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Abstract

It is a challenging problem to accurately estimate gazes

from low-resolution eye images that do not provide fine and

detailed features for eyes. Existing methods attempt to es-

tablish the mapping between the visual appearance space

to the gaze space. Different from the direct regression ap-

proach, the reconstruction-based approach represents ap-

pearance and gaze via local linear reconstruction in their

own spaces. A common treatment is to use the same lo-

cal reconstruction in the two spaces, i.e., the reconstruction

weights in the appearance space are transferred to the gaze

space for gaze reconstruction. However, this questionable

treatment is taken for granted but has never been justified,

leading to significant errors in gaze estimation. This paper

is focused on the study of this fundamental issue. It shows

that the distance metric in the appearance space needs to

be adjusted, before the same reconstruction can be used. A

novel method is proposed to learn the metric, such that the

affinity structure of the appearance space under this new

metric is as close as possible to the affinity structure of the

gaze space under the normal Euclidean metric. Further-

more, the local affinity structure invariance is utilized to fur-

ther regularize the solution to the reconstruction weights, so

as to obtain a more robust and accurate solution. Effective-

ness of the proposed method is validated and demonstrated

through extensive experiments on different subjects.

1. Introduction

Visual sense is the most informative one among all hu-

man perceptions. Gaze estimation, which infers visual at-

tention, has wide applications in many areas, e.g., human-

computer interfaces can utilize estimated gaze as an auxil-

iary input to aid disabled people.

Eye gaze tracking techniques can be divided into two cat-

egories, intrusive and non-intrusive eye gaze trackers [12].

Intrusive eye gaze trackers provide high accuracy and reli-

ability, but require dedicated hardware. One example uses

contact lens, and the gaze directions are estimated by mea-

suring the change of voltage in the lens.

Non-intrusive eye gaze trackers are mostly vision-based.

They utilize the information from remote cameras, thus

are easier and suitable to use for a long period of time.

These techniques can be feature-based or appearance-based.

Feature-based methods track eye features such as iris con-

tour, pupil location and etc. One popular method uses in-

frared light source to create glints on cornea.

Since the feature-based methods still need expensive

devices, appearance-based methods, which only need one

simple web camera to capture eye appearances, is simpler

and more attractive in practice. Such methods attempt to

construct the mapping between the visual appearance of the

eyes and the gaze. In [17] [9], the same weights that recon-

struct the visual appearance are used to reconstruct the gaze.

These reconstruction-based methods are used as the base

estimation when handling the head movements and simpli-

fying the calibration process [8] [10] [16], and they have

shown promising performance and considerable simplicity.

However, there is one fundamental problem in such

reconstruction-based methods that has not been well stud-

ied yet. The using of the same reconstruction weights in the

two different spaces (i.e. the appearance space and the gaze

space) is taken for granted, without justification or guaran-

tee. In fact, they may not be the same, and can even be

significantly different. Without addressing this issue, re-

gardlessly using the same reconstruction weights leads to

inaccurate results. This issue has not been investigated in

the literature.

To address this issue, we propose a new solution that

explicitly decomposes the gaze estimation error of the

reconstruction-based methods into two terms. The first term

is the matching error between the reconstructed appearance

and the query appearance. The second one is the error in-

curred by using the same reconstruction weight in the ap-

pearance space and the gaze space, which has never been

investigated before. We reduce the second error term via ex-

ploring the relationship between the reconstruction weights

in the two spaces by analyzing their structures. Two novel

methods, learning a global distance metric in training phase
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and minimizing the local space structure discrepancy in es-

timation phase, are proposed to align the two spaces, so

as to reduce the second error term. The effectiveness of

these two new methods is validated through their consis-

tently and significantly superior performances in our exper-

iments on different subjects. The average estimation error

of our proposed method outperforms existing methods by

at least 11%. The proposed method also shows resilience

to pose and subject variation in cross pose and cross subject

experiments.

Our proposed method has following significant differ-

ences from existing methods:

1. This is the first work to investigate the difference of the

reconstruction weights in appearance space and gaze

space, and the estimation error incurred by this differ-

ence.

