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Abstract

We present an approach that exploits hierarchical Recur-

rent Neural Networks (RNNs) to tackle the video captioning

problem, i.e., generating one or multiple sentences to de-

scribe a realistic video. Our hierarchical framework con-

tains a sentence generator and a paragraph generator. The

sentence generator produces one simple short sentence that

describes a specific short video interval. It exploits both

temporal- and spatial-attention mechanisms to selectively

focus on visual elements during generation. The paragraph

generator captures the inter-sentence dependency by taking

as input the sentential embedding produced by the sentence

generator, combining it with the paragraph history, and

outputting the new initial state for the sentence generator.

We evaluate our approach on two large-scale benchmark

datasets: YouTubeClips and TACoS-MultiLevel. The exper-

iments demonstrate that our approach significantly outper-

forms the current state-of-the-art methods with BLEU@4

scores 0.499 and 0.305 respectively.

1. Introduction

In this paper, we consider the problem of video caption-

ing, i.e. generating one or multiple sentences to describe

the content of a video. The given video could be as gen-

eral as those uploaded to YouTube, or it could be as specific

as cooking videos with fine-grained activities. This ability

to generate linguistic descriptions for unconstrained video

is important because not only it is a critical step towards

machine intelligence, but also it has many applications in

daily scenarios such as video retrieval, automatic video sub-

titling, blind navigation, etc. Figure 1 shows some example

sentences generated by our approach.

The video captioning problem has been studied for over

one decade ever since the first rule-based system on describ-

ing human activities with natural language [23]. In a very

limited setting, Kojima et al. designed some simple heuris-

∗This work was done while the authors were at Baidu.

tics for identifying video objects and a set of rules for pro-

ducing verbs and prepositions. A sentence is then generated

by filling predefined templates with the recognized parts

of speech. Following their work, several succeeding ap-

proaches [26, 20, 21, 15, 3] applied similar rule-based sys-

tems to datasets with larger numbers of objects and events,

in different tasks and scenarios. With ad hoc rules, they

manually establish the correspondence between linguistic

terms and visual elements, and analyze the relations among

the visual elements to generate sentences. Among them, the

most complex rule-based system [3] supports a vocabulary

of 118 lexical entries (including 48 verbs and 24 nouns).

To eliminate the tedious effort of rule engineering when

the problem scales, some recent methods train statistical

models for lexical entries, either in a fully [10, 14, 24, 42] or

weakly [37, 36, 57, 55] supervised fashion. The statistical

models of different parts of speech usually have different

mathematical representations and training strategies (e.g.,

[14, 24]). With most of the manual effort gone, the train-

ing process exposes these methods to even larger datasets

(e.g., YouTubeClips [6] and TACoS-MultiLevel [36]) which

contain thousands of lexical entries and dozens of hours of

videos. As a result, the video captioning task becomes much

more challenging, and the generation performance of these

methods is usually low on these large-scale datasets.

Since then, inspiring results have been achieved by a re-

cent line of work [11, 48, 47, 32, 54, 56] which benefits

from the rapid development of deep neural networks, es-

pecially Recurrent Neural Network (RNN). Applying RNN

to translating visual sequence to natural language is largely

inspired by the recent advances in Neural Machine Transla-

tion (NMT) [1, 43] in the natural language processing com-

munity. The idea is to treat the image sequence of a video as

the “source text” and the corresponding caption as the target

text. Given a sequence of deep convolutional features (e.g.,

VggNet [40] and C3D [45]) extracted from video frames, a

compact representation of the video is obtained by: average

pooling [48, 32], weighted average pooling with an atten-

tion model [56], or taking the last output from an RNN en-
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A man is pouring oil into a pot. A dog is playing in a bowl.

The person opened the drawer.
The person took out a pot.
The person went to the sink.
The person washed the pot.
The person turned on the stove.

The person peeled the fruit.
The person put the fruit in the bowl.
The person sliced the orange.
The person put the pieces in the plate.
The person rinsed the plate in the sink.

Figure 1. Some example sentences generated by our approach. The first row shows examples trained on YouTubeClips, where only one

sentence is generated for each video. The second row shows examples trained on TACoS-MultiLevel, where paragraphs are generated.

coder which summarizes the feature sequence [11, 47, 54].

Then an RNN decoder accepts this compact representation

and outputs a sentence of a variable length.

