these datasets are small and the

methodologies have yet to be tested on large-scale datasets.

Yuan et al. [41] proposed an efficient pattern searching

algorithm. Marcus et al. [25] proposed the MPII Cooking

Activities Dataset which contains fine-grained human ac-

tivities; the dataset contains both classification and tempo-

ral localization tasks. The detection is based on DT fea-

tures, with integrated histogram for efficient computation.

Stoian A. et al. [31] developed the MEXaction2 dataset

for two-class action retrieval; their baseline methodology

is quite similar to [35], with Fisher Encoding on DT fea-

tures. In THUMOS’14, the CUHK submission [36] applied

both IDT and Convolutional Neural Networks (CNN) fea-

tures with a single resolution sliding window. The FV from

motions and average pooled CNN features from scenes are

fused to give the detection labels on video segments. The

INRIA submission [10] used IDT features only, but applied

sliding windows at multiple resolutions; its methodology is

similar to [25], where a simple non-maximal suppression

is applied to separate detection windows. They also used

many post-processing techniques to refine detection labels.

In our work, we take a more structural approach by using

classifiers on distributions, which better utilizes context in-

formation and generates more robust results.

The neural networks has achieved great success in com-

puter vision applications. The CNN [19] has been domi-

nating in image classification [15, 29], and its intermedi-

ate features generated by hidden layers have been widely

used in object detection, segmentation and saliency appli-

cations. Karen et al. [28] proposed a two-stream CNN for

action recognition in videos. Andrej et al. [13] proposed

various CNN fusion models for large-scale video classifica-

tion. Xu et al. [39] proposed the latent concept descriptors

(LCD), combined with Fisher / VLAD encoding on differ-

ent layers of CNN intermediates, which gives comparative

performance with IDT features. This method is used by

most participants in the classification task of THUMOS’15.

The RNN has also been widely used in video content anal-

ysis. Pedro et al. [24] proposed a recurrent structure for

scene labeling. The LSTM structure was incorporated by

Jeff D. et al. [6] and Wonmin B. et al. [5] respectively in

video recognition and scene labeling. Wu. et al. [38] pro-

posed a hybrid deep network for video classification, which

uses LSTM networks on top of spatial and temporal CNN

features. Vivek V. et al. [33] proposed a differential RNN

for action recognition, emphasizing the information gain

with the salient motions between successive frames. These

works have more focus on classification, while our paper

emphasizes more on temporal action localization.

3. Pyramid of Score Distribution Features

3.1. Motivation

In a typical action localization task, the dataset normally

consists of untrimmed videos with multiple actions mixed

with background movements. Neither the action label, po-

sition nor the duration is known and a per-frame labeling

process is generally required. This is different from the

trimmed action classification tasks, where only one action

is contained in a file and a video-level pooling is applicable.

Deciding the sliding window size can be challenging in

the localization task. A window too small can only cover

a small action fragment, makes the action features noisy

and causes extra computation cost; while a window too

large will include lots of background movements and make

the feature biased from its real distribution. The multi-

resolution approaches are used in [25, 10] to address the

problem; they use action scores instead of raw features to

avoid high dimensionality, and use the max scores to sepa-

rate detection windows. Each window is classified with one

action for the localization task. However, using noisy max

scores is not robust enough and fails to utilize more abun-

dant distribution information, which motivates our struc-

tural approach.

In our experiments, we find the action response are cor-
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Figure 3. The formation of PSDF descriptor at anchor frame t. We use unnormalized Fisher Vector (uFV) at the base resolution and

compute the uFV recursively in all resolution levels. The additive uFV is re-normalized, combined with class SVM to generate score

distributions. The score should be high at the closest window coresponding to the underlying action. The PSDF is a straight forward

descriptor, since the score distribution contains information of action label, position and duration.

related in different temporal scales. If an action is found at

one scale, its neighboring scales are still representative for

this instance. Specifically, the action scores should satisfy a

distribution in a temporal pyramid. Based on this observa-

tion, we propose a novel Pyramid of Score Distribution Fea-

tures (PSDF). A fixed-size sliding window is applied across

the untrimmed video at evenly distributed anchor frames to

detect potential action positions. The process is repeated at

multiple temporal resolutions to cover different action du-

rations. Each window is treated as an video segment and

the action classification pipeline in [35] is applied. We use

the class SVM scores instead of encoded trajectory features

as descriptor at the anchor frames. The PSDF is later used

to train temporal action detectors, with SVM or RNN. The

process is illustrated in Figure 2.

