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Abstract

Multi-object tracking (MOT) becomes more challenging

when objects of interest have similar appearances. In that

case, the motion cues are particularly useful for discrim-

inating multiple objects. However, for online 2D MOT in

scenes acquired from moving cameras, observable motion

cues are complicated by global camera movements and thus

not always smooth or predictable. To deal with such un-

expected camera motion for online 2D MOT, a structural

motion constraint between objects has been utilized thanks

to its robustness to camera motion. In this paper, we pro-

pose a new data association method that effectively exploits

structural motion constraints in the presence of large cam-

era motion. In addition, to further improve the robustness of

data association against mis-detections and false positives,

a novel event aggregation approach is developed to inte-

grate structural constraints in assignment costs for online

MOT. Experimental results on a large number of datasets

demonstrate the effectiveness of the proposed algorithm for

online 2D MOT.

1. Introduction

Multi-object tracking (MOT) aims to estimate object tra-

jectories according to the identities in image sequences. Re-

cently, thanks to the advances of object detectors [6, 24],

numerous tracking-by-detection approaches have been de-

veloped for MOT. In this type of approaches, target ob-

jects are detected first and tracking algorithms estimate their

trajectories using detection results. Tracking-by-detection

methods can be broadly categorized into online and of-

fline (batch or semi-batch) tracking methods. Offline MOT

methods generally utilize detection results from past and fu-

ture frames. Tracklets are first generated by linking individ-

ual detections in a number of frames, and then iteratively

associated to construct long trajectories of objects in the en-

tire sequence, or in a time-sliding window with a temporal

delay (e.g., [22, 27]). On the other hand, online MOT al-

gorithms estimate object trajectories using only detections

from the current as well as past frames (e.g. [4]), and online

MOT algorithms are more applicable to real-time applica-

tions such as advanced driving assistant systems and robot

navigation.

In MOT, object appearances are used as important cues

for data association which solves the assignment prob-

lems of detections-to-detections, detections-to-tracklets,

and tracklets-to-tracklets. However, appearance cues alone

are not sufficient to discriminate multiple objects, especially

for tracking similar objects (e.g., pedestrians, faces, and

vehicles). Tracking-by-detection methods typically exploit

motion as well as appearance cues, and use certain (e.g.,

linear or turn) models to describe the object movements.

However, for online 2D MOT in scenes acquired from mov-

ing cameras, observable motion cues are complicated by

global camera movements and not always smooth or pre-

dictable. In other words, even when the individual object

motion model is updated with consecutive detections, it is

not reliable enough to predict the next location of an object

when the camera moves severely. The situation becomes

worse when objects are not correctly detected since, with-

out correct detections, object motion models cannot be up-

dated to take camera motion into account. While significant

advances on batch (or semi-online) trackers have been made

(e.g., [5, 14, 20, 28]), online MOT using motion constraints

from detection results has not yet been much explored.

In this paper, we propose a new data association method

for effectively exploiting the structural motion constraints

between objects for online 2D MOT, which considers cam-

era motion as well as ambiguities caused by the frequent

mis-detections. The structural constraints are represented

by the location and velocity differences between objects.

Using these constraints, we introduce a new cost function

which takes global camera motion into account to associate

multiple objects. In addition, to reduce the assignment am-

biguities caused by mis-detections as shown in Figure 1, we

propose the event aggregation approach which considers the

structural constraints and assignment events.

We incorporate the proposed data association and the

structural constraints into a two-step online 2D MOT frame-

work, which consists of two data association steps. In the

first step, by using the proposed structural constraint event
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Figure 1. An example of structural constraint ambiguity: The

tracked objects and their correct detections are represented by the

red box and the yellow box, respectively. The overlap ratio costs of

the ground truth assignment and the incorrect assignment are sim-

ilar due to mis-detections and multiple false positive detections.

aggregation, even under large camera motion or fluctua-

tions, we can robustly estimate continuously tracked objects

where structural constraints are sufficiently reliable due to

consecutive updates at each frame. In the second step, we

infer and recover the missing objects between frames to al-

leviate the problems of mis-detection from detectors. Using

the structural constraints of objects between frames, we can

re-track the missing ones from the tracked objects from the

first step. We demonstrate the merits of the proposed algo-

rithm for online MOT using a large number of challenging

datasets.

2. Related Work

We review related MOT methods that utilize the struc-

tural motion constraints. Numerous MOT methods directly

utilize the first or the second order motion models to locate

objects [1, 4, 15]. However, those 2D independent motion

models do not work properly under unpredictable camera

motion, especially when tracking methods do not exploit

the visual information from future frames.