While promising results were achieved by these RNN

methods, they only focus on generating a single sentence

for a short video clip. So far the problem of generating mul-

tiple sentences or a paragraph for a long video has not been

attempted by deep learning approaches. Some graphical-

model methods, such as Rohrbach et al. [36], are able to

generate multiple sentences, but their results are still far

from perfect. The motivation of generating a paragraph is

that most videos depict far more than just one event. Us-

ing only one short sentence to describe a semantically rich

video usually yields uninformative and even boring results.

For example, instead of saying the person sliced the pota-

toes, cut the onions into pieces, and put the onions and pota-

toes into the pot, a method that is only able to produce one

short sentence would probably say the person is cooking.

Inspired by the recent progress of document model-

ing [27, 28] in natural language processing, we propose a

hierarchical-RNN framework for describing a long video

with a paragraph consisting of multiple sentences. The idea

behind our hierarchical framework is that we want to ex-

ploit the temporal dependency among sentences in a para-

graph, so that when producing the paragraph, the sentences

are not generated independently. Instead, the generation of

one sentence might be affected by the semantic context pro-

vided by the previous sentences. For example, in a video

of cooking dishes, a sentence the person peeled the pota-

toes is more likely to occur, than the sentence the person

turned on the stove, after the sentence the person took out

some potatoes from the fridge. Towards this end, our hierar-

chical framework consists of two generators, i.e. a sentence

generator and a paragraph generator, both of which use re-

current layers for language modeling. At the low level, the

sentence generator produces single short sentences that de-

scribe specific time intervals and video regions. We exploit

both temporal- and spatial-attention mechanisms to selec-

tively focus on visual elements when generating a sentence.

The embedding of the generated sentence is encoded by the

output of the recurrent layer. At the high level, the para-

graph generator takes the sentential embedding as input, and

uses another recurrent layer to output the paragraph state,

which is then used as the new initial state of the sentence

generator (see Section 3). Figure 2 illustrates our over-

all framework. We evaluate our approach on two public

datasets: YouTubeClips [6] and TACoS-MultiLevel [36].

We show that our approach significantly outperforms other

state-of-the-art methods. To our knowledge, this is the first

application of hierarchical RNN to video captioning task.

2. Related Work

Neural Machine Translation. The methods for NMT [18,

9, 1, 43, 27, 28] in computational linguistics generally fol-

low the encoder-decoder paradigm. An encoder maps the

source sentence to a fixed-length feature vector in the em-

bedding space. A decoder then conditions on this vector to

generate a translated sentence in the target language. On

top of this paradigm, several improvements were proposed.

Bahdanau et al. [1] proposed a soft attention model to do

alignment during translation, so that their approach is able

to focus on different parts of the source sentence when gen-

erating different translated words. Li et al. [27] and Lin

et al. [28] employed hierarchical RNN to model the hier-

archy of a document. Our approach is much similar to a

neural machine translator with a simplified attention model

and a hierarchical architecture.

Image captioning with RNNs. The first attempt of visual-

to-text translation using RNNs was seen in the work of im-

age captioning [29, 22, 19, 50, 8], which can be treated as

a special case of video captioning when each video has a

single frame and no temporal structure. As a result, image
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captioning only requires computing object appearance fea-

tures, but not action/motion features. The amount of data

handled by an image captioning method is much (dozens of

times) less than that handled by a video captioning method.

The overall structure of an image captioner (instance-to-

sequence) is also usually simpler than that of a video cap-

tioner (sequence-to-sequence). Some other methods, such

as Park and Kim [34], addressed the problem of retrieving

sentences from training database to describe a sequence of

images. They proposed a local coherence model for fluent

sentence transitions, which serves a similar purpose of our

paragraph generator.

Video captioning with RNNs. The very early video cap-

tioning method [48] based on RNNs extends the image

captioning methods by simply average pooling the video

frames. Then the problem becomes exactly the same as im-

age captioning. However, this strategy works only for short

video clips where there is only one major event, usually ap-

pearing in one video shot from the beginning to the end. To

avoid this issue, more sophisticated ways of encoding video

features were proposed in later work, using either a recur-

rent encoder [11, 47, 54] or an attention model [56]. Our

sentence generator is closely related to Yao et al. [56], in

that we also use attention mechanism to selectively focus on

video features. One difference between our framework and

theirs is that we additionally exploit spatial attention. The

other difference is that after weighing video features with

attention weights, we do not condition the hidden state of

our recurrent layer on the weighted features (Section 3.2).