The PSDF is an intuitive feature descriptor: it represents

the confidence level of action class, position and duration.

For example, if an action is found in resolution r, the confi-

dence should be high at this correct temporal scale, together

with its neighbors, as in Figure 3. We can train a linear

SVM on the distribution from each anchor frame to detect

the labels. Since this SVM is directly related to temporal

localization, we call it Temporal-SVM to avoid confusion

with the Class-SVM used to generate action scores. Alter-

natively, we can use the PSDF to train more complicated

RNN classifiers.

The benefits of our approach lies in the following:

1. The use of multi-resolution naturally captures the in-

formation spanned in temporal scales. A single scale [36]

might not contain enough discriminative information, while

a temporal pyramid is more comprehensive and provides

significantly better performance.

2. The Temporal-SVM is a better classifier compared to

the crude max score approach; the latter is more prone to

noise and fails to fully utilize the distribution information.

The PSDF also allows us to apply more complex classifiers

as in Section 4.

3. The PSDF descriptor can be calculated in a linear

recursive way which greatly accelerates the computation,

as shown in the following section.

3.2. Feature Encoding in Multiple Resolutions

We score the IFV at each anchor frame and across all the

temporal resolutions to form our PSDF descriptor. Due to

the high cost of computation, we modify the IFV process

so that the multi-scale representation can be obtained by a

linear combination from a base resolution, as in Figure 3.

We use the IDT [35] with Improved Fisher Encoding to

get the IFV [23] in a single sliding window. The IDT fea-

tures are compressed by PCA, and clustered with Gaussian

Mixture Models (GMM). The clusters are denoted as tuple

{(πk,µk,Σk) | k = 1, 2, ... K}. Given all the IDT fea-

tures in a window F = (x1,x2, ... xN ), we apply Fisher

Encoding [22] on each of the sub-features:

ujk =
1

N
√
πk

N∑

i=1

qik
xji − µjk

σjk
, (1)

vjk =
1

N
√
2πk

N∑

i=1

qik

[(
xji − µjk

σjk

)2

− 1

]
. (2)

ujk and vjk stand for the deviation brought by all the sam-

ples at element j and mode k. qik stands for the posterior

probability of sample i at mode k:

qik =
exp

[
− 1

2 (xi − µk)
T
Σ

−1
k (xi − µk)

]
∑K

m=1 exp
[
− 1

2 (xi − µm)TΣ−1
k (xi − µm)

] (3)

The FV is obtained by concatenating the vector u and v.

Further applying signed square-rooting and L2 normaliza-

tion on the FV elements yields the IFV. An Class-SVM can
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be trained to classify actions; this is the standard pipeline in

a trajectory based action classification. In detection tasks,

we use the scores generated by this Class-SVM (from the

training set) as descriptor in a sliding window.

It is expensive to score the IFV on all the anchor frames

across all the resolutions; for R resolutions and A anchor

frames, this results in AR computations for IFV. Since the

number of features increases with temporal scales, the over-

all complexity can be O(AR2), which is extremely costly.

To accelerate the computation, we unnormalize the FV

(uFV) to make them additive by taking away the normaliza-

tion factorN
√
πk andN

√
2πk. We define a base resolution

0 sampled at half of resolution 1, and use the uFV computed

at this level to get uFV for other resolutions. Let r stand for

the resolution level,N(t) stand for the set of features at base

resolution 0 after anchor frame t, we have:

φt,0 , u′jk,t,0 =
∑

i∈N(t)

qik
xji − µjk

σjk
, (4)

ψt,0 , v′jk,t,0 =
∑

i∈N(t)

qik

[(
xji − µjk

σjk

)2

− 1

]
, (5)

φt,1 = φt−1,0 + φt,0, (6)

ψt,1 = ψt−1,0 + ψt,0, (7)

φt,r = φt,r−1 + φt−r,0 + φt+r−1,0, (8)

ψt,r = ψt,r−1 + ψt−r,0 + ψt+r−1,0. (9)

The above recursive addition only needs to compute the

uFV once at the base resolution, which greatly reduces the

computation cost. FV can be obtained by re-normalizing

with the factor
√
πk and

√
2πk; the factor N is ignored

since it gets canceled out by subsequent IFV normalization.

The IFV of all sliding windows can be computed efficiently

by moving down the anchor frame. Since the computation

is dominated by generating uFV, this approach reduces the

complexity from O(AR2) to O(A).
We can get the PSDF by applying the Class-SVM on the

IFV at anchor frames. A Temporal-SVM can be trained on

the PSDF to directly detect actions, or as the input of more

complicated network classifiers.

