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Abstract

We investigate the problem of fine-grained sketch-based

image retrieval (SBIR), where free-hand human sketches are

used as queries to perform instance-level retrieval of im-

ages. This is an extremely challenging task because (i) vi-

sual comparisons not only need to be fine-grained but also

executed cross-domain, (ii) free-hand (finger) sketches are

highly abstract, making fine-grained matching harder, and

most importantly (iii) annotated cross-domain sketch-photo

datasets required for training are scarce, challenging many

state-of-the-art machine learning techniques.

In this paper, for the first time, we address all these

challenges, providing a step towards the capabilities that

would underpin a commercial sketch-based image retrieval

application. We introduce a new database of 1,432 sketch-

photo pairs from two categories with 32,000 fine-grained

triplet ranking annotations. We then develop a deep triplet-

ranking model for instance-level SBIR with a novel data

augmentation and staged pre-training strategy to allevi-

ate the issue of insufficient fine-grained training data. Ex-

tensive experiments are carried out to contribute a vari-

ety of insights into the challenges of data sufficiency and

over-fitting avoidance when training deep networks for fine-

grained cross-domain ranking tasks.

1. Introduction

Notwithstanding the proliferation of touch-screen de-

vices, mainstream image retrieval paradigms at present are

still limited to having text or exemplar image as input.

Only very recently has sketch-based image retrieval (SBIR)

started to return as a practical form of retrieval. Compared

with text, sketches are incredibly intuitive to humans and

have been used since pre-historic times to conceptualise and

depict visual objects [20, 15]. A unique characteristic of

sketches in the context of image retrieval is that they offer

inherently fine-grained visual descriptions – a sketch speaks

for a ‘hundred’ words.

free‐hand

sketch

fine‐grained

retrieval

Figure 1. Free-hand sketch is ideal for fine-grained instance-level

image retrieval.

However, existing SBIR works largely overlook such

fine-grained details, and mainly focus on retrieving images

of the same category [21, 22, 10, 2, 3, 27, 12, 19, 13, 28, 11],

thus not exploiting the real strength of SBIR. This oversight

pre-emptively limits the practical use of SBIR since text is

often a simpler form of input when only category-level re-

trieval is required, e.g., one would rather type in the word

“shoe” to retrieve one rather than sketching a shoe. The ex-

isting commercial image search engines have already done

a pretty good job on category-level image retrieval. In con-

trast, it is when aiming to retrieve a particular shoe that

sketching may be preferable than elucidating a long textual

description of it. Figure 1 illustrates an application scenario

of using free-hand sketch for fine-grained image search: a

person walking on a street notices that another person walk-

ing towards him/her wears a pair of shoes that he/she des-

perately wants to buy; instead of taking a picture of it, which

would be rude, he/she takes out a smartphone and draws a

sketch of it using fingers; all the information required to

have that pair of shoes is then just one click away.

In this paper, for the first time, the problem of

fine-grained instance-level SBIR using hand-free sketches

drawn by amateurs on a touch-screen device is studied. This

is an extremely challenging problem. Some of the chal-

lenges faced are shared with the category-level SBIR task:
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sketches and photos are from inherently heterogeneous do-

mains – sparse black and white line drawings versus dense

color pixels; and free-hand (finger) sketches are often very

abstract compared with photos – a person can be drawn as

a stick-man. In addition, it has its unique scientific chal-

lenges: (i) Fine-grained instance-level retrieval requires a

mechanism to capture the fine-grained (dis)similarities of

sketches and photo images across the domains. (ii) Col-

lecting and annotating a fine-grained SBIR dataset is much

harder than category-level ones. As a result, no large-scale

dataset exists for the researchers to develop solutions.

We address all these challenges by contributing two

large-scale datasets and developing a model for fine-grained

instance-level SBIR. For the dataset, we introduce two

instance-level SBIR datasets consisting of 1,432 sketch-

photo pairs in two categories (shoes and chairs), collected

by asking participants to finger-sketch an object after ob-

serving a photo. A total of 32,000 ground truth triplet

ranking annotations are provided for both model develop-

ment and performance evaluation. For the model, we take

a deep learning approach to better bridge this large domain

gap by learning rather than engineering [11, 23] free-hand

sketch/photo invariant features. Our model is a Siamese

network with a triplet ranking objective. However, such a

network with three branches naively requires a prohibitive

O(N3) annotations given that CNN models already require

a large number of data instances N . Despite the large num-

ber of annotations provided in our datasets, they are still in-

sufficient to effectively train a deep triplet ranking network

for instance-level SBIR. We thus introduce and evaluate

various novel ways including sketch-specific data augmen-

tation and staged pre-training using auxiliary data sources

to deal with the data insufficiency problem.