Pellegrini et al. [21] and Leal-Taixé et al. [18] use so-

cial force models which consider pairwise motion (such as

attraction and repulsion) and visual odometry to obtain 3D

motion information for tracking multiple objects. Different

from the proposed online 2D MOT algorithm, this method

requires 3D information to project objects and detections on

the top-view plane for association. In addition, this method

does not consider scenes with large camera motion.

Grabner et al. [13] propose to exploit the relative dis-

tance between feature points for single object tracking

and reduce tracking drifts caused by drastic appearance

changes. In [7], a mutual relation model is proposed to

reduce tracking errors when target objects undergo appear-

ance changes. To reduce ambiguities caused by similar ap-

pearances in MOT, motion constraints between objects are

used along with object appearance models using the struc-

tured support vector machines [30]. Unlike the aforemen-

tioned methods [7, 13, 30], our method exploits structural

constraints to solve the online 2D MOT problem with the

frame-by-frame data association that assigns objects to cor-

rect detections.

Yang and Nevatia [28] use conditional random field for

MOT in which the unary and binary terms are based on lin-

ear and smooth motion to associate past and future track-

lets in sliding windows. Recently, Yoon et al. [29] exploit

structural spatial information in terms of relative motion to

handle camera motion. This method basically assumes that

the camera motion is small and smooth to guarantee that at

least a few objects are well predicted and tracked by linear

motion models. Different from the aforementioned meth-

ods, the proposed method aggregates structural constraints

along with assignment events taking abrupt camera motion

and ambiguities caused by mis-detections into account for

online MOT.

3. Structural Constraint Event Aggregation

The trajectory of an object is represented by a sequence

of states denoting the position, velocity, and size of an ob-

ject in the image plane with time. We denote the state of an

object i at frame t as sit = [xi
t, y

i
t, ẋ

i
t, ẏ

i
t, w

i
t, h

i
t]
⊤ and the

set of the states at frame t as St (s
i
t ∈ St) with its index set

i ∈ Nt. Each structural motion constraint is described by

the location and velocity difference between two objects as

e
i,j
t = [χi,j

t , υi,j
t , χ̇i,j

t , υ̇i,j
t ]⊤

= [xi
t − xj

t , y
i
t − yjt , ẋ

i
t − ẋj

t , ẏ
i
t − ẏjt ]

⊤.
(1)

Here, (χ̇i,j
t , υ̇i,j

t ) denotes the velocity difference to consider

objects moving with different tendency. The set of struc-

tural constraints for the object i is represented by E i
t =

{ei,jt |∀j ∈ Nt}, and the set of all structural constraints at

frame t is denoted by Et = {E i
t |∀i ∈ Nt}.

3.1. Structural constraint cost function

The MOT task can be considered as a data association

problem, which finds the correct assignment event between

objects and detections. In this paper, the assignment event

ai,k ∈ A describes the state of assignments between objects

and detections. If the detection k is assigned to the object

i, the assignment is denoted by {ai,k = 1}. Otherwise, it

is denoted by {ai,k = 0}. For data association, the dis-

similarity cost between objects and detections is computed

based on the cost function. The best assignment event is

then estimated by minimizing total assignment costs. In this

section, we introduce a new cost function that considers the

structural motion constraints between objects.
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Figure 2. Structural constraint event aggregation (Algorithm 1). The tracked objects and their detections are represented by red boxes and

yellow boxes, respectively, and the green lines connecting objects denote structural constraints. Black boxes represent assignments. d
0

stands for the case of mis-detections. As shown in this figure, in the anchor assignment a2,2 of the object 2 and the detection 2, we move

the object 2 to align the center location of the object 2 with that of the detection 2. Then, in the structural constraint cost, we compute the

assignment costs of other objects and detections based on their structural constraints. From the different anchor assignments, the structural

constraint costs for the same assignment event are computed. For instance, the costs of the assignment event (a1,0
= a

2,2
= a

3,3
= 1) are

obtained from the anchor assignments a2,2
= 1 and a

3,3
= 1, respectively. The event aggregation fuses these structural constraint costs

having the same assignment event but the different anchor assignment. Σ represents the summation of the structural constraint costs.

We denote a detection k resulting from detectors at frame

t as dk
t = [xk

d,t, y
k
d,t, w

k
d,t, h

k
d,t]

⊤ and the set of the detec-

tions at frame t used for MOT as Dt (d
k
t ∈ Dt) with its

index set as k ∈ Mt. Without loss of generality, we remove

the time index t for simplicity in the following sections.