3. Hierarchical RNN for Video Captioning

Our approach stacks a paragraph generator on top of a

sentence generator. The sentence generator is built upon

1) a Recurrent Neural Network (RNN) for language model-

ing, 2) a multimodal layer [29] for integrating information

from different sources, and 3) an attention model [56, 1] for

selectively focusing on the input video features. The para-

graph generator is simply another RNN which models the

inter-sentence dependency. It receives the compact senten-

tial representation encoded by the sentence generator, com-

bines it with the paragraph history, and outputs a new ini-

tial state for the sentence generator. The RNNs exploited

by the two generators incorporate the Gated Recurrent Unit

(GRU) [9] which is a simplification of the Long Short-Term

Memory (LSTM) architecture [16]. In the following, we

first briefly review the RNN with the GRU (or the gated

RNN), and then describe our framework in details.

3.1. Gated Recurrent Unit

A simple RNN [12] can be constructed by adding feed-

back connections to a feedforward network that consists of

three layers: the input layer x, the hidden layer h, and the

output layer y. The network is updated by both the input

and the previous recurrent hidden state as follows:

ht = φ
(
Whx

t +Uhh
t−1 + bh

)
(hidden state)

yt = φ (Uyh
t + by) (output)

where W,U and b are weight matrices and biases to be

learned, and φ(·) are element-wise activation functions.

While the simple RNN is able to model temporal de-

pendency for a small time gap, it usually fails to capture

long-term temporal information. To address this issue, the

GRU [9] is designed to adaptively remember and forget the

past. Inside the unit, the hidden state is modulated by non-

linear gates. Specifically, let ⊙ denote the element-wise

multiplication of two vectors, the GRU computes the hid-

den state h as:

rt = σ(Wrx
t +Urh

t−1 + br) (reset gate)

zt = σ(Wzx
t +Uzh

t−1 + bz) (update gate)

h̃t = φ
(
Whx

t +Uh(r
t ⊙ ht−1) + bh

)

ht = zt ⊙ ht−1 + (1− zt)⊙ h̃t (hidden state)

where σ(·) are element-wise Sigmoid functions. The reset

gate r determines whether the hidden state wants to drop

any information that will be irrelevant in the future. The

update gate z controls how much information from the pre-

vious hidden state will be preserved for the current state.

During the training of a gated RNN, the parameters can be

estimated by Backpropagation Through Time (BPTT) [53]

as in traditional RNN architectures.

3.2. Sentence Generator

The overall structure of our hierarchical RNN is illus-

trated in Figure 2. The sentence generator operates at every

time step when a one-hot input (1-of-N encoding, where N

is the vocabulary size) arrives at the embedding layer. The

embedding layer converts the one-hot vector to a dense rep-

resentation in a lower dimensional space by multiplying it

with an embedding table (512×N ), of which each row is a

word embedding to be learned. The resulting word embed-

ding is then input to our first RNN, i.e., the recurrent layer

I. This gated recurrent layer has 512 dimensions and acts

similarly to those that are commonly employed by a vari-

ety of image/video captioning methods (e.g., [47, 29, 56]),

i.e., modeling the syntax of a language. It updates its hid-

den state every time a new word arrives, and encodes the

sentence semantics in a compact form up to the words that

have been fed in. We set the activation function φ of this

recurrent layer to be the Rectified Linear Unit (ReLU) [31],

since it performs better than non-linear activation functions

such as Sigmoid according to our observation.

As one branch, the output of the recurrent layer I is di-

rected to the attention layers to compute attention weights

for the features in the video feature pool. Our attention

model is inspired by the recent soft-alignment method that
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Figure 2. Our hierarchical RNN for video captioning. Green denotes the input to the framework, blue denotes the output, and red denotes

the recurrent components. The orange arrow represents the reinitialization of the sentence generator with the current paragraph state. For

simplicity, we only draw a single video feature pool in the figure. In fact, both appearance and action features go through a similar attention

process before they are fed into the multimodal layer.

has been successfully applied in the context of Neural Ma-

chine Translation (NMT) [1], and was later adapted to video

captioning by Yao et al. [56]. The difference between our

model and the one used by Yao et al. is that their model

only focuses on temporal attention. We additionally in-

clude spatial attention by computing features for multiple

image patches at different locations on a video frame and

pool the features together. This simple improvement is im-

portant when objects are small and difficult to be localized

on some datasets (e.g., TACoS-MultiLevel [36]). In this

case, whole-frame-based video features will fail to capture

the object information and multiple object proposals are

needed for good performance (see Section 5 for details). Let

the features in the pool be denoted as {v1,v2, . . . ,vKM},

where M is the video length and K is the number of patches

on each frame. We want to compute a set of weights

{βt
1, β

t
2, . . . , β

t
KM} for these features at each time step t

such that
∑KM

m=1
βt
m = 1. To do so, we first compute an

attention score qtm for each frame m, conditioning on the

previous hidden state ht−1:

qtm = w⊤φ(Wqvm +Uqh
t−1 + bq)

where w, Wq , Uq , and bq are the parameters shared

by all the features at all the time steps, and φ is set to

the element-wise Scaled Hyperbolic Tangent (stanh) func-

tion [25]: 1.7159 · tanh( 2x
3
). The above computation is per-

formed by the attention layers I and II in Figure 2(a), where

the attention layer I projects the feature v and the hidden

state h into a lower dimensional space whose dimension

can range from 32 to 256. The attention layer II then fur-

ther compresses the activation of the projected vector into a

scalar, one for each feature. After this, we set up a sequen-

tial softmax layer to get the attention weights:

βt
m = exp

(
qtm

)/ KM∑

m′=1

exp
(
qtm′

)

Finally, a single feature vector is obtained by weighted av-

eraging: ut =
∑KM

m=1
βt
mvm. The above process is a so-

phisticated version of the temporal mean pooling. It allows

the sentence generator to selectively focus on a subset of the

features during generation. Note that while only one feature

channel is shown in Figure 2(a), our sentence generator in

fact pumps features of several channels through the same

attention process. Each feature channel has a different set

of weights and biases to be learned. In our experiments, we

employ two feature channels, one for object appearance and

the other for action/motion. (Section 5).

After the attention process, the weighted sums of the

video features are fed into the multimodal layer which has

1024 dimensions. The multimodal layer also receives the

output of the recurrent layer I, thus connecting the vision

component with the language model. Suppose we have two

video feature channels, of which the weighted features out-

put by the attention model are ut
o and ut

a respectively. The

multimodal layer maps the two features, together with the

hidden state ht of the recurrent layer I, into a 1024 dimen-

sional feature space and add them up:

mt = φ(Wm,ou
t
o +Wm,au

t
a +Umht + bm)

where φ is set to the element-wise stanh function. To reduce

overfitting, we add dropout [41] with a drop rate of 0.5 to

this layer.

The multimodal layer is followed by a hidden layer and

a softmax layer (see Figure 2(a)), both with the element-

wise stanh function as their activation functions. The hid-

den layer has exactly the same dimension 512 with the
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word embedding layer, and the softmax layer has a dimen-

sion that is equal to the size of the vocabulary which is

dataset-dependent. Inspired by the transposed weight shar-

ing scheme recently proposed by Mao et al. [30], we set

the projection matrix from the hidden layer to the softmax

layer as the transpose of the word embedding table. It has

been shown that this strategy allows the use of a word em-

bedding layer with a much larger dimension due to the pa-

rameter sharing, and helps regularize the word embedding

table because of the matrix transpose. As the final step of

the sentence generator, the maxid layer picks the index that

points to the maximal value in the output of the softmax

layer. The index is then treated as the predicted word id.

Note that during test, the predicted word will be fed back to

the sentence generator again as the next input word. While

in the training, the next input word is always provided by

the annotated sentence.

3.3. Paragraph Generator

The sentence generator above only handles one single

sentence at a time. For the first sentence in the paragraph,

the initial state of the recurrent layer I is set to all zeros,

i.e., h0 = 0. However, any sentence after that will have

its initial state conditioned on the semantic context of all its

preceding sentences. This semantic context is encoded by

our paragraph generator.

During the generation of a sentence, an embedding aver-

age layer (see Figure 2(b)) accumulates all the word embed-

dings of the sentence and takes the average to get a compact

embedding vector. The average strategy is inspired by the

QA embedding [5] in which questions and answers are both

represented as a combination of the embeddings of their in-

dividual words and/or symbols. We also take the last state

of the recurrent layer I as a compact representation for the

sentence, following the idea behind the Encoder-Decoder

framework [9] in NMT. After that, the averaged embedding

and the last recurrent state are concatenated together, and

fully connected to the sentence embedding layer (512 di-

mensions) with stanh as the activation function. We treat

the output of the sentence embedding layer as the final sen-

tence representation.