Our contributions are as follows: (1) For the first time,

the problem of fine-grained instance-level SBIR using free-

hand sketches is addressed. (2) We contribute two new

fine-grained SBIR datasets with extensive ground truth an-

notations, in the hope that it will kick-start research ef-

fort on solving this challenging problem. (3) We formulate

a deep triplet ranking model with staged pre-training us-

ing various auxiliary data sources including sketches, pho-

tos, and sketch-photo category-level pairs. (4) Extensive

experiments are conducted to provide insights on how a

deep learning model for fine-grained SBIR can benefit from

novel sketch-specific data augmentation and various pre-

training and sampling strategies to tackle the challenges of

big domain gap and lack of sufficient training data.

2. Related Work

Category-level and fine-grained SBIR Most existing

SBIR works [21, 22, 10, 2, 3, 27, 12, 19, 13, 28, 11] focus

on category-level sketch-to-photo retrieval. A bag-of-words

(BOW) representation combined with some form of edge

detection from photo images are often employed to bridge

the domain gap. The only previous work that attempted to

address the fine-grained SBIR problem is that of [16], which

is based on deformable part-based model (DPM) and graph

matching. However, their definition of fine-grain is very

different from ours – a sketch is considered to be a match

to a photo if the objects depicted look similar, i.e. having

the same viewpoint, pose and zoom parameters; in other

words, they do not have to contain the same object instance.

In addition, these hand-crafted feature based approaches are

inadequate in bridging the domain gap as well as capturing

the subtle intra-category and inter-instance differences, as

demonstrated in our experiments.

Other SBIR works like Sketch2Photo [4] and Average-

Explorer [34], use sketch in addition to text or colour cues

for image retrieval. [34] further investigates an interac-

tive process, in which each user ‘edit’ indicates the traits

to focus on for refining retrieval. For now we focus on

non-interactive black & white sketch-based retrieval, and

leave these extensions to future work. Another data-driven

method [25] performs well in cross-domain image matching

through learning the ‘uniqueness’ of the query. However

[25] is prohibitively slow, limiting its usability for practical

interactive image retrieval; it is thus excluded as a baseline.

SBIR Datasets One of the key barriers to fine-grained

SBIR research is lack of benchmark datasets. There are

free-hand sketch datasets, the most commonly used being

the TU-Berlin 20,000 sketch dataset [7]; there are also many

photo datasets such as PASCAL VOC [8] and ImageNet

[6]. Therefore, with few exceptions [22, 11], most existing

SBIR datasets were created by combining overlapping cate-

gories of sketches and photos, which means only category-

level SBIR is possible. The ‘semi’-fine-grained dataset in

[16] was created by selecting similar-looking sketch-photo

pairs from the TU-Berlin and and Pascal VOC datasets. For

each of 14 categories, there are 6 sketches and 60 images

– much smaller than ours, and too small to apply state of

the art deep learning techniques. For specific domains such

as face, large-scale datasets exist such as the CUHK Face

Sketches [30]. However, our sketches were drawn by am-

ateurs on touch-screen devices, instead of artists using pen

and paper. Importantly, besides sketch-photo pairs, we pro-

vide a large number of triplet ranking annotations, i.e. given

a sketch, ranking which of two photos are more similar,

making it suitable for more thorough evaluation as well as

developing more advanced retrieval models.

Related Deep Learning Models Deep neural networks,

particularly deep Convolutional Neural Networks [14] have

achieved great success in various visual recognition tasks.

