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Abstract

This paper proposes a novel path prediction algorithm

for progressing one step further than the existing works fo-

cusing on single target path prediction. In this paper, we

consider moving dynamics of co-occurring objects for path

prediction in a scene that includes crowded moving objects.

To solve this problem, we first suggest a two-layered proba-

bilistic model to find major movement patterns and their co-

occurrence tendency. By utilizing the unsupervised learn-

ing results from the model, we present an algorithm to find

the future location of any target object. Through extensive

qualitative/quantitative experiments, we show that our al-

gorithm can find a plausible future path in complex scenes

with a large number of moving objects.

1. Introduction

Scene understanding is an essential topic in the computer

vision area, but lots of challenges remain in scene under-

standing research. In particular, the prediction of the future

behavior of an object requires a highly intellectual infer-

ence regarding a scene structure and the objects’ dynamics

in a scene. The research on the visual prediction problem

is in an initial stage because the problem requires a high

level of inference on visual scenes, but the current scene

understanding algorithms do not have the capability to in-

fer a complex scene like a human. The current research is

limited to specific problems such as occluded part predic-

tion and future path prediction of an object in a scene, etc.,

as will be described in the related works in section 2. This

paper aims to progress in the research on the future path

prediction problem. Recently, a couple of works on the fu-

ture path prediction problem have been presented [43, 21].

Kitani et al. [21] defined their specific prediction problem

as finding the future trajectory of an object in an arbitrary

location given the semantic structure of the scene. Walker et

al. [43] proposed an algorithm to infer the shape and loca-

tion changes of the representative patches considering the

semantic structures of the scene after detecting the essen-

tial patches. The existing prediction works do not consider

the reciprocal actions among moving objects in a scene.

Figure 1. Cross-street which includes diverse movement patterns.

To predict the future location of a target object at blue x point,

finding the co-occurring movement pattern is required. The blue

line shows the future trajectory of the object at blue x point and red

line denotes the co-occurring movement patterns of other objects

at the moment. If the turn right pattern (red) is dominant as in (a),

the object of our interest will goes right and it will goes straight or

left if straight pattern (red) occurs as in (b).

Even though their works pioneer the visual prediction field,

the algorithms do not show satisfactory results in complex

scenes, like cross-streets, where many objects interact with

each other. In a cross-street, objects moves differently de-

pending on the traffic light, even when they start from the

same location in the cross-street.

Figure 1 is an example of this type of scene, which in-

cludes diverse movement patterns such as going straight and

turning left. To predict the future location of a target object

in this kind of scene, it is necessary to consider the move-

ment patterns that occur at the prediction moment. For ex-

ample, the object at the blue ‘x’ point will go to different

destinations with respect to the co-occurring movement pat-

terns (red line). If other objects (red) move right, as in (a),

the object (blue) should go right in order to avoid collision.

The target object (blue), likewise, will go straight or turn left

when the co-occurring movement pattern (red) is straight as

in (b). This example indicates that if we do not consider the

dynamics of other co-occurring objects, we may get an in-

adequate predicted path, which may give rise to a collision.

In this paper, for one step of progress beyond the existing

works, we propose a novel path prediction algorithm, which

considers the moving dynamics of co-occurring objects. To

the best of our knowledge, this is the first attempt in the path

prediction research field. We develop a new unsupervised

12668



Bayesian learning model that extracts typical movement

patterns of objects and relationships from among the pat-

terns to solve the prediction problem. The proposed model

combines a topic mixture model [4] and the Gaussian mix-

ture [30] hierarchically, which learns movement patterns as

well as their interactions by utilizing the feature tracking re-

sults. However, the hierarchical combination of these two

mixture models is not mathematically straightforward be-

cause the Guassian distribution is not a conjugate prior [8]

of multinomial (topic) distribution, and so the posterior dis-

tribution of the combined model cannot be derived. Hence,

this kind of combination has not been utilized despite its

effectiveness. To resolve the problem, we introduce a math-

ematical trick to formulate a hierarchical topic-Gaussian

mixture with satisfying the conjugate prior relation through

an augmented variable. Then, we develop a deterministic

path prediction algorithm utilizing the moving dynamics in-

ferred by the proposed hierarchical topic-Gaussian mixture

model. In this algorithm, we predict the future path of the

target object by inferring the most plausible movement pat-

tern for the object through analysis of the previous location

of the object and moving dynamics of other co-occurring

objects. We show that our algorithm finds a suitable fu-

ture path of the target object through quantitative/qualitative

experiments with widely used datasets [16, 5]. In particu-

lar, it is shown that, as expected, our method could predict

the future path of objects and avoid collision with other co-

occurring objects in the scene.