The sentence embedding layer is linked to our second

gated RNN (see Figure 2(b)). The recurrent layer II op-

erates whenever a full sentence goes through the sentence

generator and the sentence embedding is produced by the

sentence embedding layer. Thus the two recurrent layers

are asynchronous: while the recurrent layer I keeps updat-

ing its hidden state at every time step, the recurrent layer II

only updates its hidden state when a full sentence has been

processed. The recurrent layer II encodes the paragraph se-

mantics in a compact form up to the sentences that have

been fed in. Finally, we set up a paragraph state layer to

combine the hidden state of the recurrent layer II and the

sentence embedding. This paragraph state is used as the

initial hidden state when the recurrent layer I is reinitialized

for the next sentence. It essentially provides the sentence

generator with the paragraph history so that the next sen-

tence is produced in the context.

4. Training and Generation

We train all the components in our hierarchical frame-

work together from scratch with randomly initialized pa-

rameters. We treat the activation value indexed by a training

word wn
t in the softmax layer of our sentence generator as

the likelihood of generating that word:

P
(
wn

t |s1:n−1, w
n
1:t−1,V

)

given 1) all the preceding sentences s1:n−1 in the paragraph,

2) all the previous words wn
1:t−1 in the same sentence n, and

3) the corresponding video V. The cost of generating that

training word is then defined as the negative logarithm of

the likelihood. We further define the cost of generating the

whole paragraph s1:N (N is the number of sentences in the

paragraph) as:

PPL(s1:N |V)

= −

N∑

n=1

Tn∑

t=1

logP
(
wn

t |s1:n−1, w
n
1:t−1,V

)
/

N∑

n=1

Tn

where Tn is the number of words in the sentence n. The

above cost is in fact the perplexity of the paragraph given

the video. Finally, the cost function over the entire training

set is defined as:

PPL =

Y∑

y=1


PPL(sy

1:Ny
|Vy) ·

Ny∑

n=1

T y
n




/
Y∑

y=1

Ny∑

n=1

T y
n

(1)

where Y is the total number of paragraphs in the training

set. To reduce overfitting, L2 and L1 regularization terms

are added to the above cost function. We use Backpropa-

gation Through Time (BPTT) [53] to compute the gradients

of the parameters and Stochastic Gradient Descent (SGD)

to find the optimum. For better convergence, we divide the

gradient by a running average of its recent magnitude ac-

cording to the RMSPROP algorithm [44]. We set a small

learning rate 10−4 to avoid the gradient explosion problem

that is common in the training process of RNNs.

After the parameters are learned, we perform the gen-

eration with Beam Search. Suppose that we use a beam

width of L. The beam search process starts with the BOS

(begin-of-sentence) symbol wBOS (i.e., w0) which is treated

as a 1-word sequence with zero cost at t = 0. Assume

that at any time step t, there are at most L t-word sequences

that were previously selected with the lowest sequence costs
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(a sequence cost is the sum of the word costs in that se-

quence). For each of the t-word sequences, given its last

word as input, the sentence generator calculates the cost of

the next word − logP (wt|w1:t−1,V) and the sequence cost

if the word is appended to the sequence. Then from all the

t+1-word sequences expanded from the existing t-word se-

quences, we pick the top L with the lowest sequence costs.

Of the new t+1-word sequences, any one that is a com-

plete sentence (i.e., the last word wt+1 is the EOS (end-of-

sentence) symbol wEOS) will be removed from the search

tree. It will be put into our sentence pool if 1) there are less

than J (J ≤ L) sentences in the pool or, 2) its sequence

cost is lower than one of the J sentences in the pool. In the

second case, the sentence with the highest cost will be re-

moved from the pool, replaced by the new added sentence.

Also of the new t + 1-word sequences, any one that has a

higher sequence cost than all of the J sentences in the pool

will be removed from the search tree. The reason is that ex-

panding a word sequence monotonically increases its cost.

The beam search process stops when there is no word se-

quence to be expanded in the next time step. In the end,

J candidate sentences will be generated for post-processing

and evaluation.

After this, the generation process goes on by picking the

sentence with the lowest cost from the J candidate sen-

tences. This sentence is fed into our paragraph generator

which reinitializes the sentence generator. The sentence

generator then accepts a new BOS and again produces J

candidate sentences. This whole process stops when the

sentence received by the paragraph generator is the EOP

(end-of-paragraph) which consists of only the BOS and the

EOS. Finally, we will have a paragraph that is a sequence

of lists, each list with J sentences. In our experiments,

we set L = J = 5. Excluding the calculation of visual

features, the average computational time for the sentence

generator to produce top 5 candidate sentences with a beam

width of 5 is 0.15 seconds, on a single thread with CPU

Intel(R) Core(TM) i7-5960X @ 3.00GHz.