A CNN model, ‘Sketch-a-Net’ was developed specifically

for sketch recognition in [32], and achieves state-of-the-art

recognition performance to date on TU-Berlin [7]. In our

fine-grained SBIR model, we use Sketch-a-Net as the ba-
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sic network architecture in each branch of a triplet ranking

Siamese network [9]. However, we introduce two new mod-

ifications to improve Sketch-a-Net: a pre-training step us-

ing edge maps extracted from ImageNet and a new sketch-

specific data augmentation scheme. Our staged pre-training

and sampling strategies are similar in spirit to those used in

fine-grained image-to-image retrieval work [29, 1], which

is also based on a triplet Siamese network, but with the

vital difference of being cross-domain. For cross-domain

modelling, there are two recent works worth mentioning:

the ground-to-aerial image matching work in [18] and the

sketch-to-3D-shape retrieval work in [28]. The former uses

a two-branch Siamese network. We show in our experi-

ments that using a triplet ranking Siamese network is advan-

tageous in that it can better capture the inter-instance subtle

differences. The latter uses a variant of Siamese network

where each branch has a different architecture; we show

that without tying the branches, i.e. being strictly Siamese,

the model is weaker in bridging the semantic gap between

the two domains and more likely to over-fit.

3. Fine-Grained Instance-Level SBIR Datasets

We contribute two datasets, one for shoes and the other

for chairs1. There are 1,432 sketches and photos in total, or

716 sketch-photo pairs. The shoe dataset has 419 sketch-

photo pairs, and the chair dataset 297 pairs. Figure 2 shows

some examples. In each column, we display several simi-

lar samples, indicating the fine-details that are required to

differentiate specific shoes/chairs, as well as the challenge

level of doing so based on realistic free-hand sketches. We

next detail the data collection and annotation process.

3.1. Data Collection

Collecting Photo Images Because our dataset is for fine-

grained retrieval, the photo images should cover the vari-

ability of the corresponding object category. When collect-

ing the shoe photo images, we selected 419 representative

images from UT-Zap50K [31] covering shoes of different

types including boots, high-heels, ballerinas, formal and in-

formal shoes. When collecting chairs, we searched three

online shopping websites, including IKEA, Amazon and

Taobao, and selected chair product images of varying types

and styles. The final selection consists of 297 images which

are representative and cover different kinds of chairs includ-

ing office chairs, couches, kids chairs, desk chairs, etc.

Collecting Sketches The second step is to use the col-

lected images to generate corresponding sketches. We re-

cruited 22 volunteers to sketch the images. We showed one

shoe/chair image to a volunteer on a tablet for 15 seconds,

then displayed a blank canvas and let the volunteer sketch

1Both datasets can be downloaded from

http://sketchx.eecs.qmul.ac.uk/downloads.html

(a)

(b)

Figure 2. Examples of the shoe and chair datasets.

the object he/she just saw using their fingers on the tablet.

None of the volunteers has any art training, and are thus

representative the general population who might use the de-

veloped SBIR system. As a result, the collected sketches

are nowhere near perfect (see Fig. 2), making subsequent

SBIR using these sketches challenging.

3.2. Data Annotation

Our goal is to find the most similar photos to a query

sketch. The photo-sketch pair correspondence already pro-

vides some annotation that could be used to train a pairwise

verification model [5]. However, for fine-grained analysis it

is possible to learn a stronger model if we have a detailed

ranking of the similarity of each candidate image to a given

query sketch. However, asking a human annotator to rank

all 419 shoe photos given a query shoe sketch would be

an error-prone task. This is because humans are bad at list

ranking, but better at individual forced choice judgements.

Therefore, instead of global ranking, a much more man-

ageable triplet ranking task is designed for the annotators.

Specifically, each triplet consists of one query sketch and

two candidate photos; the task is to determine which one of

the two candidate photos is more similar to the query sketch.

However, exhaustively annotating all possible triplets is also

out of the question due to the extremely large number of

possible triplets. We therefore selected only a subset of the

triplets and obtained the annotations through the following

three steps:
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1. Attribute Annotation: We first defined an ontology

of attributes for shoes and chairs based on existing UT-

Zap50K attributes [31] and product tags on online shopping

websites. We selected 21 and 15 binary attributes for shoes

and chairs respectively. 60 volunteers helped to annotate all

1,432 images with ground-truth attribute vectors.

2. Generating Candidate Photos for each Sketch: Next

we selected 10 most-similar candidate images for each

sketch in order to focus our limited amount of gold-standard

fine-grained annotation effort. In particular, we combined

the attribute vector with a deep feature vector (the fc7 layer

features extracted using Sketch-a-Net [32]) and computed

the Euclidean distance between each sketch and image. For

each query sketch, we took the top 10 closest photo images

to the query sketch as candidates for annotation.