2. Related Works

Prediction capability is one of the essential indicators

to measure the intellectual power and is extensively used

to analyze intelligent behaviors of human [35] and ani-

mals [38]. Likewise, a variety of visual prediction research

in computer vision has been conducted to measure the per-

formance of scene understanding algorithms.

The existing visual prediction research includes many

subcategories, such as predicting occluded parts [17], ac-

tions [42, 31, 22, 27], object dynamics [15, 1] and future

path prediction [21, 43]. Recent path prediction research

can be categorized into two approaches: path-planning-

based approach and patch-appearance-based approach.

The first approach utilizes a path planning algorithm [25,

7, 28, 18, 26]. The approach uses statistical techniques such

as inverse reinforcement learning [33, 46, 34] to find the

optimal future path. Kitani et al. [21] first utilized the robot

path planning algorithm to infer a point-wise future location

of an object in a visual scene. The goal of this algorithm is

to find a well-planned path for a target object with given

scene structures such as roads, buildings, and so on. The

object passes the appropriate area such as the pavement or

road and avoids static obstacles in its way by following the

induced path to reach the destination. To infer the predicted

path, the algorithm first finds the cost for accessing each lo-

cation in a scene and describes the cost via the reward map

by utilizing the semantic segmentation result [32]. Then

the algorithm extracts the optimal path which minimizes

the overall cost by using inverse optimal control [33] and

Markov decision process [2]. This approach is designed for

single object movement prediction and does not consider

possible collisions with other moving objects in a scene.

The second approach induces future changes of no-

table patches instead of locations of the target. In this

case, inferring the representative patches is also a sub-

problem to be solved. Walker et al. [43] found the salient

patches by applying recent mid-level patch-finding algo-

rithms [11, 10, 14, 20, 37]. Then, they generated the

weighted graph explaining the changes of the patches. The

nodes of the graph represent the future locations and shapes

of the patch. The weight is defined as a transition cost. The

algorithm then finds the minimal weighted path by using

Dijkstra’s algorithm [9]. This path, starting from the initial

node to termination, describes the changes of both shape

and location. However, this algorithm has also been de-

signed for single patches and does not reflect the dynamics

of other moving objects in the scene.

Unlike the existing approaches, we propose a path pre-

diction algorithm that reflects the movements of other co-

occurring objects by using the novel hierarchical topic

Gaussian mixture model. In the other research field, pat-

tern analysis algorithms based on the probabilistic topic

model [19, 41, 13, 16, 23, 24, 44, 40] also learn object

dynamics in a scene to detect abnormal events. We high-

light that our path prediction and motion pattern inference

algorithms basically solve different problems. The existing

topic model-based algorithms learns the regional patterns

in a form appropriate to judge whether or not the target is

moving in the typical regions. Meanwhile, the proposed

HTGMM learns the object moving dynamics in the form

of moving patterns together with their co-occurrences in a

way that is adequate for future path prediction. Even the

new model still provides the inference result in a quantized

form because of the common limitations of the topic mix-

ture [4, 6]. Therefore, we propose an efficient algorithm

that induces the continuous future path from the quantized

movement patterns and their relationship. To get the con-

tinuous path prediction, this paper transforms the quantized

result into an energy potential map depicting the plausible

paths in the form of valleys and predicts the future path by

using the potential map. This prediction method is an es-

sential contribution of the work together with the proposed

HTGMM for the inference of moving object dynamics.

3. Proposed Method

The overall scheme of the proposed method is depicted

in Figure 2. By analyzing the KLT trajectories [39], notable

movement patterns are extracted from the scene by the pro-

posed HTGMM. These patterns imply the semantic moving
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Figure 2. Overall scheme of the proposed method. The arrow in the scenes refers the movement pattern. Each pattern which occurs at the

same time are located in colored boxes. Yellow x point is the location of the target object of which future path be predicted. Depending on

the dominant group at prediction time, we induce different predicted paths.

dynamics of objects in a scene, such as going straight or

turning right. Therefore, it is natural to expect that some

patterns will occur at the same time according to their se-

mantics. For example, we know that straight patterns going

right and left in the separated lanes may usually occur si-

multaneously, as shown in the red lines in Figure 2. In this

work, we divide the patterns into groups by considering the

co-occurrence tendency among them. Each group, there-

fore, includes the patterns that may occur in the same time

span. Utilizing this information, we predict the future tra-

jectory of a target. As seen in Figure 2, depending on the

dominant group at the prediction time, the predicted path

can be different, even if the target starts from the same loca-

tion. In the below sections, we give a detailed explanation

of the proposed method.

