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Abstract

Most existing person re-identification (re-id) models fo-

cus on matching still person images across disjoint camer-

a views. Since only limited information can be exploited

from still images, it is hard (if not impossible) to overcome

the occlusion, pose and camera-view change, and lighting

variation problems. In comparison, video-based re-id meth-

ods can utilize extra space-time information, which con-

tains much more rich cues for matching to overcome the

mentioned problems. However, we find that when using

video-based representation, some inter-class difference can

be much more obscure than the one when using still-image-

based representation, because different people could not

only have similar appearance but also have similar motion-

s and actions which are hard to align. To solve this prob-

lem, we propose a top-push distance learning model (TDL),

in which we integrate a top-push constrain for matching

video features of persons. The top-push constraint enforces

the optimization on top-rank matching in re-id, so as to

make the matching model more effective towards selecting

more discriminative features to distinguish different person-

s. Our experiments show that the proposed video-based re-

id framework outperforms the state-of-the-art video-based

re-id methods.

1. Introduction

Person re-identification (re-id) matches persons across

non-overlapping camera views at different time. Most ex-

isting works focus on matching still images represented

by appearance features (e.g. color histograms), because of

computation efficiency and limited storage space. Given

a probe image, we match it against a set of gallery im-

ages, which may suffer from illumination change, view-

point difference, complicated background and occlusions.
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Figure 1. Video instances vs. still-image instances of the same per-

son. It is clear that video contains much richer cues for matching.

The significant visual ambiguity and appearance variation

make still-image-based person re-id a challenging problem.

Many methods have been developed to either extract in-

variant features or learn discriminative matching models

[6, 32, 7, 4, 25, 43, 14, 29, 40, 27, 13, 38, 20, 28, 16, 39,

24, 26, 37, 17, 1, 21, 33, 3].

However, the still-image-based person re-id indicates

that the temporal information between images of a person

in each camera view is ignored. Information of a still image

is sometimes not enough for recognizing a person, e.g. the

person being occluded by objects or other persons (see Fig-

ure 1 for example). As surveillance information is recorded

by videos and human operators always recognize persons

in videos, it is intuitive to mine more effective information

in video re-id. What more information can we obtain from

videos than still images? Firstly, video is an image sequence

containing space-time information, in which motion infor-

mation is available. Secondly, appearance cues are more

abundant in a sequence than in a still image, which can fa-

cilitate extracting more robust appearance features. Third-

ly, occlusion and background influence can be eliminated to

some extent. In a sequence, background variation and oc-

clusion can be regarded as removable noises, while in still

images they are troubling interferences.

Although more information can be obtained from per-
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Figure 2. In (a), on each dataset, we show two video instances of different people, who are wearing similar clothes and walking similarly. In

(b), we randomly selected 20 video instances of different people. For each instance, we compute its image frame level feature representation

(color&LBP) and video level’s (HOG3D+Color&LBP(pooling)) where for the image level’s we randomly selected one image frame from

a video instance. For each level’s representation, we compute the largest intra-class distance Dw and the smallest inter-class distance Db

with respect to each sample. The x-axis is the index of the 20 random samples and the y-axis is the value of Dw/Db. It can be observed

that most ratio values of videos are larger than those of image frames, i.e. these videos have more ambiguities than images.

son videos, more challenges come along. Firstly, like the

still-image-based approaches, video-based person represen-

tations are also similar because of similar appearance. Sec-

ondly, although the motion of a pedestrian is a kind of be-

havioral biometrics, that is an important discriminative cue

for identifying different persons, it is unfortunate that the

walking actions or other motions of different persons may

be similar as well (see Figure 2 (a) for example), which

means the inter-class variation may be smaller for video-

based representation of a person. As shown in Figure 2

(b), we demonstrate that for some instances, it is harder

to distinguish the video representations of different iden-

tities (due to large Dw

Db
value) than the still image cases.

It shows that the ratio between maximum intra-class dis-

tance and minimum inter-class distance is much larger for

the video-based re-id as compared to the image-based re-id

because some motion information of different people could

be similar. This suggests the ambiguity of videos is more se-

rious, and it is true that more intra-class distances are larger

than the related minimum inter-class distance. The observa-

tion here would imply the discriminative information could

be hidden in the minor difference of actions and motion.