3. Triplet Annotation: To provide triplet annotations for

the (419 + 297) · 10 · 9/2 = 32, 000 triplets generated in

the previous step, we recruited 36 volunteers. Each vol-

unteer was presented with one sketch and two photos at a

time. Volunteers were then asked to indicate which image

is more similar to the sketch. Each sketch has 10 ·9/2 = 45
triplets and three people annotated each triplet. We merged

the three annotations by majority voting to clean up some

human errors. These collected triplet ranking annotations

will be used in training our model and provide the ground

truth for performance evaluation.

4. Methodology

4.1. Overview

For a given query sketch s and a set of M candidate pho-

tos {pj}
M

j=1 ∈ P , we need to compute the similarity be-

tween s and p and use it to rank the whole gallery set of

photos in the hope that the true match for the query sketch

is ranked at the top. As discussed earlier, this involves two

challenges: (i) bridging the domain gap between sketches

and photos, and (ii) capturing subtle differences between

candidate photos to obtain a fine-grained ranking despite the

domain gap and amateur free-hand sketching. To achieve

this, we propose to use a deep triplet ranking model to learn

a domain invariant representation fθ(·) which enables us to

measure the similarity between s and p ∈ P for retrieval

with Euclidean distance: D(s, p) = ||fθ(s)− fθ(p)||
2
2.

To learn this representation fθ(·) we will use the an-

notated triplets {(si, p
+
i , p

−

i )}
N
i=1 as supervision. A triplet

ranking model is thus appropriate. Specifically, each triplet

consists of a query sketch s and two photos p+ and p−,

namely a positive photo and a negative photo, such that the

positive one is more similar to the query sketch than the neg-

ative one. Our goal is to learn a feature mapping fθ(·) that

maps photos and sketches to a common feature embedding

space, Rd , in which photos similar to particular sketches

are closer than those dissimilar ones, i.e., the distance be-

tween query s and positive p+ is always smaller than the

distance between query s and negative p−:

D(fθ(s), fθ(p
+)) < D(fθ(s), fθ(p

−)). (1)

We constrain the embedding to live on the d-dimensional

hypersphere, i.e., ||fθ(·)||2 = 1.

4.2. Triplet Loss

Towards this goal, we formulate a deep triplet ranking

model with a ranking loss. The loss is defined using the

max-margin framework. For a given triplet t = (s, p+, p−),
its loss is defined as:

Lθ(t) = max(0,∆+D(fθ(s), fθ(p
+))−D(fθ(s), fθ(p

−)))
(2)

where ∆ is a margin between the positive-query distance

and negative-query distance. If the two photos are ranked

correctly with a margin of distance ∆, then this triplet will

not be penalised. Otherwise the loss is a convex approxi-

mation of the 0− 1 ranking loss which measures the degree

of violation of the desired ranking order specified by the

triplet. Overall we optimise the following objective:

min
θ

∑
t∈T

Lθ(t) + λR(θ), (3)

where T is the training set of triplets, θ are the parameters

of the deep model, which defines a mapping fθ(·) from the

input space to the embedding space, and R(·) is a ℓ2 regu-

lariser ||θ||22. Minimising this loss will narrow the positive-

query distance while widening the negative-query distance,

and thus learn a representation satisfying the ranking or-

der. With sufficient triplet annotations, the deep model will

eventually learn a representation which captures the fine-

grained details between sketches and photos for retrieval.

Even though the new datasets contain thousands of

triplet annotations each, they are still far from sufficient to

train a deep triplet ranking model with millions of parame-

ters. Next we detail the characteristics of our model from

architecture design, staged model pre-training to sketch-

specific data augmentation, which are all designed to cope

with the sparse training data problem.

4.3. Heterogeneous vs. Siamese Networks

During training, there are three branches in our network,

and each corresponds to one of the atoms in the triplet:

query sketch, positive photo and negative photo (see Fig. 3).

The weights of the two photo branches should always be

shared, while the weights of the photo branch and the sketch

branch can either be shared or not depending on whether we

are using a Siamese network or a heterogeneous network.