Since each object is assigned with at most one detection,

the structural constraint cost function with the assignment

event A is described by

Â = argmin
A

C(S, E ,D),

s.t.
∑

i∈N
k 6=0

ai,k ≤ 1 ∧
∑

k∈M∪{0}

ai,k = 1 ∧
∑

i∈N

ai,0 ≤ |N |,

(2)

where each assignment is a binary value ai,k = {0, 1},

ai,k ∈ A, k ∈ M ∪{0}, and ai,0 stands for the case of mis-

detected objects. Hence, the sum of ai,0 along i is equal to

the number of objects |N | when all objects are mis-detected.

To deal with large camera motion, we first set an anchor

assignment by associating the object i and the detection k
as shown in Figure 2. Anchor assignment ai,k makes the

center location of the object i coincide with that of the de-

tection k. Based on the anchor assignment and the structural

constraint E i, we conduct all possible assignment events be-

tween the remaining objects and detections. By doing this,

the structural constraint cost evades the error caused by the

global camera motion. Based on this concept, the proposed

structural constraint cost function is formulated by

C(S, E ,D)

=
∑

i∈N

∑

k∈M

(

ai,k Ωi,k +
∑

j∈N
j 6=i

∑

q∈M∪{0}
q 6=k

aj,q Θj,q
i,k

)

,

(3)

where the subscripts i, k denote the index for costs com-

puted based on the anchor assignment ai,k = 1, and the

cost of the anchor assignment is represented by

Ωi,k = Fs(s
i,dk) + Fa(s

i,dk). (4)

Here, we compute the size and appearance costs as

Fs(s,d) = − ln

(

1−
|h− hd|

2(h+ hd)
−

|w − wd|

2(w + wd)

)

,

Fa(s,d) = − ln

B
∑

b=1

√

pb(s)pb(d), (5)

where (w, h) and (wd, hd) denote width and height of an

object and a detection, respectively. In addition, pn(s) and

pn(d) denote the histogram of an object and a detection, re-

spectively. b is the bin index and B is the number of bins.

From the anchor position, we calculate the cost of the struc-

tural constraint which is described by

Θj,q
i,k =







Fs(s
j ,dq) + Fa(s

j ,dq)
+Fc(s

j , ej,i,dk,dq)
if q 6= 0

τ if q = 0
, (6)
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where we empirically set the cost τ to some non-negative

value (e.g., 4 in this work) for the case of mis-detected ob-

jects, d0. The constraint cost is formulated by

Fc(s
j , ej,i,dk,dq) = − ln

(

area(B(sj,k)∩B(dq))
area(B(sj,k)∪B(dq))

)

,

sj,k = [xk
d, y

k
d , 0, 0]

⊤ + [χj,i, υj,i, wj , hj ]⊤.
(7)

Here, we determine the position of the object j by the posi-

tion of the detection k and the structural constraint ej,i. The

constraint cost is measured by using the overlap ratio [9] of

the object bounding box and the detection bounding box to

compute a normalized cost since it automatically compen-

sates bias errors caused by the size of objects.

3.2. Event aggregation

Based on the different anchor assignments, we obtain

different costs due to the different sizes of detections and

detection noises even if the assignment event A is the same.

Hence, we aggregate all the costs that have the same as-

signment event but with the different anchor assignments.

Compared to conventional one-to-one matching process for

the data association as shown in Figure 1, this process sig-

nificantly reduces ambiguity caused by false positives near

objects, mis-detections, and constraint errors since we can

measure the cost of each assignment event several times ac-

cording to the number of corresponding anchor assignments

as described in Figure 2. This aggregation process is de-

scribed by

C(A) =
∑

i∈N,k∈M

ai,k=1

(

ai,kΩi,k +
∑

j∈N
j 6=i

∑

q∈M∪{0}
q 6=k

aj,qΘj,q
i,k

)

,

(8)

where A ⊂ Aall and Aall denotes all possible assignment

events. Finally, we select the best assignment event having

the minimum aggregated cost as

Â = argmin
A

(

C(A)

∆

)

,∆ =
∑

i∈N,k∈M

ai,k, (9)

where ∆ denotes the normalization term that is equal to the

number of the anchor assignments from the same assign-

ment event A.