2. Two novel methods are proposed to reduce this error

term by aligning the two spaces. The first one is used

in training phase as a global distance metric learning.

The second one is conducted in the estimation phase

by minimizing the discrepancy of local space structure

between the query appearance and the estimated gaze.

This paper is organized as follows. Section 2 briefly de-

scribes the related works. Section 3 describes our proposed

method. Section 4 assesses the proposed method, and the

baseline methods, with different settings. Section 5 con-

cludes this paper.

2. Related work

Gaze estimation methods can be categorized from two

perspectives. In term of the visual features used, there are

feature-based methods that utilize specific eye features, and

appearance-based methods that treat eye images as high di-

mensional features. From the perspective of computing,

there are model-based methods that reconstruct the 3-D eye

model from the input features, and regression methods that

learn a mapping directly from the input feature to the gaze.

Comprehensive surveys can be found in [7] [12].

Feature-based method: Feature based methods extract

specific eye features such as Pupil Center Corneal Reflec-

tion (PCCR) [24] [25] [23] [22] [3] [6], iris contour [18],

eye corners [2]. Zhu and Ji obtained a head mapping func-

tion to compensate head movements [24]. In [25], support

vector regression (SVR) is utilized. In [23] [22], Yoo et al.

and subsequently Yoo and Chung proposed to use five in-

fra red light sources and cross ratio to allow head motion.

In [3], Chen and Ji proposed to utilize saliency map to in-

crementally learn a distribution of the person dependent pa-

rameters and the gaze. A detailed study of the methods us-

ing PCCR can be found in [6]. All of above methods have to

use infra red camera to capture cornea glint. In [18], Wang

et al. proposed to extract the iris circle from natural image.

In [2], Chen and Ji used facial feature points. Although the

feature-based methods may provide accurate estimation of

gaze, they require infra red devices or high resolution im-

agery, which limits their adaptability to outdoor situation

and/or low resolution camera.

Appearance-based method: Appearance-based meth-

ods simply use eye images as high dimensional input fea-

tures, which relieves gaze estimation from relying on ded-

icated hardware. In [1] [21], neural network was applied

to learn the regression. To reduce the number of training

samples, Tan et al. proposed to estimate gaze using Locally

Linear Reconstruction (LLR) [17] [13]. This method as-

sumes an appearance manifold, where the k-nearest neigh-

bors (k-NN) of one appearance vector are used to form

the Delaunay triangulation topology of the corresponding

gaze positions. Such a reconstruction is assumed to be the

same in both the appearance manifold and the gaze mani-

fold. Lu et al. proposed Adaptive Linear Regression (ALR),

leveraging the sparsity to choose supporting training sam-

ples [9]. In [20], Williams et al. proposed a sparse semi-

supervised Gaussian process regression model. To handle

the head movements, Sugano et al. proposed an incremen-

tal learning method [16]. Lu et al. proposed a two stage

solution, i.e., the initial gaze estimation under a fixed head

pose and the compensation of the estimation bias caused

by the head movement [8]. Furthermore, Lu et al. pro-

posed a synthesis approach to generate training images of

unseen head poses [10]. Depth camera was utilized by Fu-

nes and Odobez [11]. To simplify the training procedure,

Sugano et al. proposed to use saliency map [14]. For the is-

sue of cross subject estimation, Sugano et al. applied the

learning-by-synthesis approach and the redundant regres-

sion forests [15].

The proposed method is appearance-based, but focuses

on studying the relation and alignment between the appear-

ance space and the gaze space. The unclear relation between

the two spaces is a significant factor leading to the estima-

tion error in the reconstruction-based methods, but this issue

has not been addressed before.

3. The proposed approach

3.1. Baseline methods

Appearance-based gaze estimation is to infer the gaze

position from eye appearances through learning a mapping

f : α 7→ β, where α is the space of appearance features

a ∈ R
n, and β is the space of gaze position vectors y ∈ R

d.