4. Recurrent Neural Networks for Action De-

tection

While the PSDF describes the confidence of action class,

position and duration at anchor frames, it is desired to ex-

plore the evolution of this feature with temporal structures.

Within the same action instance, the PSDF at neighboring

anchor frames should have consistency; while at transition

points, the neighboring PSDF should have distinct distri-

butions. Also, the feature becomes more robust to noise

with temporal contexts. To model the temporal evolution

of PSDF in action localization, we combine the feature

with the state-of-the-art Recurrent Neural Networks (RNN).

The multi-resolution context from PSDF propagates in the

network, allowing a more comprehensive representation of

temporal action information.

4.1. Recurrent Structures

We use two types of RNN, the Elman-Net [7] and

LSTM [12] networks to generate detection labels at anchor

frames. The RNN structure combines the current input with

previous states, propagating the context information to sub-

sequent time steps. A typical feedback structure of RNN is

shown in Figure 1. We use the PSDF as the network input,

and class labels as the network output.

Elman-Net. The Elman-Net linearly combines the cur-

rent input and the hidden state from the last time step. The

current hidden state is generated via a non-linear activation

on the combination, typically a sigmoid or tanh function.

A softmax classifier as the output layer is applied to rec-

ognize the underlying data. The forward propagation of

Elman-Net is as follows:

ht = tanh(W xxt +W hht−1 + bh), (10)

yt = softmax(Wht + b). (11)

LSTM. The LSTM networks are developed to address the

vanishing / exploding gradients in the training process, by

enforcing constant error flow in its memory cell [12]. The

cell has of four elements: an input gate, an output gate, a

forget gate and a self-recurrent connection with a weight of

one to ensure constant error flow. The gates serve as non-

linear units, modulating the interaction between the cell and

current input / output, as well as its previous states. We use

the setting in [1] to determine the gate and cell candidate

states:

it = σ(W ixt +U iht−1 + bi), (12)

f t = σ(W fxt +Ufht−1 + bf ), (13)

ot = σ(W oxt +Uoht−1 + bo), (14)

C̃t = tanh(W cxt +U cht−1 + bc). (15)

The cell state and output are determined:

Ct = it ∗ C̃t + f t ∗ C̃t−1, (16)

ht = ot ∗ tanh(Ct). (17)

yt = softmax(Wht + b). (18)

The experiment setting in our detection task is similar to

Elman-Net, with PSDF arranged by time steps as input and

anchor frame labels as output. Since the PSDF is already

a descriptive feature, we only use one hidden layer in these

networks.
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4.2. Smoothing Regularizer

The PSDF contains action scores from C classes and

R scales, together with dimension RC. The scores from

different resolutions are often correlated, e.g. they should

not vary vastly at neighboring scales. As a result, the cor-

responding network weights applied to PDSF should also

present a similar internal structure. To incorporate this

characteristic, we apply a smoothing loss on the network

weights:

J(W x) =

C∑

c=1

R−1∑

r=1

‖ wx(c,r+1) − wx(c,r) ‖22 (19)

This regularizer results in about 1% performance im-

provement in our detection experiments. It is combined

with the L2 regularizer to limit the effective degree of free-

dom and promote better generalization capabilities.

4.3. Practical Considerations

Unbalanced Data. The background actions often domi-

nate the untrimmed videos in the localization task, and the

number of action instances from different classes can vary

vastly. These result in a highly uneven composition of la-

bels. To address the problem, we apply different weights,

typically inverse proportional to the action instances in each

class, in training the Temporal-SVM and RNN. The class

balancing gives improved classifier performance in the de-

tection task.

Different Video Lengths. The RNN does not require uni-

form sequence duration; nonetheless padding the sequences

in a batch to the same length will allow fast parallel pro-

cessing. Also, it is practical to break very long sequences

into smaller fragments, since the correlation with long time

lags is generally small. For the simplicity of training, we

break the video sequences into shorter fixed-length seg-

ments, with the tail padded with zeros.

5. Experiments

We report the experiment results of our frame-

work on THUMOS’15 [9] and MPII Cooking Activities

Dataset [25], and compare with previous state-of-the-art at-

tempts. Both datasets are large-scale and serve as bench-

marks of many related studies. We also report the ex-

periments with different resolution levels and classification

methods to demonstrate the strength of our approach. The

PSDF outperforms the benchmarks, while the combination

with RNN further boosts the detection performance. Exten-

sive evaluation is still difficult in action localization because

of the lack of datasets and different evaluation standards.