3.3. Assignment event initialization and reduction

Since considering all of assignment events is not com-

putationally efficient, we propose a simple but effective re-

duction approach. First, we adopt the simple gating tech-

nique [2] before conducting the structural constraint event

aggregation. This approach is widely used in the MOT liter-

ature. We roughly remove the negligible assignments based

on two conditions as
(

‖pi − pk
d‖ <

√

(wi)2 + (hi)2
)

∧
(

exp
(

−Fs(s
i,dk)

)

> τs
)

,
(10)

Figure 3. Assignment event reduction concept: The gating and the

partitioning reduces the number of assignment events. Gray cir-

cles represents the assignment region reduced by the gating. The

objects are grouped based on the K-means center.

where pi and pk
d represent the position of the object i and

the detection k, respectively, and (wi, hi) denotes the size

of the object i. We empirically set τs = 0.7. If the above

conditions are satisfied, ai,k = 1. Otherwise, the assign-

ment is set to ai,k = 0, and this assignment is not consid-

ered for tracking at the current frame. Second, we propose

a partitioning approach that splits the structural constraints

to handle a large number of objects and detections as shown

in Figure 3. The assignments of objects and detections in

different paritions are set to ai,k = 0. For the partition

p, we generate all possible assignment events Ap ⊂ Ap
all

based on the condition in (2). The structural constraint

event aggregation is carried out for each partition. The fi-

nal assignment event is then obtained by merging the as-

signment event results from each partition. In this work,

we empirically set the maximum number of objects in each

partition to 5. The number of partitions is determined by

P = ⌈the number of objects/5⌉, and we then splits the partition

possibly to have the same number of objects. Here, we use

the center location as a partitioning condition. As shown in

Figure 3, P K-means centers are obtained, and the objects

located close to each K-means center are then gathered in

the same partition. Another reduction approach [23] can

be alternatively modified and applied to our structural con-

straint event aggregation. The main steps of the proposed

structural constraint event aggregation (SCEA) method is

summarized in Algorithm 1.

4. Two-Step Online MOT via SCEA

We adopt a two-step approach for effectively exploit-

ing the structural constraints between objects for online 2D

MOT. Since the structural constraints of objects tracked in

the previous frame have been also updated with their corre-

sponding detections, their constraints are more robust than

mis-detected objects. This allows us to more robustly and

accurately assign detections to tracked objects. The overall

process of the proposed online MOT via SCEA is described

in Algorithm 2.
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Data: objects S, detections D, structural constraints E
Result: assignment event A
begin

Step 1: Initializing possible assignment events (Section 3.3)

· Remove negligible assignments by using the gating ((10)).

· Divide objects, structural constrains, and detections into the

subset Sp ⊂ S, Ep ⊂ E , Dp ⊂ D by the partitioning (Fig. 3).

· Generate all possible assignment events of each partition Ap
all

from the Sp and Dp based on the condition in (2).

Step 2: Aggregating assignment event costs ((8) and (9))

A = φ;
for p = 1 : P do

C(Ap) =
∑

i∈Np,k∈Mp

ai,k
=1

(

ai,kΩi,k +
∑

j∈Np

j 6=i

∑

q∈Mp∪{0}
q 6=k

aj,qΘj,q

i,k

)

,

Âp = argmin
Ap

(C(Ap)/∆) ,Ap ⊂ Ap
all

;

A := A ∪ Âp;
end

end

Algorithm 1: Structural Constraint Event Aggregation.

We denote the set of tracked objects in the previous

frame by Sw, and their structural information is represented

by Ew. Using Sw, Ew, and the current detections D, we

conduct the first data association via the SCEA introduced

in Section 3. Then, we obtain the new assignment event Âw

from which we store the position of associated detections

for the object i as si1 = [xk
d, y

k
d ]

⊤, si1 ∈ Sw
1 if ai,k = 1, and

the set of associated object index is represented by i ∈ Nw.

In the second step, similar to [13, 29], we recover missing

objects, which are not associated with any detections in the

previous frame but re-detected in the current frame. The re-

covery process is conducted by using the tracked objects in

the first step and their structural constraint information as

described in Figure 4. The mis-detected objects are denoted

by Sm, and the structural constraints between mis-detected

objects and tracked objects are represented by Em. Using

Sm, Em, and Sw
1 , we recover the re-detected objects as

Âm = argmin
A

C(Sm, Em,Sw
1 , D̃),

s.t.
∑

i∈Nm

ai,q = 1 ∧
∑

q∈M̃

ai,q = 1, (11)

where Nm denotes the set of the mis-detected object index,

and M̃ represents the index set of the detections D̃. Here,

detections D̃ contains the not-assigned detections in the first

step and dummy detections d0 for the case of missing ob-

jects. The structural constraint cost function for missing

objects is defined as

C(Sm, Em,Sw
1 , D̃) =

∑

i∈Nm

∑

q∈M̃

ai,q Φi,q

Φi,q =







Fs(s
i,dq) + Fa(s

i,dq)
+Fr(s

i, Em,Sw
1 ,dq)

if q 6= 0

τ if q = 0
,

(12)