A set of training pairs, or called exemplars, (ai,yi), i =
1 . . . N is needed. Without losing generality, we represent a

gaze y by a 2-D position on the target plane.

One solution is to learn a global regression function, e.g.

Support Vector Regression (SVR), that constructs the direct
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mapping from a to y. However, such regression relation-

ship between a and y can be very complicated, and very

difficult to capture, especially when the number of training

exemplars is small.

Unlike the direct regression methods that do not use the

structure information of the appearance space α, an alterna-

tive approach takes advantage of the local structures. It re-

constructs the query appearance feature based on the train-

ing appearance exemplars (e.g., using the k-nearest neigh-

bors of the query appearance):

ω∗
α =argmin

ω
‖ a−Aω ‖22

s.t. 1Tω = 1
(1)

where a is query appearance feature, and A =
{a1, . . . ,ak} is the set of the related exemplars in the train-

ing set. They can be simply the nearest neighbors [17], or

those that give the most sparse reconstruction [9]. Assum-

ing that such reconstruction holds the same in both the ap-

pearance space and the gaze space, this approach uses the

same weight ω∗
α to interpolate the gaze by the correspond-

ing gaze exemplars:

y = Bω∗
α (2)

where B = {y1, . . . ,yk}, and each yi is the corresponding

gaze of its appearance ai in A.

3.2. Decomposing the estimation error

By minimizing the objective function in Equ. 1, those

traditional methods seek a best reconstructed appearance in

the appearance space to best match the query appearance a,

i.e. minimizing the matching error D(a,Aω). In [9] [17],

D(a,Aω) =‖ a−Aω ‖2. This seems to be plausible due to

the correspondences between appearance a and gaze posi-

tion y, hoping the true gaze to be recovered via transferring

the reconstruction. Unfortunately, such correspondences do

not automatically imply or guarantee that the reconstruc-

tion weights are the same in the two spaces. Regardlessly

using the same reconstruction of the query appearance to

reconstruct the estimated gaze will introduce significant es-

timation error.

In fact, the reconstruction in the gaze space β should be

given by:

ω∗
β =argmin

ω
‖ y −Bω ‖22

s.t. 1Tω = 1
(3)

where y is the true gaze of query appearance a. Previous

works all took for granted that ω∗
β = ω∗

α, which is in fact

not true in practice. As shown in Equ. 1, weight ω∗
α de-

pends on the distance between different appearance feature

vectors D(ai,aj) that exhibits the structure of the appear-

ance space α. However, as illustrated in Fig. 1, the structure

of the appearance space α and the gaze position space β

may be very different. Because of this discrepancy between

the structure of the two spaces, simply using ω∗
α to recon-

struct the estimated gaze will inevitably introduce error in

gaze estimation.

(a) (b)

Figure 1. Illustration of the difference of structure between the ap-

pearance feature space and the gaze position space. The length

of connection lines indicates the Euclidean distance between two

connected components. Figure (a) describes the Euclidean dis-

tances between the appearance bounded by black box and its 5-

nearest neighbors. Figure (b) describes the distances in the gaze

position space, where each triangle indicates the gaze position

point corresponding to the appearance bounded by the box with

the same color.

Therefore, in the reconstruction-based methods, the es-

timation error comes from two sources, and we explicitly

decompose it as:

E(ω) = ED(ω) + ER(ω) (4)

where E(ω) is the total estimation error using ω to recon-

struct estimated gaze, ED(ω) is the matching error between

the reconstructed appearance using ω and the query appear-

ance, and ER(ω) indicates the error introduced by using

the appearance reconstruction weight ω to reconstruct the

gaze. In previous works of appearance based gaze esti-

mation, only the appearance reconstruction error ED(ω) is

considered. ER(ω) term has not been investigated before,

but is critical to bridging the gap of ω between the appear-

ance space α and the gaze space β.

In the following sections, we propose two novel methods

to reduce ER(ω) from two different perspectives. The first

one is to find a global alignment between the appearance

space α and the gaze space β via learning a new distance

metric in Sec. 3.3. The second one is locally regularizing

the discrepancy of space structure related to query appear-

ance a and estimated gaze Bω in Sec. 3.4. The first one is

conducted in training phase, while the second one is con-

ducted in estimation phase.