5. Experiments

We evaluate our approach on two benchmark datasets:

YouTubeClips [6] and TACoS-MultiLevel [36].

YouTubeClips This dataset consists of 1, 967 short video

clips (9 seconds on average) downloaded from YouTube.

The video clips are open-domain, containing different peo-

ple, animals, actions, scenarios, landscapes, etc. Each video

clip is annotated with multiple parallel sentences by differ-

ent turkers. There are 80, 839 sentences in total, with about

41 annotated sentences per clip. Each sentence on aver-

age contains about 8 words. The words contained in all

the sentences constitute a vocabulary of 12, 766 unique lex-

ical entries. We adopt the train and test splits provided by

Guadarrama et al. [14], where 1, 297 and 670 videos are

used for training and testing respectively. It should be noted

that while multiple sentences are annotated for each video

clip, they are parallel and independent in the temporal ex-

tent, i.e., the sentences describe exactly the same video in-

terval, from the beginning to the end of the video. As a

result, we use this dataset as a special test case for our ap-

proach, when the paragraph length N = 1.

TACoS-MultiLevel This dataset consists of 185 long

videos (6 minutes on average) filmed in an indoor environ-

ment. The videos are closed-domain, containing different

actors, fine-grained activities, and small interacting objects

in daily cooking scenarios. Each video is annotated by mul-

tiple turkers. A turker annotates a sequence of temporal

intervals across the video, pairing every interval with a sin-

gle short sentence. There are 16, 145 distinct intervals and

52, 478 sentences in total, with about 87 intervals and 284
sentences per video. The sentences were originally prepro-

cessed so that they all have the past tense, and different

gender specific identifiers were substituted with “the per-

son”. Each sentence on average contains about 8 words.

The words contained in all the sentences constitute a vocab-

ulary of 2, 864 unique lexical entries. We adopt the train and

test splits used by Rohrbach et al. [36], where 143 and 42
videos are used for training and testing respectively. Note

that the cooking activities in this dataset have strong tem-

poral dependencies. Such dependency in a video is im-

plied by the sequence of intervals annotated by the same

turker on that video. Following Donahue et al. [11] and

Rohrbach et al. [36], we employ the interval information

to align our sentences in the paragraph during both training

and generation. This dataset is used as a general test case

for our approach, when the paragraph length N > 1.

To model video object appearance, we use the pre-

trained VggNet [40] (on the ImageNet dataset [38]) for both

datasets. Since the objects in YouTubeClips are usually

prominent, we only extract one VggNet feature for each

entire frame. This results in only temporal attention in our

sentence generator (i.e., K = 1 in Section 3.2). For TACoS-

MultiLevel, the interacting objects are usually quite small

and difficult to be localized. To solve this problem, both

Donahue et al. [11] and Rohrbach et al. [36] designed a spe-

cialized hand detector. Once the hand regions are detected,

they extract features in the neighborhood to represent the

interacting objects. Instead of trying to accurately locate

hands which requires a lot of engineering effort as in their

case, we rely on a simple routine to obtain multiple object

proposals. We first use Optical Flow [13] to roughly detect

a bounding box for the actor in each frame. We then extract

K image patches of size 220× 220 along the lower part of

the box border, where every two neighboring patches have

an overlap of half their size. Our simple observation is that

these patches together have a high recall of containing the

interacting objects while the actor is cooking. Finally, we
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B@1 B@2 B@3 B@4 M C

LSTM-YT [48] - - - 0.333 0.291 -

S2VT [47] - - - - 0.298 -

MM-VDN [54] - - - 0.376 0.290 -

TA [56] 0.800 0.647 0.526 0.419 0.296 0.517

LSTM-E [32] 0.788 0.660 0.554 0.453 0.310 -

h-RNN-Vgg 0.773 0.645 0.546 0.443 0.311 0.621

h-RNN-C3D 0.797 0.679 0.579 0.474 0.303 0.536

h-RNN (Ours) 0.815 0.704 0.604 0.499 0.326 0.658

Table 1. Results on YouTubeClips, where B, M, and C are short

for BLEU, METEOR, and CIDEr respectively.

compute the VggNet feature for each patch and pool all the

patch features. When K > 1, the above routine leads to

both temporal and spatial attention in our sentence genera-

tor. In practice, we find that a small value of K (e.g., 3 ∼ 5)

is enough to yield good performance.