To mine these minor differences in the data, more stringen-

t constraint should be exploited to look for a latent space

to maximize the inter-class margin between different per-

sons. So far, only a few video-based methods [31, 10, 11]

have been developed. However, the mentioned problem for

video-based person re-id still remains unsolved.

To address the above problem in video-based person re-

id, we propose a top-push distance learning model (TDL) in

this work. For a person video sequence, we exploit a feature

representation constituted by HOG3D [12] and the average

pooling of color histograms and LBP features [9]. Based on

that, we propose a discriminative distance model optimized

towards the realization of the top-push distance constraint

combined with the minimization of intra-class variations.

We employ the idea of top-push in [15] and introduce it into

distance metric learning, in order to optimize the matching

accuracy at the top rank for person re-id, which helps to

look for a latent feature space to explicitly enlarge the inter-

class margin between video sequences.

Extensive experiments have been conducted on two

video datasets including PRID 2011 [8] and iLIDS-VID

[31] to validate the effectiveness of the proposed TDL mod-

el. Our results demonstrate that (1) by formulating the

video-based person re-id problem as a distance metric learn-

ing problem with top-push constraint modeling, significan-

t improvement on matching accuracy can be obtained a-

gainst the existing video-based person re-id techniques; and

(2) our proposed TDL model outperforms not only related

distance/rank learning methods but also related representa-

tive still-image-based person re-id methods applied for the

video-based person re-id problem under multi-shot setting.

2. Related Works

The unsolved problem of person re-id caused by lighting

change, viewpoint change, occlusions and intricate back-

ground has been increasingly focused on and becomes an

important topic in visual surveillance in the last five years.

To overcome these challenges, most of existing works can
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Figure 3. LMNN (left) vs. our TDL (right). Compared to LMNN,

since the minimum inter-class distance is considered in TDL, the

imposters are more heavily penalized.

be categorized into extracting discriminant/relible features

[6, 32, 7, 4, 25, 14, 36, 35] or learning robust metrics or sub-

spaces for matching [2, 29, 40, 27, 13, 20, 28, 26, 37, 21, 22]

in recent works. However, all these works use appearance

features of still images to match, which may suffer from

small inter-class variations caused by similar pedestrians

clothing and large intra-class variations caused by occlu-

sions. Although it is natural to extend them to handle video-

based person re-id under a multi-shot setting, it is not an op-

timal way as shown in our experiments, moreover it takes

more times for matching due to the increase of gallery size.

Recently, a few works started to consider solving the

person video matching problem in re-id. Dynamic Time

Warping (DTW), which is a popular sequence matching

method widely used for action recognition [23], was ap-

plied for video-based person re-id [30]. Wang et al. [31]

introduced a pictorial video segmentation approach and de-

ployed a fragment selecting and ranking model for person

matching. Srikrishna et al. [10] introduced a block sparse

model to handle the video-based person re-id problem by

the recovery problem on embedding space. However, these

works assume all image sequences are synchronized, but it

becomes unapplicable due to different actions taken by dif-

ferent people. It is also costly and difficult to obtain perfect-

ly aligned pairwise person videos across non-overlapping

camera views. All these works use either multiple images

or a selected fragment of a sequence to extract feature, and

thus they ignore the integrity and the richness of video fea-

tures. So they are ineffective for solving the video-based

person re-id problem.

We extend the use of top-push constraint from linear

ranking function [15] to second-order distance metric learn-

ing in our TDL model. Both the proposed TDL model

and the linear function in [15] aim to optimize the top-rank

matching performance. The difference is that the TDL mod-

el is able to look for a latent subspace rather than comput-

ing only one ranking function score, so that more robust

latent features can be exploited. Since, the top rank linear

function learning is a RankSVM [29] like learning, which

has been shown very costly on high dimensional and mod-

erately large-scale dataset [42], the top rank linear function

learning cannot be straightforward generalized to a multiple

dimensional one [15]. Our experiments suggest that explor-

ing a subspace rather than a hyperplane is more robust for

person re-id.