After examining existing deep networks for cross-

domain modelling, it seems that if the two domains are

drastically different, e.g. text and image, a heterogeneous
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Figure 3. The learning network architecture.

network is the only option [26]; on the other hand, if the

domains are close, e.g. both are photos, a Siamese network

makes more sense [18, 29]. So what about the sketch and

photo domains? The existing category retrieval model [28]

used a network with heterogeneous branches for the two do-

mains. However, we found that it is ineffective for the fine-

grained SBIR task (see Sec. 5). This is because we have ex-

tremely sparse training data; therefore without using iden-

tical architectures and parameter tying, the model would

over-fit. We thus take a Siamese network approach, and use

three identical Sketch-a-Net [32] CNNs for our three net-

work branches. As we are learning a feature representation

instead of conducting classification, we remove the classifi-

cation layer from the original Sketch-a-Net and use the ac-

tivation of the fc7 layer as feature representation. Also we

have modified the number of neurons in the fc7 from 512 to

256, and add a L2 normalisation layer afterwards as a nor-

malisation. This requires us to compute edge-maps from the

photos in order to be used as suitable input for Sketch-a-Net.

We believe that with more data the heterogeneous network

could be better and we could learn from raw pixel values of

photos directly. However, our experiments demonstrate that

with sparse data for training this Siamese network approach

performs significantly better.

For testing, we extract features of sketches and photos

(edge maps) using the sketch branch and photo branch re-

spectively. Then for a query sketch, its ranking result is

generated by comparing distances with all candidate photos

in the feature embedding space.

4.4. Staged PreTraining and FineTuning

Given the limited amount of training data, and the fine-

grained nature of the final target task, training a good deep

ranker is extremely challenging. In practice it requires care-

ful organisation of a series of four pre-training/fine-tuning

stages which we describe here.

1. Training a Better Sketch-a-Net: Pre-training The

first step is to re-train a better Sketch-a-Net. Sketch-a-

Net was originally trained [32] on the TU-Berlin free-hand

sketch data [7] . However, now we need it to also gen-

eralise to edge maps extracted from photos. We therefore

take the Sketch-a-Net architecture, and train it from scratch

to classify 1,000 categories of the ImageNet-1K data with

the edge maps extracted using [35]. All the edge maps are

extracted from bounding box areas, therefore only images

with bounding boxes provided can be used.

2. Training a Better Sketch-a-Net: Fine-tuning Given

the ImageNet-1K pre-trained Sketch-a-Net, we then fine-

tune the model to classify the 250-categories of TU-Berlin

data [7], so that it also represents well the free-hand sketch

inputs. In this training session, we also use a novel form

of data augmentation that improves Sketch-a-Net perfor-

mance. We discuss this data augmentation strategy in

Sec. 4.5. The result is a set of weights for a single branch

of our three-branch ranking network architecture that repre-

sent well both free-hand sketch and photo edge-map data.

3. Training Sketch-Photo Ranking: Pre-training The

learned network branch thus far has been optimised for

category-level recognition. Turning attention to the ultimate

goal of fine-grained retrieval, we finally initialise our three-

branch triplet network with the three Sketch-a-Nets from

the previous step. However, since our fine-grained intra-

category data is extremely limited, we investigate the pos-

sibility of exploiting auxiliary sketch/photo category-paired

data to pre-train the ability to rank.

To achieve this, we collect data from both the TU-Berlin

Sketch and ImageNet Photo datasets. We select 187 cat-

egories which exist in both datasets, and collect sketches

and photos from each. For sketches, we exclude outliers by

selecting the 60% most representative images in each cate-

gory (measured by their scores of the Sketch-a-Net for that

category). For photos, we use the same strategy discussed

above for edge extraction. Finally, we have 8,976 sketches

and 19,026 photos, paired at the category-level.

In order to use this category-level annotated data to pre-

train our triplet ranking model, we need a strategy to gener-

ate triplets. Given a query sketch, for positive photos, just

using the same class is insufficient, because of the within-

class variability. We therefore extract Sketch-a-Net features

from all photos and sketches of the same class, and use the

top 20% most similar images as positives. Negative photos

are sampled from three sources: 1. Easy negatives: Ran-

dom photos from a different category. These are obviously

less similar to every positive pair drawn from the same cat-

egory. 2. Out-of-class hard negatives: photos drawn from

other categories with distances smaller than the above men-

tioned positive sketch-photo pairs for every query sketch. 3.