3.3. Reducing ER by learning global distance metric

In [17] [9], only ED(ω) term is considered, and it is

modeled as ED(ω) =‖ a − Aω ‖2, the Euclidean dis-

tance between reconstructed appearance and query appear-

ance. However, as analyzed in Sec. 3.2, the space structure

of the two spaces, if simply defined by Euclidean distance,
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will not be the same, resulting in different reconstruction

weights in the two spaces.

In order to reduce the error ER(ω) caused by this dis-

crepancy, instead of pursuing different weights ω for the

two spaces, we propose to find an optimal distance met-

ric D∗ for the appearance space α, such that the struc-

ture of α approximates the Euclidean structure of β, i.e.,

D∗(ai,aj) ∼‖ yi − yj ‖22. We call it the global distance

metric, since it is learned from the space structures defined

by all training appearance-gaze pairs, and applies to all ap-

pearance.

Our method seeks the optimal distance metric D∗:

D∗ = argmin
D

ǫ(α, β : D), (5)

where ǫ(α, β : D) refers to the discrepancy between the

structure of space α subject to the metric D, and the struc-

ture of space β subject to the Euclidean distance metric. α

and β are the appearance space and the gaze space, respec-

tively. With this learned metric, our ED(ω) term is

ED(ω) = D∗(a,Aω). (6)

The ER(ω) term has been reduced through the process of

learning distance metric D∗. The weight to reconstruct gaze

is found through:

ω∗ = argmin
ω

D∗(a,Aω)

s.t 1Tω = 1
(7)

where A = {a1, . . . ,ak} is the k-NN of a with respect to

the distance metric D∗. This is our first proposed approach,

and the detail of the learning of this metric is described in

Sec. 3.3.1 and the gaze estimation is given in Sec. 3.3.2.

3.3.1 Learning a global distance metric

To obtain the distance metric, we propose to learn a lin-

ear projection C that transforms the appearance space, such

that the transformed appearance space shares the same Eu-

clidean structure of the gaze space. The distance metric of

the transformed appearance space is

D(ai,aj) = (Cai −Caj)
T (Cai −Caj)

= (ai − aj)
TS(ai − aj)

(8)

where S = CTC is the transformation kernel. S is a posi-

tive semidefinite (PSD) matrix. This is equivalent to learn-

ing a Mahalanobis distance metric with kernel S for the

original eye appearance space.

We model the structure of the appearance space α, the

gaze space β, and the transformed appearance space γ.

Then we need to learn a transform kernel S : α 7→ γ,

such that the structure of space γ approximates the structure

of space β. This structure representation can have various

choices, as long as it conveys the distance information be-

tween different data pairs. Without losing generality, in this

paper we represent the structure of a space by its affinity

matrix.

Given the training set of appearance-gaze exemplar pairs

(ai,yi), i = 1 . . . N , the affinity matrix of the target space

β is U , [uij ]

uij = exp(−
(yi − yj)

T (yi − yj)

2σ1

). (9)

Since the scale of the distance among data points does

not change the estimation, normalization is performed on

uij and we get P , [pij ]

pij =
uij∑
k 6=i uik

, pii = 0. (10)

The affinity matrix of transformed appearance space γ is

modeled in the same way. The affinity matrix VS , [vSij ]

vSij = exp(−
(ai − aj)

TS(ai − aj)

2σ2

). (11)

By normalizing matrix VS, we get matrix QS , [qSij ]

qSij =
vSij∑
k 6=i v

S

ik

, qSii = 0. (12)

We use KL divergence to model this difference between

the matrices P and QS.