Data: tracked objects Sw , structural constraints of tracked objects

Ew , mis-detected objects Sm, structural constraints between

tracked objects and mis-detected objects Em, detections D
Result: Trajectories of the targets

for video frame f do
Step 1: Data association via SCEA

· Âw = SCEA(Sw, Ew,D); (Section 3 and Algorithm 1)

· Sw
1

= {si
1
= [xk

d
, yk

d
]⊤|ai,k = 1, ∀i ∈ Nw, ∀k ∈ M};

Step 2: Recovery of mis-detected objects

· Âm = Recovery(Sm, Em,Sw
1
, D̃); ((11) and (12))

· Â = Âw ∪ Âm;

Step 3: Update

· Current tracking result:

Sw = {si := KF (si,dk)|ai,k = 1, ∀i ∈ Nw ∪Nm, ∀k ∈
M} with Kalman filter KF ().
· Object management (Section 4)

· Structural constraint update (Section 4)

end

Algorithm 2: Two-Step Online MOT via SCEA

Figure 4. Recovery of missing objects. From the tracked objects

(s1 and s
2) and the structural constraints (the green lines), we re-

cover missing objects when they are re-detected (detection d
1 and

d
2). By doing this, we can continuously keep the identity of the

missing objects under camera motion and occlusions.

where τ = 4 in this work. We recover the missing object

i from the set of tracked objects using their structural con-

straint. The constraint cost is therefore formulated as

Fr(s
i, Em,Sw

1 ,dq) = − ln

(

area(B(si,γ)∩B(dq))
area(B(si,γ)∪B(dq))

)

,

si,γ = [(sγ1)
⊤, 0, 0]⊤ + [χi,γ , υi,γ , wi, hi]⊤

γ = arg max
j∈Nw

1

‖[χ̇i,j , υ̇i,j ]‖
.

(13)

Here, Nw denotes the index of tracked objects at the first

step, and the reliability of structural constraints between

tracked objects and missing objects can be different accord-

ing to the past motion coherence. To consider this constraint

reliability, we select the object moving in the most similar

direction and velocity by taking into account the motion co-

herence between objects, ‖[χ̇i,j , υ̇i,j ]‖. To solve (11), we

reformulate (11) in a matrix form as

C =
[

Φdet

|Nm|×|M̃ |
Φ0

|Nm|×|Nm|

]

,

where the matrices are obtained by Φdet = [Φi,q], ∀i ∈
Nm, ∀q ∈ M̃ and Φ0 = diag[Φi,0], ∀i ∈ Nm. The off-

diagonal etries of Φ0 are set to ∞. We then apply the Hun-

garian algorithm [16] to get the assignment event having the

minimum cost.
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Figure 5. Data association performance according to different levels of camera motion fluctuation and detection missing rates. MOTA =

1 −

false negative+false positive+mis-match

ground truth
. The numbers ([0, 0],[-7, 7],[-15, 15]) represent the range of the different levels of camera motion

fluctuation noise in terms of pixel. The missing rate of the detections is set to 0%, 10%, 20%, and 30%. The proposed SCEA shows the

best overall performance. We analyze the performance of each method in detail in Section. 5.1.

From Âw and Âm, we update the final tracking result as

Sw = {si = KF (si,dk)|ai,k = 1, ∀i ∈ Nw ∪ Nm, ∀k ∈
M} with the Kalman filter KF (·) [25] for smoothing, and

the index set is represented by Nw. After the update, other

not-assigned objects are collected again in the set Sm, and

their index set is denoted by Nm.

Structural constraint update: After tracking, we update

the structural constraints between objects with their corre-

sponding detections based on the same approach proposed

in [29], using z
i,j
t = [xi

d,t, y
i
d,t]

⊤− [xj
d,t, y

j
d,t]

⊤ as an obser-

vation, where [xi
d,t, y

i
d,t]

⊤ represents the location of a detec-

tion assigned to the object i. We assume that the structural

constraint change follows piece-wise linear motion model.