Different from existing distance metric learning meth-

ods, our proposed TDL model is specially motivated from

the observation that the inter-class variation is much small-

er on video level than that on still image level, so the top-

push constraint, a more effective relative comparison, is em-

ployed to explicitly avert this problem in a latent feature s-

pace. In particular, our approach is related to Weinberger et

al.’s LMNN method [34]. LMNN aims at optimizing KNN

classification by using the local structure of the data. For

each instance, a local neighborhood is established, includ-

ing the k nearest neighbors sharing the same label (target

neighbors). Samples that invade this perimeter with a d-

ifferent label (impostors) are penalized (see Figure 3 (a)).

Our method seems similar to LMNN; however, an impor-

tant difference is that a more stringent top-push constraint

is used to guide the distance learning, which notably bene-

fits the top-rank matching results in person re-id (see Fig-

ure 3 (b)). Ours is also related to the relative distance com-

parison (RDC) [41]. While RDC is limited by the scale

of relative comparison, the proposed TDL can largely re-

duce the number of relative comparisons in the context of

top-push modeling. In addition, compared to LDA [5], our

model replaces the maximum of inter-class distance by the

minimization of hinge loss of top-push comparison, so that

our model has imposed much more powerful constraint on

the inter-class modeling. The significant improvement a-

gainst LMNN, RDC and LDA will be shown in the experi-

ment part.

3. Approach

The feature representation of a person video in our mod-

el has two main components: space-time features and ap-

pearance features. For extracting the space-time features,

we employ the HOG3D descriptor [12] to represent the per-

son video. The HOG3D feature contains spatial gradient

and temporal dynamic information. For extracting the ap-

pearance features, we first use color histograms and LBP

features [9] to describe a person appearance in each image

frame. To obtain stable appearance cues and suppress nois-

es caused by occlusions, we express the appearance fea-

tures of a person video by average pooling of features of

all frames from that video. The average pooling of color

histograms and LBP features can represent rich appearance

information of a person in video. The space-time features

and the appearance features describe different information

of a person in video, and those two types of features are

complementary. Therefore in our model, the two features
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are combined to address the challenging video-based per-

son re-id problem caused by background change, occlusions

and motions.

We denote the training set by X = {(�xi, yi)}
s
i=1, where

�xi ∈ R
d is the feature vector extracted from a video of

person labeled yi. We denote the distance between any two

feature vectors �xi and �xj by D(�xi, �xj).

3.1. Enhancing Top-rank Matching by Top-push
Distance Learning

For person re-id, it is always expected that, for a query

image, the top-rank matching of gallery images is correct.

This means the distance between any matched gallery sam-

ple and the query should be smaller than the one between

any unmatched one and the query. Therefore, in our dis-

tance metric learning modeling, we are concerning the rela-

tive comparison between the distance of a positive pair and

the minimum distance of all related negative pairs, rather

than comparing the positive pair with each of the related

negative pair. In formulation, that is, for each example �xi,

we wish to realize the following comparison:

D(�xi, �xj) + ρ < min
yk �=yi

D(�xi, �xk), yi = yj , (1)

where ρ is a slack parameter. In this work, we set ρ = 1. To

quantify the above comparison, we aim to minimize a hinge

loss function incurred by the positive pairs whose distances

are not smaller than the smallest distance of negative pairs

with respect to input �xi:

min
∑

�xi,�xj ,yi=yj

max
{

D(�xi, �xj)− min
yk �=yi

D(�xi, �xk) + ρ, 0
}

.

(2)

The minimization of the loss of the above comparison refer-

s to inter-class separation, which however does not ad-

dress the intra-class variation. Therefore, we also wish to

strengthen the correlation of samples of any positive pair by

minimizing the distance between samples of the same class

in the meanwhile, i.e.,

min
∑

�xi,�xj ,yi=yj

D(�xi, �xj). (3)

Therefore, the objective function of top-push distance learn-

ing is formulated below:

f(D) =(1− α)
∑

�xi,�xj ,yi=yj

D(�xi, �xj)

+α
∑

�xi,�xj ,yi=yj

max
{

D(�xi, �xj)− min
yk �=yi

D(�xi, �xk) + ρ, 0
}

,

(4)

where α ∈ [0, 1] refers to a weighting parameter that bal-

ances the two terms. We call the second term the top-push
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Figure 4. Illustration of the effectiveness of TDL, where 10 differ-

ent persons in PRID 2011 dataset were selected for demonstration.