To model video motion and activities, we use the pre-

trained C3D [45] (on the Sports-1M dataset [19]) for

YouTubeClips. The C3D net reads in a video and outputs

a fixed-length feature vector every 16 frames. Thus when

applying the attention model to the C3D feature pool, we

set K = 1 and divide M by 16 (Section 3.2). For the

TACoS-MultiLevel dataset, since the cooking activities are

fine-grained, the same model trained on sports videos does

not work well. Alternatively we compute the Dense Trajec-

tories [51] for each video interval and encode them with the

Fisher vector [17]. For the attention model, we set K = 1
and M = 1.

We employ three different evaluation metrics: BLEU

[33], METEOR [2], and CIDEr [46]. Because the

YouTubeClips dataset was tested on by most existing video-

captioning methods, the prior results of all the three met-

rics have been reported. The TACoS-MultiLevel dataset

is relatively new and only the BLEU scores were reported

in the previous work. We compute the other metrics for

the comparison methods based on the generated sentences

that come with the dataset. Generally, the higher the metric

scores are, the better the generated sentence correlates with

human judgment. We use the evaluation script provided by

Chen et al. [7] to compute scores on both datasets.

5.1. Results

We compare our approach (h-RNN) on YouTube-

Clips with six state-of-the-art methods: LSTM-YT [48],

S2VT [47], MM-VDN [54], TA [56], and LSTM-E [32].

Note that in this experiment a single sentence is gener-

ated for each video. Thus only our sentence generator is

evaluated in comparison to others. To evaluate the impor-

tance of our video features, we also report the results of two

baseline methods: h-RNN-Vgg and h-RNN-C3D. The for-

mer uses only the object appearance feature and the latter

uses only the motion feature, with other components of our

B@1 B@2 B@3 B@4 M C

CRF-T [37] 0.564 0.447 0.332 0.253 0.260 1.248

CRF-M [36] 0.584 0.467 0.352 0.273 0.272 1.347

LRCN [11] 0.593 0.482 0.370 0.292 0.282 1.534

h-RNN-Vgg 0.561 0.445 0.329 0.256 0.260 1.267

h-RNN-DT 0.557 0.451 0.346 0.274 0.261 1.400

RNN-sent 0.568 0.469 0.367 0.295 0.278 1.580

RNN-cat 0.605 0.489 0.376 0.297 0.284 1.555

h-RNN (Ours) 0.608 0.496 0.385 0.305 0.287 1.602

Table 2. Results on TACoS-MultiLevel, where B, M, and C are

short for BLEU, METEOR, and CIDEr respectively.

framework unchanged. The evaluation results are shown

in Table 1. We can see that our approach performs much

better than the comparison methods, in all the three met-

rics. The improvements on the most recent state-of-the-art

method (i.e., LSTM-E [32]) are 0.499−0.453
0.453

= 10.15% in

the BLEU@4 score, and 0.326−0.310
0.310

= 5.16% in the ME-

TEOR score. Since LSTM-E also exploits VggNet and

C3D features, this demonstrates that our sentence generator

framework is superior to their joint embedding framework.

Moreover, although TA [56] also employs temporal atten-

tion, our approach produces much better results due to the

fact that the hidden state of our RNN is not conditioned on

the video features. Instead, the video features are directly

input to our multimodal layer. Our approach also outper-

forms the two baseline methods by large margins, indicat-

ing that both video features are indeed crucial in the video

captioning task.

We compare our approach on TACoS-MultiLevel with

three state-of-the-art methods: CRF-T [37], CRF-M [36],

and LRCN [11]. Like above, we have two baseline methods

h-RNN-Vgg and h-RNN-DT which use only the appearance

and motion features respectively. We also add another two

baseline methods RNN-sent and RNN-cat that have no hi-

erarchy (i.e., with only the sentence generator, but not the

paragraph generator). RNN-sent is trained and tested on

individual video clips that are segmented from the original

185 long videos according to the annotated intervals. The

initial state of the sentence generator is set to zero for each

sentence. As a result, sentences are trained and generated

independently. RNN-cat initializes the sentence generator

with zero only for the first sentence in a paragraph. Then

the sentence generator maintains its state for the following

sentences until the end of the paragraph. This concatenation

strategy for training a paragraph has been exploited in a re-

cent neural conversational model [49]. We use RNN-send

and RNN-cat to evaluate the importance of our hierarchical

structure.

The results on TACoS-MultiLevel are shown in Table 2.