In-class hard negatives: photos drawn from the bottom 20%

most similar samples to the probe within the same category.

Overall these are drawn in a 3:1:1 ratio.
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4. Training Sketch-Photo Ranking: Fine-tuning The

network so far can be used for fine-grained instance-level

retrieval directly if there is no annotated data available for

the target object category. However, when data is avail-

able it is advantageous to further fine-tune the triplet model

specifically for the target scenario. In our case this means

that the model from Step 3 is finally tuned on the training

split of our contributed shoe/chair datasets.

4.5. Data Augmentation

It is increasingly clear that CNN performance ceiling in

practice is imposed by limits on available data, with ad-

ditional data improving performance [33]. This motivates

investigation into various approaches to data augmentation

[14]. In this section, we describe two novel sketch-specific

approaches to data augmentation that can improve Sketch-

a-Net (and hence our deep triplet ranking) performance.

These are stroke removal and stroke deformation.

Stroke Removal: Sketches captured with appropriate

software are different to images that capture all pixels at

once. They can be seen as a list of strokes that naturally con-

tain order/timing information. Thus we can generate more

sketches by selectively removing different strokes. Our aug-

mentation by stroke-removal strategy considers the follow-

ing intuitions: 1) The importance of strokes is different.

Some strokes are broad outlines of an object which are more

important than detailed strokes. 2) The longer the stroke is,

the more likely it has a higher importance. 3) People tend

to draw the outline first and add details in the end [32].

Combining these points, we use Eq. (4) to determine the

probability of removing the i-th stroke:

Pri =
1

Z
· e(α∗o−β∗l), s.t. Z =

∑

i

e(α∗o−β∗l) (4)

where o and l represents stroke sequence order and length

respectively, while α and β are two weights for these two

factors, and Z is a normalisation constant to ensure it to

be a discrete probability distribution. Overall, the shorter

and the later a stroke is, the more likely it will be removed.

Fig. 4 shows the generated sketches after removing differ-

ent percentages of strokes. Clearly they capture different

levels of abstraction for the same object (category) which

are likely to present in hand-free sketches.

Stroke Deformation: Different styles of sketching can

also be captured by stroke deformations. Inspired by this,

we employ the Moving Least Squares algorithm [24] for

stroke deformation. In the same spirit of strokes removal,

the deformation degrees should also be different across

strokes. It is controlled by the length and curvature of stroke

so that strokes with shorter length and smaller curvature are

probabilistically deformed more.

airplane

bus

bee

(b) (c) (d)(a)

Figure 4. Examples of stroke removal. (a) original sketch, and

(b)-(d) sketches after removing 10%, 30% and 50% strokes.

!!!!!Stroke!Removal!!

!!!!!!!!(3!sketches)

!Stroke!Deforma4on

(9!sketches)

Input!

(1!Sketch)

Figure 5. The process of sketch data augmentation.

Summary: Using our stroke-removal and stroke-

deformation, we generate 12× the original data by

synthesising three-sketches with 10%, 30% and 50%

of strokes removed, and 9 further sketches by applying

deformations based on the 3 newly generated sketches.

Fig. 5 shows the whole process of data augmentation.

The first two of our staged pre-training/fine-tuning

(Sec. 4.4) strategies apply directly to a single branch of

Sketch-a-Net. We therefore verify these contributions di-

rectly on a standard sketch-recognition benchmark, before

moving onto our ultimate goal of instance-level retrieval

and ranking. We found that for the 250-category classi-

fication task on TU-Berlin benchmark [7], our improved

Sketch-a-Net achieves a recognition accuracy of 77.2%,

compared to 74.9% obtained with the original network [32].

5. Experiments

5.1. Experiment Settings

Dataset Splits and Pre-processing: There are 419 and

297 sketch-photo pairs in the introduced shoe and chair

datasets respectively. Of these, we use 304 and 200 pairs

for training shoes/chairs respectively, and the rest for test-

ing. Recall that each sketch has 45 triplet tuples worth of

ranking annotation, resulting in 13, 680 and 9, 000 training

instances respectively. Before we conduct the experiments,
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we use the edge strength to crop object of both photos and

sketches for coarse alignment. Then we resize all cropped

photos/sketches to the same size of 256× 256.