Points of different colors indicate different persons. The left are

the person data points in the original 2-D space and the right is

the projected person data points in the 2-D space learned by TDL.

The projection matrix L is obtained by decomposing matrix M

into M = L
⊤
L.

constraint. Through the optimization, the first term penal-

izes large distances between positive pairs, and meanwhile

the second term penalizes small distances between each

sample and the closest sample that is differently labeled.

The learning induced by this cost function are illustrated in

Figure 3 for an input. We call our approach the top-push dis-

tance learning (TDL). In TDL, we specially consider the op-

timization of Mahalanobis distance under Criterion 4, i.e.,

considering

D(�xi, �xj) = (�xi − �xj)
⊤
M(�xi − �xj), (5)

where M � 0 is a positive semi-definite matrix.

To visualize the effectiveness of TDL, a comparison be-

tween the data distributions of the original feature space and

the latent feature space learned by TDL is shown in Fig-

ure 4. The change of distribution indicates that the input

data samples of the same person are ambiguous, while T-

DL does reduce the ambiguities and the data distribution is

much favorable for classification.

3.2. Optimization

To simplify our notation, we denote the outer product of

pairwise differences by

Xi,j = (�xi − �xj)(�xi − �xj)
⊤. (6)

Based on Eq. (6), we can reformaulate D(�xi, �xj) as follows:

D(�xi, �xj) = tr(MXi,j ) (7)

and therefore we can reformulate the objective function E-

q.(4) as:

f(M) = (1−α)
∑

�xi,�xj ,yi=yj

tr(MXi,j )

+α
∑

�xi,�xj ,yi=yj

max
{

tr(MXi,j )− min
yk �=yi

tr(MXi,k ) + ρ, 0
}

.

(8)
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Algorithm 1 The Optimisation Algorithm for TDL.

Initialize:

Initialize metric with the identity matrix M0 := I;

The triggered set N (M0) := {} ;

The gradient Gt := (1− α)
∑

i,j Xi,j ;

The counter t := 0.

1: while (not converged) do

2: Search the smallest between-class distance by E-

q.(3).

3: Construct the triggered set N (Mt) by indices

(i, j, k) determined by the second term of Eq.(4).

4: Compute Gt by Eq.(9).

5: Compute Mt+1 := Mt − λGt.

6: Project Mt+1 onto the cone of all positive semi-

definite matrices P+(Mt+1).
7: t := t+ 1.

8: end while

9: return Mt.

Our model applies a stochastic gradient descent projec-

tion method to compute an optimized positive semi-definite

matrix M in Eq.(8). In particular, at the t-th iteration, E-

q.(8) is piecewise linear with respect to M. At step t, given

M = Mt, we define a set of indices (i, j, k) ∈ N (Mt),
if and only if the indices (i, j, k) trigger the second term

of Eq.(8). The stochastic gradient Gt of f(M) at step t is

computed by:

Gt =
∂f

M
|M=Mt =(1− α)

∑

i,j

Xi,j

+ α
∑

(i,j,k)∈N (Mt)

(Xi,j −Xi,k).
(9)

The optimization of Eq.(8) must satisfy the constrain-

t that the matrix Mt+1 remains positive semi-definite. For

this purpose, we project Mt+1 onto the cone of all positive

semi-definite matrices P+ after each gradient descent step.

To be specific, we first perform the eigen-decomposition on

Mt+1:

Mt+1 = Vt+1Dt+1V
⊤
t+1. (10)

In order to apply the projection, we will update the diagonal

matrix Dt+1 by removing all the negative eigenvalues, and

then reconstruct Mt+1 by Eq.(10).

The algorithm is summarized in Algorithm 1. We de-

note the gradient step size by λ > 0. In practice, it worked

starting with λ = 1e − 03. Then, at each iteration, we in-

creased λ by a factor of 1.01 if the loss function decreased

and decreased λ by a factor of 0.5 if the loss function in-

creased.