With the observation z
i,j
t , we indirectly update the struc-

tural constraint variations by using the standard Kalman fil-

ter [25]. The structural constrains of missing objects are

simply based on the linear motion model.

Object management: For any MOT method, an object ini-

tialization and termination steps are typically required to

manage targets according to their statuses. In this work,

objects are initialized in a way similar to [4]. Here, we use

the distance and the appearance between two detections as

an initialization cue. If the distances between a detection in

the current frame and unassociated detections in the past a

few (e.g., 4) frames are smaller than a certain threshold, we

then initialize this detection as a new object. The structural

constraint between the new object and all other objects are

then generated by (1), where their initial variation is set to

χ̇i,j
t = υ̇i,j

t = 0. On the other hand, we simply delete or ter-

minate objects if they are not associated with any detections

for two frames.

5. Experiments

In this section, we present the experimental evaluation

of the proposed online MOT algorithm and comparison

against the state-of-the-art methods especially for the scenes

acquired from moving cameras. For reproducibility, we will

open source codes of the structural constraint cost aggrega-

tion at cvl.gist.ac.kr/project/scea.html.

5.1. Performance validation

To show the effectiveness of each component of the pro-

posed method, we utilize the synthetic datasets which are

generated based on the ground truth of the ETH sequences

(Bahnhof, Sunnyday, and Jelmoli sequences) [8]. We ap-

ply the different levels of motion fluctuation noises and de-

tection missing rate as shown in Figure 5. The low level

fluctuation represents the original camera motion in the

ETH sequences where the camera moves smoothly. The

medium level fluctuation and the high level fluctuation rep-

resent fluctuation noises synthetically generated by the uni-

form distribution within [−7, 7] and [−15, 15] pixels, re-

spectively. In addition, for all scenarios, we include at most

10 false detections per each frame. To measure the accu-

racy of the data association, the number of true positives,

false positives, false negative, and mis-matches are counted

per each frame.

Data association evaluation: The performance of four dif-

ferent data association approaches is shown in Figure 5.

The relative motion network (RMN) approach [29] per-

forms well under the low level fluctuation as this assumes

accurate linear prediction of the well-tracked objects under

smooth camera motion. The linear motion (LM) method is

a baseline method where the data association is carried out

without the structural constraints or event aggregation. It is

similar to the joint probabilistic data association (JPDA) in

that both methods consider the assignment events. A fast

and efficient version of JPDA has been recently proposed

and applied to the vision-based MOT in [23]. As the fluc-

tuation increases, the performance of the LM method is de-

graded due to large camera motion where the linear motion

model dose not work well. The structural constraint near-

est neighbor (SCNN) is a data association method with the

structural constraint cost function but without event aggre-

gation. Due to the structural constraint cost function, the

SCNN can deal with the large camera motion. However,

since the structural constraint costs are obtained by the lo-

cal nearest neighbors, the performance of the SCNN shows

limited performance caused by the ambiguities as discussed
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Figure 6. Comparison of the SCEA (with the partitioning) and the

SCEA without the partitioning (the SCEA-w/o-P).

in Section 1 and shown in Figure 1. Figure 5 demonstrates

that the SCEA performs better than other approaches since

it robustly deals with large fluctuations based on the struc-

tural constraint cost function, and it can efficiently reduce

ambiguities by aggregating costs of the same events com-

puted based on the different anchor assignment.

Efficiency of the event reduction: In the experiments, the

same event reduction techniques described in Section 3.3

are applied to the LM, SCNN, and SCEA methods for com-

putational efficiency. Here, the gating technique has long

been applied to MOT, and without this, the data associ-

ation is computationally intractable when considering all

possible assignment events as pointed out in [2]. For that

reason, we only evaluate the efficiency of the partitioning

technique using the SCEA method with and without parti-

tioning (SCEA-w/o-P). Even with the gating technique, the

SCEA-w/o-P method becomes computationally intractable

when more than a certain number of objects or detections

are given as shown in Figure 6. For this reason, the Sunny-

day sequence, the Jelmoli sequence, and the roughly half of

the Bahnhof sequence (i.e., frame #0-#450) are used for the

evaluation. Figure 6 shows that the SCEA method is more

applicable to online MOT thanks to the low computational

complexity with similar performance to the SCEA-w/o-P.

5.2. Comparisons with State­of­the­Art Methods

We name the proposed algorithm as SCEA (Online MOT

via Structural Constraint Event Aggregation) and evaluate

it on a large number of benchmark datasets: 29 sequences

from the KITTI dataset [12] and 22 sequences from the

MOT Challenge dataset [17]. The datasets contain test se-

quences from a static camera as well as a dynamic camera.