Implementation Details: We used the open source Caffe

package to train our models. The initial learning rate is

set to 0.001, and mini-batch size to 128. During training,

we randomly crop 225 × 225 sub-images from photos and

sketches, and flip them with a probability 0.5. For sketches,

the new data augmentation scheme (Sec. 4.5) is applied.

Other parameters are set to ∆ = 0.3, α = 0.5, β = 2.

Evaluation Metrics: For our task of fine-grained

instance-level retrieval and ranking, two metrics are used,

which roughly correspond to two related application sce-

narios. The first metric is the retrieval accuracy of the true

result. We quantify this by cumulative matching accuracy at

various ranks — so acc.@ K is the percentage of sketches

whose true-match photos are ranked in the top K. This cor-

responds to an application where the goal is simply to find a

specific item/image as quickly as possible. The second met-

ric is % correctly ranked triplets. This reflects the overall

quality of the model’s ranking list compared to human an-

notation, rather than the position of the ground-truth photo

match. This roughly corresponds to an application where a

similar item would be acceptable, so the overall list quality

is relevant, rather than just the rank of the true match.

5.2. Baselines

We compare our model with several hand-crafted and

deep feature baselines including:

HOG+BoW+RankSVM: HOG features are popular and

powerful classic for sketch-recognition [17] and SBIR [11].

We first consider the more common approach of generating

a BoW descriptor (500D). Since this is a general-purpose

feature, it needs discriminative training to perform com-

petitively on our SBIR task, so we train a ranker based

RankSVM using the triplet annotations as input as in [31].

Dense HOG+RankSVM: In the case of fine-grained re-

trieval, we expect less mis-alignment than across-category

recognition. Dense HOG (200,704D), obtained by concate-

nating HOG features over a dense grid, is more informative

albeit being more sensitive to mis-alignment; it is thus ex-

pected to perform better than HOG+BoW.

Deep Feature: Improved Sketch-a-Net (ISN): For this

method, we first compute edge maps of the photos, and then

use a single Sketch-a-Net to extract features of both photos

and sketches. We use the fc6 layer as representation. After

that we train a RankSVM using triplet annotations as super-

vision, and then use the learned model to predict the ranking

order on the test set. Note that the Sketch-a-Net is trained

following the pipeline discussed in Sec 4.5.

Deep Feature: 3D shape (3DS): This uses the very recent

deep net [28] to extract features, followed by RankSVM

learning. Note that while [28] may seem somewhat related

to our task and model, it is actually quite different: It aims

to do category-level retrieval, while we do instance-level

retrieval. To apply it to our task, the model is pre-trained

on the same 187 category intersection of ImageNet-1K and

TU-Berlin as our model. Note that as a two-branch model,

it cannot be fine-tuned using triplet annotation.

5.3. Results

Comparisons against Baselines We first report the com-

parative performance of our full model and the four base-

lines. Table 1 shows the results for cumulative matching

accuracy at rank 1 and 10, and triplet ranking prediction

accuracy. We make the following observations: (i) Our

model performs the best overall on each metric and on both

datasets. (ii) The gap between our model and the baselines

measured using the cumulative matching accuracy is big;

however, the gap is smaller when evaluated on the triplet

ranking prediction (%corr.) – in fact, all methods struggled

considering that random guess should give 50%. This re-

sult suggests that pushing the correct match to the top of the

ranking list is a much easier task (our model puts the cor-

rect match at the top-10 87.83% and 97.94% of the times

for shoes and chairs respectively) than correctly ranking the

top-10 photos, many of them would be very difficult to dis-

tinguish even for humans (see Fig. 2). (iii) The 3DS model

in [28] clearly is the worst among all compared methods.

This shows that the category-level SBIR model with hetero-

geneous two branches are not suitable for the fine-grained

SBIR task, in particular when the photos are natural images

instead of 2D projection of 3D models. It also shows the

importance of fine-tuning on the target datasets using the

triplet annotations, which is not possible for the two-branch

and category-level retrieval 3DS model. Some examples of

the SBIR results are shown in Fig. 6. It can be seen that

our model captures the fine-grained details very well and is

more capable of retrieving the relevant photos.

We also compare with the pose-centric fine-grained re-

trieval model [16], testing our model on their dataset.