Our approach outperforms the state-of-the-art methods, in-

cluding the very recently proposed one (i.e., LRCN) with

an improvement of 0.305−0.292
0.292

= 4.45% in the BLEU@4

4590



RNN-sent:

The person entered the kitchen.

The person went to the refrigerator.

The person placed the cucumber on the cutting board.

The person rinsed the cutting board.

h-RNN:

The person walked into the kitchen.

The person went to the refrigerator.

The person walked over to the sink.

The person rinsed the carrot in the sink.

RNN-sent:

The person took out a cutting board from the drawer.

The person got a knife and a cutting board from the drawer.

The person cut the ends off the cutting board.

h-RNN:

The person took out a cutting board.

The person got a knife from the drawer.

The person cut the cucumber on the cutting board.

Figure 3. Examples of generated paragraphs. Red indicates incor-

rect sentences produced by RNN-sent and green shows the ones

generated by our h-RNN in the corresponding time intervals. In

the first example, our hierarchical model successfully captures the

high likelihood of the event walk to the sink after the event open

the refrigerator. In the second example, RNN-sent generates the

event take the cutting board twice due to the fact that the sentences

in the paragraph are produced independently. In contrast, our hi-

erarchical model avoids this mistake.

score. Given that our strategy of extracting object regions

is relatively simple compared to the sophisticated hand de-

tector [11, 36], we expect to have even better performance

if our object localization is improved. Our method is also

superior to all the baseline methods. Although RNN-cat

models temporal dependency among sentences by sentence-

level concatenation, it performs worse than our hierarchical

architecture. Again, it shows that both the video features

and the hierarchical structure are crucial in our task. Fig-

ure 3 illustrates some example paragraphs generated by our

approach on TACoS-MultiLevel.

To further demonstrate that our method h-RNN gen-

erates better sentences than RNN-cat in general, we per-

form human evaluation to compare these two methods on

TACoS-MultiLevel. Specifically, we discard 1, 166 test

video intervals, each of which has exactly the same sen-

tence generated by RNN-cat and h-RNN. This results in a

total number of 4, 314− 1, 166 = 3, 148 video intervals for

human evaluation. We then put the video intervals and the

generated sentences on Amazon Mechanical Turk (AMT).

Each video interval is paired with one sentence generated

by RNN-cat and the other by h-RNN, side by side. For each

video interval, we ask one turker to select the sentence that

better describes the video content. The turker also has a

third choice if he believes that both sentences are equally

good or bad. In the end, we obtained 773 selections for h-

RNN and 472 selections for RNN-cat, with a gap of 301
selections. Thus h-RNN has at least 301

472+3069
= 8.50%

improvement over RNN-cat.

h-RNN RNN-cat Equally good or bad Total

773 472 3069 4314

5.2. Discussions and Limitations

Although our approach is able to produce paragraphs for

video and has achieved encouraging results, it is subject to

several limitations. First, our object detection routine has

difficulty handling very small objects. Most of our fail-

ure cases on TACoS-MultiLevel produce incorrect object

names in the sentences, e.g., confusing small objects that

have similar shapes or appearances (cucumber vs. carrot,

mango vs. orange, kiwi vs. avocado, etc.). See Figure 1 for a

concrete example: sliced the orange should really be sliced

the mango. Accurately detecting small objects (sometimes

with occlusion) in complex video scenarios still remains an

open problem. Second, the sentential information flows uni-

directionally through the paragraph recurrent layer, from

the beginning of the paragraph to the end, but not also in

the reverse way. Misleading information will be potentially

passed down when the first several sentences in a paragraph

are generated incorrectly. Using bidirectional RNN [39, 52]

for sentence generation is still an open problem. Lastly, our

approach suffers from a known problem as in most other

image/video captioning methods, namely, there is discrep-

ancy between the objective function used by training and the

one used by generation. The training process predicts the

next word given the previous words from groundtruth, while

the generation process conditions the prediction on the ones

previously generated by itself. This problem is amplified

in our hierarchical framework where the paragraph genera-

tor conditions on groundtruth sentences during training but

on generated ones during generation. A potential cure for

this would be adding Scheduled Sampling [4] to the train-

ing process, where one randomly selects between the true

previous words and the words generated by the model. An-

other solution might be to directly optimize the metric (e.g.,

BLEU) used at test time [35].

6. Conclusion

We have proposed a hierarchical-RNN framework for

video paragraph captioning. The framework models inter-

sentence dependency to generate a sequence of sentences

given video data. The experiments show that our approach

is able to generate a paragraph for a long video and achieves

the state-of-the-art results on two large-scale datasets.
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