Matching. The learned metric can be exploited to perform

person re-id by matching a probe person video sequence

�xp against a gallery set {�xg} in another camera view. The

distance between a probe video sequence �xp and a gallery

video sequence �xg is computed by

D(�xp, �xg) = (�xp − �xg)
⊤
M(�xp − �xg). (11)

4. Experiments

4.1. Datasets and settings

Datasets. Our experiments were conducted on two publicly

available video datasets for video-based person re-id: the

PRID 2011 dataset [8] and the iLIDS-VID dataset [31]. The

PRID 2011 dataset consists of video pairs recorded from t-

wo different but static surveillance cameras. 385 persons

were recorded in camera view A, and 749 persons in cam-

era view B. Among all persons, 200 persons were recorded

in both camera views. Each video is comprised of 5 to 675

image frames, with an average of 100 for each. To guaran-

tee the effective length of the video, we selected 178 persons

with more than 27 frames in our experiments. This dataset

was captured in uncrowded outdoor scenes with relatively

simple and clean background and rare occlusions, and sev-

eral different poses of person are available in each camera

view (Figure 5(a) ). The iLIDS-VID dataset contains 600

video of 300 randomly sampled people. Each person has

one pair of video from two camera views. Each video is

comprised of 23 to 192 image frames, with an average of 73

for each. Compared with the PRID 2011 dataset, it was cap-

tured in an airport arrival hall under a multi-camera CCTV

network. The challenges of this dataset largely lie in cloth-

ing similarities, lighting and viewpoint changes across cam-

era views, complicated background and occlusions (Fig-

ure 5(b) ).

Settings. In our experiments, we adopted a single-shot ex-

periment setting. All datasets were randomly divided in-

to training set and testing set by half so that there were

p = 89 and p = 150 individuals in the testing sets of PRID

2011 and iLIDS-VID respectively. In the testing stage, the

videos from one camera were used as the gallery set while

the ones from another camera as the probe set. The cumu-

lative matching characteristic (CMC) curve is used to mea-

sure the performance of each method on each dataset. A

rank k matching rate indicates the accuracy of the matching

between the probe video �xp and the gallery videos {�xg}
k
g=1

in the top k rank list. To obtain statistically reliable results,

we repeated the procedure 10 times and reported the aver-

age results.

4.2. Feature Extraction

To obtain more abundant and robust features for rep-

resenting a person video, we explored a combined person

video feature representation. We expressed each sample

with appearance feature on image frame level and space-

time feature on video level. Specifically, at the image frame

level, each frame of the person video was resized to 128×48
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(a) PRID 2011 (b) iLIDS-VID

Figure 5. Example pairs of image sequences of the same person appearing in different camera views.

Methods
PRID 2011 iLIDS-VID

Rank-1 Rank-5 Rank-10 Rank-20 Rank-1 Rank-5 Rank-10 Rank-20

TDL 56.74 80.00 87.64 93.59 56.33 87.60 95.60 98.27

SDALF [4] 5.2 20.7 32.0 47.9 6.3 18.8 27.1 37.3

Salience [38] 25.8 43.6 52.6 62.0 10.2 24.8 35.5 52.9

RPRF [19] 19.3 38.4 51.6 68.1 14.5 29.8 40.7 58.1

SRID [10] 35.1 59.4 69.8 79.7 24.9 44.5 55.6 66.2

DVDL [11] 40.6 69.7 77.8 85.6 25.9 48.2 57.3 68.9

Color&LBP+DVR [31] 37.6 63.9 75.3 88.3 34.5 56.7 67.5 77.5

Table 1. Comparison with the state-of-the-art methods on PRID 2011 and iLIDS-VID datasets. Results are shown as matching rates (%) at

Rank = 1, 5, 10, 20. Best results are in boldface font.

pixels and divided into patches with size 8 × 16 with 50%
overlap both in the horizontal and vertical directions. That

is to say, there were 155 patches for extracting color his-

tograms and LBP features [9]. For each patch, histograms

of color channels in HSV and LAB color spaces and LBP

descriptor were computed. All the appearance feature de-

scriptors within the image frame were concatenated togeth-

er to form a 1705-dimensional feature vector. At the video

level, we extracted a 1200-dimensional HOG3D feature

vector for each person video [12]. In the end, we described

the whole person video using a 2905-dimensional vector

by connecting this HOG3D feature with average pooling of

color histograms and LBP features over all image frames of

the video.