5.1. The THUMOS’15 Challenge

The THUMOS Action Recognition Challenge is the

largest action recognition challenge, benchmarking the per-

formance in both action classification and detection. The

training set of THUMOS’15 Challenge is the UCF-101 [30]

dataset, containing over 13,000 trimmed videos from 101

classes. The validation, test and background sets con-

tain approximately 2100, 5600 and 3000 untrimmed videos

from YouTube. We resize the videos so that their long edges

has a fixed length of 320 pixels.

In the temporal action localization task, only 20 out of

the 101 classes need to be detected. The action classes as

well as its temporal annotation need to be retrieved. The

evaluation is based on Interpolated Average Precision (AP),

and mean AP (mAP) averaged over all classes. A detection

Rp is considered correct if its overlap o with ground truth

Rgt is over a specified value:

o =
Rp ∩Rgt

Rp ∪Rgt

(20)

The given overlap takes five discrete values, ranging from

0.1 to 0.5, as specified in the evaluation toolbox.

We use the training set to generate PCA projection ma-

trix with a reduction factor of 2, and 256 GMM clusters. We

use the openCV implementation on IDT extraction [35] and

VLFeat [32] library on GMM clustering. The VLFeat li-

brary for Fisher Encoding is modified so that it can compute

uFV efficiently; this significantly accelerates the computa-

tion of PSDF descriptors. The background set is combined

with the training set to generate one-vs-the-rest Class-SVM

under the liblinear [8] implementation. Thus for each given

video segment, we can get 101 class scores based on IFV

pooling on IDT features.

The validation set is used to generate the Temporal-

SVM. To generate PSDF, we use nine resolutions from 10

to 90 frames with increment of 10 frames. The base resolu-

tion to generate uFV is chosen at 5 frames (∼0.2s), which

is also the distance between anchor frames. The short pe-

riod is chosen to ensure the instantaneous actions are not

diluted by backgrounds. We use a full score distribution on

101 classes, so each anchor point has 101*9 = 909 action

scores which are used for training the Temporal-SVM. For

demonstration of the score distribution, we manually crop

a video clip and show the scores from different resolution

levels in Figure 4.

The detection results on the testing set of THUMOS’15

is given in Table 1 with PSDF and Temporal-SVM. Our re-

sults outperform the previous state-of-the-art submission on

THUMOS’14, given that the size of testing set has signif-

icantly expanded from 1500 to 5600 videos. The THU-

MOS’15 validation set is constructed from THUMOS’14

validation and test set, so it is possible to evaluate our

framework on this set for more comparative results. Al-

though some of the non-detection videos (not belonging to

the 20 detection classes) are not included, these background

videos turn out to have very limited impact on the detection
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Figure 4. Confidence scores with action instances. The scores are

higher at the corresponding position and duration, and smoother at

larger temporal scales. Scores from different resolutions are highly

correlated, making the representation more robust.

mAP 0.1 0.2 0.3 0.4 0.5

TM’14

CUHK [36] 18.2 17.0 14.0 11.7 8.3

INRIA [10] 36.6 33.6 27.0 20.8 14.4

Ours. 51.4 42.6 33.6 26.1 18.8

TM’15 Ours. 40.9 36.3 30.8 23.5 18.3

Table 1. Detection results on THUMOS’14 and THUMOS’15

Datasets.

mAP 0.1 0.2 0.3 0.4 0.5

Max Classifier 45.6 36.8 28.6 22.1 16.7

T-SVM (Ours.) 51.4 42.6 33.6 26.1 18.8

Table 2. Max Vs. SVM classifier on PSDF descriptor. Temporal-

SVM utilizes distribution information and gives better perfor-

mance.

performance.

We also provide experimental results with different num-

ber of resolution levels and use of max classifier (used in

non-maximal suppression) in Figure 5 and Table 2. The

results validates our approach on multi-resolution and dis-

tribution of scores.

For non-linear Elman-Net and LSTM, we use only one

hidden layer initialized with our Temporal-SVM. The input

PSDF are segmented under different sequence lengths: 20,

40 and 100. A 10% overlap is applied to promote smooth

transition between neighboring video segments, minimiz-

ing the effects of initialization of RNN. The Elman-Net and

LSTM are written in python with Theano library [3, 4], with

smoothness and L2 regularization, and ADADELTA [42]

learning algorithm. The experiment results with Elman-Net

and LSTM are shown in Table 3.