KL[P|QS] =
∑

ij

KL[pij |q
S

ij ]. (13)

Hence, the objective function of learning the metric is:

argmin
S

f(S) =
∑

ij

KL[pij |q
S

ij ], S ∈ PSD (14)

Equ. 14 can be solved by alternating between gradient

descent step and projection to PSD cone. Noticing that:

f(S) =
∑

ij

pij log pij −
∑

ij

pij log q
S

ij (15)

The gradient of f(S) w.r.t. S is

∇f(S) =
1

2σ2

∑

ij

(pij − qSij)(ai − aj)(ai − aj)
T (16)

For t-th iteration, gradient descent is performed with step

length η to get S of next iteration.

St+1 = St − η∇f(S) (17)
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To ensure that S is PSD, we project the matrix St+1 to

PSD cone. We first perform EVD on St+1

St+1 =
∑

k

λkuku
T
k (18)

where λk is the eigenvalue of matrix S, uk is its correspond-

ing eigenvector. Then we eliminate the components corre-

sponding to negative eigenvalue.

St+1 =
∑

k

max(0, λk)uku
T
k (19)

Alternate the process of gradient descent and projection on

PSD cone until S converges.

Compared with similar metric learning methods

in [5] [4], the proposed method is different in following

aspects. Firstly, the proposed method is for regression

problems, rather than classification. Secondly, our objective

is to align the structure of the two spaces (i.e., the visual

appearance space and the gaze space), not to collapse all

the feature points in the same class to a single point.

3.3.2 Gaze estimation with learned distance metric

With the transformation kernel S = CTC, the new objec-

tive of gaze reconstruction corresponding to Eq. 7 is:

argmin
ω

‖ a−Aω ‖2C

s.t .1Tω = 1,
(20)

where a is the input query appearance feature, C is the

transform matrix, and A = (a1, . . . ,ak) is the collection

of the k-nearest neighbors of the query appearance. Note

that here the k-nearest neighbors are chosen based on the

Mahalanobis distance with kernel S.

It is easy to obtain the closed-form solution to this con-

strained least squares problem:

ω∗ =
D†1

1TD†1
(21)

where D = (a1T −A)TS(a1T −A), D† is the pseudoin-

verse of matrix D.

3.4. Reducing ER by local regularization

In Sec. 3.3, the reduction of ER term is conducted in

training phase with a global scope. In this section, we con-

sider the possibility to further decrease ER in the estimation

phase with a local scope.

In the estimation part in Sec. 3.3.2, Equ. 20 minimizes

the matching error between the reconstructed appearance

Aω and the query appearance a with the learned distance

metric D∗. It only considers the space structure of the train-

ing set of appearance and gaze pairs (ai,yi), i = 1 . . . N .

Nevertheless, when the gaze y corresponding to the query

appearance a is estimated (i.e., not included in the training

set), we actually obtain another pair of appearance and gaze,

(a,Bω), where a is the query appearance, Bω is the recon-

structed or estimated gaze position. Therefore, the optimal

weight ω∗ has impact on the mutual information between

the true gaze and the estimated gaze Bω. However, this is

missing in the estimation in Equ. 20, which will introduce

additional error part of ER(ω) to the final estimation.

This part of ER(ω) can be further reduced in the es-

timation phase. We denote by β′ the reconstructed gaze

space (i.e., via Bω). Note that when ǫ(α, β : D∗) is small,

ǫ(α, β′ : D∗), the discrepancy of the structure of the ap-

pearance space α using distance metric D∗ and space β′

with Euclidean distance, should also be small. We use this

constraint to further regularize this space structure discrep-

ancy.

This ER(ω) = ǫ(α, β′ : D∗) term is local because it only

considers the local space structure, i.e. only the local data

related to the query appearance a and the estimated gaze

Bω is influenced by the estimated ω. Only this local space

structure discrepancy will contribute to ER(ω). By penal-

izing this local ER(ω) term, ω is not only trying to find the

best matched reconstructed appearance Aω, but also trying

to minimize the error caused in reconstructing the estimated

gaze Bω by using this ω. ǫ(α, β′ : D∗) is analogous to the

energy function in energy-based classification in [19], but

with different objective function. ǫ(α, β′ : D∗) denotes the

discrepancy between the structure of two spaces, while the

energy term in [19] is hinge loss.