4.3. Evaluation of Comparison

4.3.1 Comparison with the State-of-the-art Methods

In Table 1, we reported the comparison of our proposed

TDL model with the existing six state-of-the-art video-

based person re-id methods on PRID 2011 and iLIDS-VID

datasets, including SDALF [4], Salience [38], RPRF [19],

SRID [10], DVDL [11] and Color&LBP+DVR [31]. D-

VDL is a dictionary learning method based on multi-shot

re-id datasets. DVR is a method based on ranking mod-

el, which also selects discriminative video fragment from a

candidates pool in the training process. The results show

clearly that with the proposed TDL model, the matching

performance on both datasets is improved significantly. For

instance, on iLIDS-VID dataset, our TDL improved the

Rank-1 matching rate by 21.8% compared to the second

best method Color&LBP+DVR.

Another interesting but indeed fact can be observed is

that TDL outperformed others much better on iLIDS-VID.

We examined that this is probably because more intra-class

distances could be much larger than inter-class ones under

more occlusions on iLIDS-VID. While the compared dis-

tance models do not explicitly and directly quantify the re-

lation between each intra-class distance and the related min-

imum inter-class distance, the proposed TDL employs the

top-push strategy and makes the distance model quantify

more effective features and thus performs more stably.

4.3.2 Comparison with Related Methods

There are several existing distance/subspace learning mod-

els usually applied for person re-id. For fair comparison,

all compared methods used the same feature representation

of person videos described in Sec. 4.2. We first compared

our TDL with representative rank/distance/subspace learn-

ing methods for video-based matching, e.g. TopRank [15],

linear discriminant analysis (LDA) [5] and LMNN [34].

Our results (Figure 6 and Table 2) show clearly that the pro-

posed TDL model obtains better matching rates than these

methods. More specifically, on PRID 2011 dataset, the

Rank-1 matching rate is 56.74% for TDL, whilst 31.69% for

TopRank, 15.84% for LDA, and 27.19% for LMNN. These

results show that these related methods performed poorly

for video-based person re-id. As seen from the compari-

son video-based matching results in Figure 6 and Table 2,

the improvement was particularly significant on iLIDS-VID

dataset, which is more challenging due to more ambiguities

caused by occlusions and illumination. With the top-push

constraint, the ambiguities can be better removed.

The video-based matching results of several representa-
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Figure 6. Video-based matching rates (%) of different methods on PRID 2011 and iLIDS-VID.

Settings Methods
PRID 2011 iLIDS-VID

Rank Rank-1 Rank-5 Rank-10 Rank-20 Rank-1 Rank-5 Rank-10 Rank-20

TDL 56.74 80.00 87.64 93.59 56.33 87.60 95.60 98.27

L1-norm 15.84 30.00 39.33 52.70 8.90 21.40 30.07 42.07

LFDA [28] 43.70 72.80 81.69 90.89 32.93 68.47 82.20 92.60

KISSME [13] 34.38 61.68 72.13 81.01 36.53 67.80 78.80 87.07

Video-based LADF [20] 47.30 75.50 82.69 91.12 39.00 76.80 89.00 96.80

matching RDC [41] 25.62 47.30 56.07 74.38 15.80 36.93 52.60 66.00

PRSVM [29] 36.97 60.45 72.47 83.03 21.53 50.60 66.00 80.80

ISR [24] 17.64 35.84 43.03 54.38 11.60 22.13 27.40 36.67

TopRank [15] 31.69 62.24 75.28 89.44 22.53 56.13 72.73 85.93

LDA [5] 15.84 41.46 55.51 70.67 42.06 79.13 89.40 94.47

LMNN [34] 27.19 53.71 64.94 75.17 28.33 61.40 76.47 88.93

TDL 30.22 59.10 74.04 88.43 9.81 27.52 46.10 62.19

L1-norm 12.36 29.44 40.56 56.40 3.67 10.33 16.03 26.93

LFDA [28] 26.40 56.07 69.89 81.12 7.80 23.93 36.47 50.80

Multiple image KISSME [13] 28.54 59.78 72.13 83.26 10.67 28.33 39.80 57.00

frames matching LADF [20] 8.20 20.45 29.89 42.25 4.33 14.00 21.20 32.13

ISR [24] 10.50 20.83 31.83 44.17 8.04 20.50 31.33 43.50

LDA [5] 27.64 58.09 69.66 82.47 10.27 27.40 39.80 55.27

LMNN [34] 14.38 38.09 50.22 67.19 4.47 13.20 21.60 35.47

Table 2. Comparison with related methods on PRID 2011 and iLIDS-VID datasets. The matching rate (%) at Rank i means the accuracy

of the matching within the top i gallery classes.