The detections of the KITTI dataset1 and the MOT Chal-

lenge dataset2 are also provided. Note that, since this work

focuses on 2D MOT with a single camera, we do not use any

other information from stereo images, camera calibration,

depth maps, or visual odometry. In addition, we utilize the

same detections used for other methods in all experiments

for fair comparison.

1cvlibs.net/datasets/kitti/eval_tracking.php
2motchallenge.net/data/2D_MOT_2015/

Table 1. Comparison to the online trackers on the KITTI dataset.

(a) Car (based on the DPM detections)

MOTA MOTP Rec Prec MT ML ID FG sec(core) AR

NOMT-HM 60.2 78.7 63.8 96.9 27.0 30.3 28 250 0.09(16) 1.89

RMOT 51.5 75.2 57.2 92.9 15.2 33.5 51 382 0.01(1) 3.33

ODAMOT 58.8 75.5 65.5 94.6 16.8 18.9 403 1298 1(1) 2.78

SCEA 56.3 78.8 58.1 98.9 20.0 29.3 17 468 0.05(1) 2.00

(b) Car (based on the regionlet detections)

MOTA MOTP Rec Prec MT ML ID FG sec(core) AR

NOMT-HM 74.8 80.0 80.6 96.3 38.7 15.2 109 371 0.09(16) 1.78

RMOT 65.3 75.4 80.2 87.7 26.8 11.4 215 742 0.02(1) 2.56

SCEA 75.2 79.4 81.4 95.9 38.7 12.7 106 466 0.06(1) 1.56

(c) Pedestrian (based on the DPM detections)

MOTA MOTP Rec Prec MT ML ID FG sec(core) AR

NOMT-HM 27.5 68.0 37.1 80.1 11.3 51.6 73 743 0.09(16) 2.67

RMOT 34.5 68.1 43.7 83.2 10.0 47.4 81 692 0.01(1) 1.56

SCEA 33.1 68.5 40.1 85.3 8.6 47.4 16 724 0.05(1) 1.67

(d) Pedestrian (based on the regionlet detections)

MOTA MOTP Rec Prec MT ML ID FG sec(core) AR

NOMT-HM 39.3 71.1 50.4 83.3 17.2 42.3 186 870 0.09(16) 2.44

RMOT 43.7 71.0 53.5 85.8 16.8 41.2 156 760 0.02(1) 1.78

SCEA 43.9 71.9 49.3 90.7 14.1 43.3 56 649 0.06(1) 1.78

We compare the SCEA with the state-of-the-art online

MOT methods including MDP [26], TC ODAL [1], RMOT

[29], NOMT-HM [5], and ODAMOT [11]. Here, online

methods produce the solution instantly at each frame by a

causal approach.

Evaluation metrics: We adopt the widely used evaluation

metrics, Multiple Object Tracking Accuracy (MOTA) and

Multiple Object Tracking Precision (MOTP) from [3]. In

addition, we also consider the number of mostly tracked

(MT), the number of mostly lost (ML), the fragment (FG),

the identity switch (ID), the Recall (Rec), and the Precision

(Prec) from [19]. The runtime is also considered as a metric

in terms of Hz or sec. Motivated by the MOT Challenge

evaluation, we also use the average ranking (AR) computed

by averaging all metric rankings. Although the AR does

not reflect the MOT performance directly, it can be used as

a reference to compare overall MOT performance

Benchmark dataset: The KITTI dataset provides two sets

of detections, one from the DPM [10] and the other from the

regionlet [24]. The regionlet detector generates more accu-

rate detections than the DPM as illustrated on the KITTI

website. As shown in Table 1, the AR indicates that the

SCEA method performs fairly well compared to other state-

of-the-art online trackers. The OMDAMOT method utilizes

the additional local detector to deal with missing objects

caused by partial occlusions, and the NOMT-HM addition-

ally utilizes the optical flow information to reduce ambi-

guities caused by similar appearance of objects. Although

our method utilizes the information only from detections
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Table 2. Comparison to the online trackers on the MOT Challenge dataset (pedestrian sequences). FAF: the average number of false alarms

per frame. FP: the number of false positives. FN: the number of false negatives. (The results of the NOMT-HM are from the original

paper [5].)
MOTA MOTP FAF MT ML FP FN ID FG Hz(core) AR

TC ODAL 15.1 70.5 2.2 3.2 55.8 12,970 38,538 637 1,716 1.7 (1) 4.30

RMOT 18.6 69.6 2.2 5.3 53.3 12,473 36,835 684 1,282 7.9 (1) 3.70

NOMT-HM 26.7 71.5 2.0 11.2 47.9 11,162 33,187 637 1,716 11.5 (16) 2.50

MDP 30.3 71.3 1.7 13.0 38.4 9,717 32,422 680 1,500 1.1 (8) 2.30

SCEA 29.1 71.1 1.1 8.9 47.3 6,060 36,912 604 1,182 6.8 (1) 2.10

Table 3. Comparison to the MDP on the KITTI training dataset.