3.4.1 Modeling the local space structure

To describe the structure of extended gaze space, we use

ui = exp(−
(Bω − yi)

T (Bω − yi)

2σ1

), (22)

where Bω is the estimated gaze, B = {y1, . . . ,yk} that is

the collection of the corresponding gazes of the k-nearest

neighbor of the query appearance. We normalize it:

pi =
ui∑
k uk

(23)

The extended appearance space is subject to the Maha-

lanobis kernel S, and its structure can be modeled as:

vSi = exp(−
(a− ai)

TS(a− ai)

2σ2

). (24)

After normalization, we have:

qSi =
vSi∑
k v

S

k

. (25)
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The discrepancy of the local structure of spaces α and

β′ can still be modeled by the KL divergence KL[p|qS],
where vector qS , [qSi ] models the structure of appearance

space α related to the query appearance a, vector p , [pi]
models the structure of the gaze position space β′ related to

the estimated gaze position Bω. Similar to Sec. 3.3.1,

KL[p|qS] =
∑

i

pi log pi −
∑

i

pi log q
S

i . (26)

3.4.2 Estimation with local regularization

The final objective function of our proposed method is:

argmin
ω

f(ω) =‖ a−Aω ‖2C +λ KL[p|qS]

s.t .1Tω = 1
(27)

where λ is a balancing factor.

f(ω) =‖ a−Aω ‖2C +λ(
∑

i

pi log pi −
∑

i

pi log q
S

i ),

(28)

whose gradient w.r.t. ω is:

−2ATS(a−Aω)+
λ

σ1

(
∑

i

pi log
pi

qSi
(BTyi−

∑

j

pjB
Tyj)).

(29)

Gradient-based method can be easily applied.

4. Experiments

This section evaluates the performance of the proposed

method. Experiments have been performed on the bench-

mark dataset provided by Sugano et al. in [15]. Same as

in [9], the estimation error is measured in degree, and cal-

culated as

Error = arctan(
‖ ŷ − y ‖2

d
), (30)

where ŷ is the estimated gaze position, y is the ground truth

gaze position, and d is the distance between experiment sub-

ject and the screen on which the gaze position resides.

Baseline comparisons include k-NN, SVR, Local Lin-

ear Reconstruction (LLR), the triangle region based Local

Linear Reconstruction (LLR-TRI) [17] and Adaptive Lin-

ear Regression (ALR) [9]. The LLR method is a simplified

version of [17], where the k-NN is chosen only based on

the Euclidean distance without considering the topological

information as in LLR-TRI. To investigate the influence of

the regularization term in Sec. 3.4, the proposed method has

been evaluated under two conditions: without the regular-

ization term, denoted as Ours (Sec. 3.3.2), and with regu-

larization term, denoted as Ours-R (Sec. 3.4.2).

Template

Template

Figure 2. Illustration of feature extraction process

Figure 3. Gaze position patterns. Each blue cross denotes one gaze

position in the training set. Each red cross is one gaze position

in the testing set. Each green cross denotes one excluded gaze

position in UT multi-view gaze dataset.

The proposed methods and baseline methods were evalu-

ated in three scenarios, fixed-subject and fixed-pose setting,

cross-pose setting, and cross-subject setting. Influence of

the balancing parameter λ, and the dimension of appearance

will be discussed in following sections.

4.1. Appearance feature

We extract the eye appearance feature in following steps:

1. Histogram equalization is performed on eye images.

2. Follow method in [9] to detect the right and left eye

corners, align the eye images with respect to the two

eye corners to the template eye images.

3. The image region bounded by two eye corners is

cropped using a fixed aspect ratio.

4. Eye images are downsampled to a lower resolution,

e.g. 3 × 5, after antialiasing filtering. Normalize and

concatenate appearance feature al and ar of the left

eye and the right eye to one appearance feature, a =

(
a
T

l

‖al‖2

,
a
T

r

‖ar‖2

)T .