tive still-image-based person re-id methods are also shown

in Figure 6 and Table 2, including L1-norm, LFDA [28],

KISSME [13], LADF [20], PRSVM [29], RDC [41] and

ISR [24]. One can observe that our TDL model always out-

performed all the compared re-id methods on both datasets.

The improvement is particularly significant on iLIDS-VID

dataset, and TDL is 17.33% higher than the best compared

the method at Rank-1. In addition, among these six re-id

methods, RDC is closely related to our model, but RDC is

limited by the scale of relative comparison. In our experi-

ments, the computational cost of our model was only 3% of

the one of RDC. These results highlight the effectiveness of

the proposed model.

One may wonder when using multiple image frames,

whether existing still-image-based methods can achieve

better performance. To answer the question, in this sec-

tion, we adopted a multi-frame setting to conduct the exper-

iments, in which 5 images of each person were randomly

selected from all frames as gallery. We used the combined

appearance features (Color&LBP&HOG) [18] as represen-

tation of still image frames. We performed experiments on

the two datasets and the results are also reported in Table 2.

Since RDC, PRSVM and TopRank suffered from the

huge computational cost with increasing size of training set

under multi-frame or multi-shot setting, these methods can-

not be run on a server with 64GB RAM. To be more specif-

ical, when conducting iLIDS-VID (consists of 300 person-

s) under multi-shot setting, not just more persons were in-

volved but also more images were used (10 frames for each

person in the training set), so that the number of triplets for
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Figure 7. Evaluation of different feature components in TDL on PRID 2011 and iLIDS-VID. The rank 1 matching rate of each method is

provided in the legend.

relative comparison increases dramatically (more than 108).

RDC and PRSVM are designed to utilize all the triplets for

training, and it is clear that RDC and PRSVM are costly and

not computational trackable.

Compared to the video-based matching results, it is evi-

dent that all the still-image-based methods performed poor-

ly, worse than their video-feature-based versions. This sug-

gests that space-time video information is an important cue

to augment the feature representation for person re-id; that

is, video-based matching is more effective than multiple im-

age frames matching.

4.4. Further Evaluation of TDL

4.4.1 Effects of Different Feature Components

The feature representation used in our proposed model con-

sists of two components: space-time features (HOG3D)

and appearance features (Color&LBP (pooling)). In Fig-

ure 7 , we evaluated the effects of each component respec-

tively. The results show that all of them are effective on their

own, and when they are combined, the best performance is

achieved. This validates that these feature components are

complementary and should be fused.

4.4.2 Influence of Parameters

We implemented our TDL model by selecting the parame-

ter α on PRID 2011 and iLIDS-VID datasets. The results of

area under CMC curve (AUC) were plotted in Figure 8 (a)

and (b). As illustrated, when α was around 0.1, the mod-

el achieved the best result. The figures suggest the perfor-

mance of using and not using top-push constraint in TDL

is distinct. When it is not integrated, the optimization prob-

lem Eq. (8) becomes trivial since M = O where O is a zero

matrix is the optimal solution which cannot be effective for

classification. We also observe that when α = 1, i.e., dis-

carding the intra-class variation minimization, it will also

lead to overfitting in top-push. Thus a proper α, for instance

0.1 here is a balance.
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Figure 8. Parameter sensitivity analysis on PRID 2011 and iLIDS-

VID

5. Conclusion

In this work, we have proposed a top-push distance

learning (TDL) model to address the video-based person

re-identification problem. While video-based representa-

tion contains more abundant space-time information than

still-image based representation, there are more ambiguities

in video-based features than still-image-based features. So

we introduce a top-push constraint to quantify ambiguous

video representation. Due to the employment of top-push

constraint, the formed distance model can be more effective

on top-rank performance of video-based person re-id. This

is validated on through extensive experiments conducted on

two video datasets including PRID 2011 and iLIDS-VID.
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