Figure 5. mAP Vs. # of Resolution Levels. The detection per-

formance improves with a larger number of temporal scales. Log

scale is used for visualizing mAP under larger overlaps.

mAP 0.1 0.2 0.3 0.4 0.5

Elman-Net

20 62.1 51.0 38.0 26.4 16.3

40 60.8 49.2 36.8 26.1 16.5

100 59.0 47.1 36.2 25.5 16.9

LSTM

20 58.8 47.5 35.9 24.9 16.0

40 56.9 46.2 34.4 25.7 16.4

100 55.1 43.9 33.9 24.8 16.3

Table 3. Detection performance with Elman-Net and LSTM net-

work on PSDF with different sequence lengths. The context in-

formation is better utilized with the non-linear recurrent networks,

resulting in enhanced detecion performance.

We also list the detection AP of each class in Figure 6.

The easy classes include CleanAndJerk, CliffDiving and

GolfSwing with relatively higher mAP, while CricketShot

and FrisbeeCatch are difficult classes whose mAP are much

lower.

5.2. MPII Cooking Activities Dataset

The MPII Cooking Activities Dataset [25] consists of

high resolution videos of fine-grained activities. It has 65

classes of cooking activities with both classification and

detection tasks. We use a similar experiment setting with

THUMOS’15 except that the videos are not resized; this is

because the fine-grained actions can only be well captured

in high resolutions.

The midpoint hit criterion is used to evaluate the detec-

tion performance: if the midpoint of the detection lies in

the ground truth, the detection is considered correct. Due

to the computation cost of cross validation, we only evalu-

ate the detection task on the first subject (also re-evaluation

of the baseline results). The experiment results is shown in

Table 4, where the utilization of RNN has greatly improved
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Figure 6. Detection AP over different action classes with overlap = 0.1.

the detection performance.

Precision Recall

Baseline [25] 17.7 40.3

Ours.

Temporal-SVM 27.3 42.5

Elman-Net (20) 34.1 56.3

LSTM (20) 36.3 59.7

Table 4. Detection results on MPII Cooking Dataset. Our experi-

ments are based on the PSDF descriptor.

5.3. Computation Requirement

We use a server with Intel Core i7-5930K, 64 GB RAM,

and an nVidia Geforce TITAN X graphics card for our

experiments. The approximate computation requirement

for THUMOS’15 Dataset and MPII Cooking Activities

Dataset are shown in Table 5. Unlisted processes (dictio-

nary, Temporal-SVM, etc.) have negligible computation

cost. The computation of IDT takes most of the time, es-

pecially at high resolutions; it also consumes considerable

disk space.

Process Device Storage Time

Video - 500G / 8G -

Trajectory cpu 10T / 240G 21d / 10d

Encoding cpu 6T / 90G 20h / 4h

Class-SVM cpu - 1d / 1h

PSDF gpu 40G / 350M 12h / 2h

Elman-Net gpu - 1d / 3h

LSTM gpu - 2d / 6h

Table 5. Computation requirement for THUMOS / MPII Datasets.

6. Future Studies

Our detection framework is based on trajectory features

from actions. The studies in [39] use a novel feature pool-

ing technique based on CNN as enhancement of trajecto-

ries, and achieve best performance in action classification

in THUMOS’15. Incorporating scene features are more

challenging in action localization tasks since they are more

sensitive to the background, nonetheless it provides a novel

study point we would like to further explore into.

We shall also study different network structures on the

classification performance. The impact of different num-

ber of hidden layers, hidden units and feedback structures

are to be further studied. It is also possible to learn feature

descriptors at an earlier stage of processing.

The additive feature generation can be extended simi-

larly in spatial domain. Combination with the heuristic in-

formation, like human / object detection and density of op-

tical flows would provide prospects for more challenging

spatial-temporal localizations.

7. Conclusion

We propose a novel PSDF descriptor for temporal ac-

tion localization. Based on IDT, we apply Fisher Encoding

on each anchor frame at multi-resolutions, followed by the

Class-SVM to generate PSDF scores. The PSDF is a intu-

itive descriptor for action class, position and duration; and

it can be calculated in an efficient linear recursive way. The

descriptor is robust and representative by utilizing the dis-

tribution information.

We also apply the Elman-Net and LSTM networks to re-

fine the localization tasks. These non-linear classifiers fur-

ther exploit the consistency of context information and fur-

ther boost the detection performance. We tested our frame-

work on the THUMOS’15 and MPII Cooking Activities

Dataset, and both give improved performance the previous

attempts.
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