4.2. Result on UT multiview gaze dataset
Experiments are performed on a recently published

dataset, UT Multi-view Gaze Dataset [15], which contains

50 subjects, 160 gaze directions, 8 cameras and 144 syn-

thetic head poses for each subject. The proposed methods

and baseline methods were evaluated under three settings,
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Figure 4. Result of metric preservation. Figure (a), (b), (c) shows the affinity matrix of appearance feature space, gaze position space and

the transformed appearance feature space after metric learning.
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Figure 5. Regularized estimation errors with different λ

including fixed-pose & fixed-subject, cross-pose, cross-

subject.

In fixed-pose and fixed-subject setting, for each subject,

training and testing images are from the same camera. The

training and testing gaze split pattern follows [9], as shown

in Fig. 3. One camera is sufficient for fixed pose and sub-

ject setting. We randomly choose camera No.5. In total,

there are 3750 training samples and 3750 testing samples.

For each subject, there are 75 training samples and 75 test-

ing samples. Feature extraction follows Sec. 4.1. Note that

ALR method requires the feature dimension to be lower

than the number of training samples, the dimension of ap-

pearance feature of each eye must be lower than 37. On

the contrary, our method does not have such constraint. For

a fair comparison, 30-dimensional appearance features are

constructed, denoted by 30-D, with 3×5 dimension for each

eye image, the same as [9]. k for k-nearest neighbor is set

to 8. The dimension of the appearance feature is later in-

creased to 64, denoted by 64-D, 4 × 8 for each eye image,

to investigate its influence on estimation accuracy.

In cross-pose setting, we use synthesized images of each

subject for training, and actual recorded images of the same

subject for testing. The testing data has 8 different poses

(cameras). All of 160 gaze positions of each pose are in-

cluded in corresponding training or testing set, with no split.

k for k-NN is increased to 10 as more training data are in-

cluded. Note that the synthesized poses may also include

the actual poses, we exclude from training set the synthetic

poses whose distance to the testing pose is less than 5 de-

grees. This setting is not investigated in [15] as they use all

synthetic poses as training. Note that because of normal-

ization, the poses of left eye and right eye are different for

the same actual camera. Therefore, we can not use appear-

ance which combines two eye images as in Sec. 4.1 since

training poses are chosen based on testing poses. Left eye

and right eye were evaluated separately. Appearance fea-

ture is extracted from each eye and with 9 × 15 dimension

as in [15].

Cross-subject setting follows the design in [15]. Training

images include all gaze positions of 144 synthesized poses

of 33 different subjects. Testing images include all 160 gaze

positions of 8 actual cameras. k of k-NN is set to 10. Ap-

pearance feature is single eye image of 9× 15 dimension.

4.2.1 Metric learning result

Fig. 4 shows the affinity structure of the original appearance

space, gaze space and the transformed appearance space of

subject 00 with fixed-pose and fixed-subject setting. S is

initialized as identity matrix. It is clear that the structure of

the original appearance space in Fig. 4 (a) is deviated from

the gaze space in Fig. 4 (b). While the gaze space exhibits

a strong periodic structure, the original appearance feature

space structure is cluttered and irregular. As shown in Fig. 4

(c), it is clear that the affinity structure of the transformed

appearance feature space better approximates the structure

of the gaze space.

4.2.2 Influence of λ

Fig. 5 shows how the average estimation error changes as

the balancing factor λ varies, under fixed-pose and fixed-

subject setting. When λ is 0, the estimation error is large

since the objective function degenerates to Equ. 20, which

only considers the reconstruction error with learned dis-

tance metric but overlooking ER(ω). When λ is too large,

the estimation is also inferior since the ED(ω) may be large,

i.e. the reconstructed appearance is deviated from the query
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Error 30-D Error 64-D

k-NN 2.49±1.84 2.47±1.80

SVR 1.32±1.32 1.05±1.26

LLR 1.23±1.34 1.11±1.24

LLR-TRI 1.27±1.60 1.14±1.53

ALR 1.23±1.35 1.06±1.75

Ours 1.14±1.20 0.95±1.10

Ours-R 1.08±1.15 0.92±1.08

Table 1. Estimation error without pose and subject variation.

one, so is the estimated gaze. As shown in Fig. 5, the curve

has only one extreme point, which makes it easy to find

the optimal λ via binary search and cross validation on the

same training set. In fixed-pose and fixed-subject setting, λ

is fixed for different gaze directions. In cross-pose setting

and cross-subject setting, it is estimated from k-NN train-

ing features of the query feature, which will be introduced

in Sec. 4.2.4.