Specifically, we fine-tune our pre-trained chair model on

their dataset, and test using their evaluation setting. Over 14

categories, for K=5/10 settings, our method achieves aver-

age scores 23.74/44.88 versus 17.58/31.33 for their method.

Further Analysis on Pre-training One of the pre-

training stages is to train our model using the category-

level sketch-photo data (ImageNet and TU-Berlin) to im-

prove triplet ranking (Sec. 4.4, Step 3). This strategy turns

out to have a subtlety: It is possible to over-train on the

187 sketch-photo categories, such that it becomes detrimen-

tal for subsequent triplet ranking. In our experiment, we

stopped training early (after 1000 iterations) for this step.

Contribution of Each Component Finally, we inves-

tigate the contribution of each step of staged-training and

our model components, and further issues around architec-
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Figure 6. Ranking examples using different compared models. The true matches are highlighted in green.

Shoe Dataset acc.@1 acc.@10 %corr.

BoW-HOG + rankSVM 17.39% 67.83% 62.82%

Dense-HOG + rankSVM 24.35% 65.22% 67.21%

ISN Deep + rankSVM 20.00% 62.61% 62.55%

3DS Deep + rankSVM 5.22% 21.74% 55.59%

Our model 39.13% 87.83% 69.49%

Chair Dataset acc.@1 acc.@10 %corr.

BoW-HOG + rankSVM 28.87% 67.01% 61.56%

Dense-HOG + rankSVM 52.57% 93.81% 68.96%

ISN Deep + rankSVM 47.42% 82.47% 66.62%

3DS Deep + rankSVM 6.19% 26.80% 51.94%

Our model 69.07% 97.94% 72.30%

Table 1. Comparative results against baselines.

ture. From Table 2 we can draw the conclusions that: (i)

Both the staged-training and our novel data augmentation

strategies are effective. (ii) Our triplet ranking model out-

performs the more conventional pairwise verification alter-

native [5, 28] (Pairwise alternative), demonstrating the im-

portance of learning from fine-grained triplet annotations,

rather than merely (mis)matching pairs. Here the pair-

wise alternative has exactly the same architecture and pre-

training in each branch. However, with only two branches,

it cannot use the target data triplet annotations. So we use a

sketch and its ground-truth photo to form a positive pair, and

regard all others as negative pairs in the Step 4 fine-tuning.

(iv) Lastly, we contrast Siamese against heterogeneous as-

sumptions for the network branches. The results of hetero-

geneous triplet and pairwise architectures, compared with

our (Siamese) full model and pairwise alternative, show that

using a Siamese network is advantageous – despite the re-

quired introduction of photo edge extraction. This is due to

the lack of training data to fit the greater number of param-

eters in a heterogeneous architecture.

Running Cost All our experiments are conducted on a

32 CPU core server with 2 Nvidia Tesla K80 cards. Pre-

training the model on the ImageNet-1K edge data takes

about 4 days. Fine-tuning the ImageNet-1K model on the

TU-Berlin data takes about 12 hours, and finally training a

acc.@1 acc.@10

Step 4 only 27.83% 78.26%

Step 2 + 4, no data aug 33.04% 81.74%

Step 2 + 4, with data aug 36.52% 84.35%

Step 1 + 2 + 4, with data aug 38.26% 85.22%

Step 1-4, no data aug 37.39% 86.09%

Pairwise alternative 28.70% 78.26%

Hetero. image triplets 21.74% 68.70%

Hetero. image pairwise 16.52% 69.57%

Our full model 39.13% 87.83%
Table 2. Contributions of the different components (shoe dataset).

Siamese network of three branches on the shoes/chair data

will take another 9 hours for 40,000 iterations. During test-

ing, it takes about 30 ms to perform one retrieval.

6. Conclusion

We introduced the novel task of fine-grained instance-

level SBIR. This task is more challenging than the well-

studied category-level SBIR task, but is also more useful

for commercial SBIR adoption. Two new datasets with

dense annotation were introduced to stimulate the research

in this direction. Achieving fine-grained retrieval across

the sketch/image gap requires a deep network learned with

triplet annotations, a framework which apparently has ex-

tensive data and annotation requirements. We demonstrated

how to sidestep these requirements in order to achieve good

performance at this new and challenging task. In the pro-

cess we explored a variety of insights around training deep

networks with limited data.
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