(a) Car (except for the training sequences)

MOTA MOTP Rec Prec MT ML ID FG

MDP-KITTI 55.0 75.1 60.8 92.3 10.7 40.9 19 118

SCEA 58.8 78.6 61.3 96.5 11.6 32.9 6 100

(b) Pedestrian (except for the training sequences)

MOTA MOTP Rec Prec MT ML ID FG

MDP-KITTI 23.8 71.2 49.1 66.4 3.5 36.0 8 204

MDP-MOTC 25.1 71.2 47.8 68.6 3.5 34.9 32 209

SCEA 35.4 73.2 51.5 76.3 7.0 32.6 3 154

and does not exploit those additional local detector or opti-

cal flow information, it shows comparable or better perfor-

mance compared to the OMDAMOT and the NOMT-HM.

The RMOT also uses the structural motion cues between

objects to track missing objects robustly. However, the

RMOT method does not perform well in the car sequences

where large camera panning motion frequently occurs as

explained in Section 5.1. Compared to the RMOT, the pro-

posed SCEA algorithm shows much better performance in

terms of MOTA, Prec, IDS, and Frag, which indicate the

proposed data association method is more accurate than the

RMN data association used in the RMOT.

For KITTI pedestrian sequences, the SCEA algorithm

achieves better performance in MOTA and in Prec com-

pared to the NOMT-HM, and it also shows better perfor-

mance in IDS. This is because the optical flow informa-

tion from pedestrians is less reliable compared to that in

the car sequences due to the small size and non-rigid ap-

pearance of a pedestrian. In addition, the motion cue (the

optical flow) becomes less discriminative when motion of

objects is small. In the KITTI dataset, the motion of pedes-

trians is much smaller than that of cars. Since the SCEA

method extracts structural motion information only from

detections, its performance is less affected by the object

size, appearance, and small motion. As shown in the results

on the MOT Challenge dataset (pedestrian sequences, Ta-

ble 2), the SCEA method performs well compared to other

online methods overall. The TC ODAL utilizes the linear

motion model to link the tracklets based on the Hungarian

algorithm. For this reason, it shows limited performance

under camera motion. The MDP shows better performance

in MOTA, MT, ML, and FN compared to the SCEA. This

is because the MDP learns the target state (Active, Tracked,

Lost and Inactive) from a training dataset and its ground

truth in an online manner. Therefore, it can initialize and

terminate the objects more robustly than other methods. In

addition, due to the use of the optical flow for local template

tracking, it generates longer trajectories compared to other

online methods. However, the SCEA algorithm has advan-

tages over the MDP method in that it does not require any

training datasets and it runs faster because it does not con-

duct template tracking based on dense optical flow. To show

the performance dependency on the training dataset, we

compare the SCEA with the MDP on the KITTI dataset. For

pedestrian sequences, we run the MDP with original trained

model provided with the original source code by the authors

(MDP-MOTC). In addition, we also train the MDP with the

KITTI training dataset for car sequences (MDP-KITTI). As

shown in Table 3, the performance of the MDP depends on

the training dataset. Note that the performance of the MDP

can be improved further if more training datasets are used.

6. Conclusion

In online 2D MOT with moving cameras, observable

motion cues are complicated by global camera movements

and thus not always smooth or predictable. In this paper, we

propose a new data association method that effectively ex-

ploits structural motion constraints in the presence of large

camera motion. In addition, to alleviate data association

ambiguities caused by mis-detections and multiple detec-

tions, a novel event aggregation approach is developed to

integrate structural constraints in assignment event costs

for online MOT. Finally, the proposed data association and

structural constraints are incorporated into the two-step on-

line 2D MOT algorithm which simultaneously tracks ob-

jects and recovers missing objects. Experimental results on

a large number of datasets demonstrate the effectiveness of

the proposed algorithm for online 2D MOT.
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