4.2.3 Result without pose and subject variation

This section investigates the fixed-pose and fixed-subject

setting. Average estimation error in degree and standard

deviation of error have been calculated for evaluation. To

assess statistical significance of our proposed method, the

Wilcoxon signed rank test has been conducted between each

baseline method and Ours-R. A p value less than 0.05 in-

dicates that the difference between the estimation error by

Ours-R and the estimation error by one baseline method is

statistically significant.

The average estimation error across all subjects is sum-

marized in table 1 in the form of mean± std. The best es-

timation error is marked by bold face, while the second best

one is in blue color. With 30-D appearance feature, in av-

erage of all subjects, Ours-R outperforms baseline methods

relatively by 11.7% to 56.6%, Ours by 5.2%. With 64-D

appearance feature, Ours-R outperforms baseline methods

relatively by 11.8% to 62.7%, Ours by 3.2%. Ours-R also

achieves the lowest standard deviation. In average of all

subjects, p value of each baseline is less than 0.05
This experimental result shows that as the feature dimen-

sion increases, the average estimation error for all meth-

ods decreases. With 64-D appearance feature, our proposed

methods still outperforms baseline methods by a significant

margin similar to the 30-D feature. Moreover, since ALR

method requires appearances with dimension lower than the

number of training exemplars, it cannot use the higher di-

mensional feature, while our proposed methods can.

4.2.4 Result with pose and subject variation

In this section, we show that the proposed method is actu-

ally robust to pose and subject variations. With pose and

subject variations, the visual appearance space structure is

more complex than that under fixed-pose and fixed-subject

Cross-pose Cross-Subject

k-NN 4.27±2.95 7.51±3.99

SVR 6.46±3.76 7.57±4.70

LLR 4.31±2.96 7.93±4.33

LLR-TRI 8.37±5.10 8.86±5.12

ALR 7.28±4.42 7.75±4.17

Ours 3.63±2.56 6.34±3.72

Ours-R 3.39±2.47 6.14±3.69

Table 2. Estimation error with pose and subject variation.

setting. A simple linear distance metric may not be able to

align the entire appearance space to the gaze space. Our

method indeed performs both the global alignment (i.e.,

learning a global metric) and local alignments conditioned

on the query (i.e., a local metric). At the offline training,

a rough global metric is learned on the entire appearance

space. Then for a given query, we further learn a fine metric

using the k-NN of this query, where k-NN exemplars are se-

lected based on the global metric, as described in Sec. 3.3.1.

λ is estimated using these k-NN exemplars.

Experimental results are summarized in table 2. Ours-

R achieves the best estimation error with p values less than

0.05. Our methods produce obvious performance improve-

ment over LLR. It clearly shows that the proposed method is

resilient to the head pose and subject variations. In addition

to average cross-pose error, we also investigate how the es-

timation error changes w.r.t. the distance between training

and testing poses. Due to limited space, the result is pro-

vided in supplementary material.

5. Conclusion

This paper investigates a fundamental issue in

reconstruction-based gaze estimation, i.e., under what

condition the reconstruction in the appearance space can be

transferred to the gaze space for gaze estimation. This is

the first of its kind to study this important issue. Without

a proper metric adjustment in either space, the direct

transfer of the reconstruction from one space to the other

is questionable. This paper proposes an effective metric

learning method to identify a new metric for the appearance

space. In addition, this paper also presents a novel method

to solve for the reconstruction by local regularization based

on the affinity structure of the appearance space and the

reconstructed gaze space. These two methods have shown

consistently and significantly superior performances on

public benchmark dataset across different settings.
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