3.1. Conversion of Input Trajectories

First, we convert KLT trajectories [39] into a set of words

to be used as input features for the proposed probabilis-

tic model. The sets of KLT trajectories are denoted by

Tl = {(xlt, ylt) | t = 1, ..., NT }, l = 1, ..., N . The term

words, w = {wi | i = 1, ..., Nw}, are defined as indices of

the grids dividing a given scene. Then, each point (xlt, ylt)
in a trajectory Tl is mapped to the word wlt which indi-

cates the grid including the point. N,NT , and Nw respec-

tively denote the total number of trajectories, the number of

points in each trajectory, and the total number of the words

w. Consequently, we can convert the trajectory Tl into the

quantized form T
(w)
l = {wlt | t = 1, ..., NT }. In the below

sections, we will write the quantized trajectory T
(w)
l as Tl

for convenience.

3.2. Hierarchical Topic-Gaussian Mixture Model

In this section, we introduce the unsupervised Hierarchi-

cal Topic-Gaussian Mixture Model (HTGMM). This model

induces typical movement patterns and their co-occurrence

types for a given quantized trajectory Tl. Figure 3 illustrates

the proposed HTGMM in graphical representation. In a nut-

shell, the model learns K number of movement patterns into

the topic mixture {φk, qk}, k = 1, ...,K, by utilizing the

quantized KLT trajectories. Then, the patterns are clustered

Figure 3. The proposed HTGMM. Each circle represents random

variable. Empty circle denotes hidden variable and gray circle is

an observed variable. Directed line represents conditional depen-

dency between the circles and rectangle box means that the ran-

dom variables and their dependency in the box are repeated with

the number below the box.

into the mixture of M Gaussians, {μm, Sm},m = 1, ...,M ,

to infer M co-occurrence groups. The following gives the

detailed description of the proposed HTGMM. First of

all, to use overall quantized trajectories as input features

to the model, we sort all the trajectories in order of end-

ing times of the trajectories and evenly divide them into

D number of chunks with N number of trajectories for

each chunk. Through this procedure, the trajectories in

a chunk occur in similar time span. The whole trajecto-

ries T
(d)
l , d = 1, ..., D, l = 1, ..., N, are used for the ob-

served variables and clustered by the sets of random vari-

ables {φk, qk}, k = 1, ...,K, which indicates K number

of patterns. z
(d)
l is an indexing variable indicating the pat-

tern type of the l-th trajectory in the d-th chunk, ranging

from 1 to K. That is, it points out the pattern {φk, qk}

including T
(d)
l among K patterns. φk is defined as the

Nw dimensional random vector with multinomial distri-

bution. The i-th element of φk indicates the probability

that k−th pattern includes the i-th grid location, i.e., i-th

word. φk learns the regional information of the k-th pat-

tern. qk ∈ R
Nw×Nw denotes the word to word transition,

i.e., direction, probability of k-th pattern. Consequently,
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Pattern

Figure 4. Explanation of proposed graphical model. The figure describes the generative procedure of the HTGMM.

given z
(d)
l = k, the probability that k-th pattern includes

T
(d)
l = {w

(d)
l1 , w

(d)
l2 , ..., w

(d)

lN
(d)
l

} , is given by

p(T
(d)
l | φk, qk) =

N
(d)
l∏

j=1

φk(w
(d)
lj )

N
(d)
l

−1∏

j=1

qk(w
(d)
lj , w

(d)
l(j+1)).

(1)

Indexing variable z
(d)
l is assigned by the multinomial distri-

bution with parameter θ(d) ∈ R
K as

z
(d)
l ∼ mult(θ(d)), (2)

where ∼ means that the random variable z
(d)
l has multi-

nomial distribution with parameter of θ(d), whereas θ(d)

represents the occurrence frequencies of the patterns in d-

th chunk. In θ(d), the entries with relatively high values

give an information that the corresponding patterns have

high tendency to occur simultaneously. It means that all

θ(d), d = 1, ..., D, give essential clues to find co-occurrence

relationship of patterns. Therefore, we obtain M number

of co-occurrence types by grouping θ(d) into M clusters.

To cluster the θ(d), we set the mixture of M Gaussians

{μm, Sm}, μm ∈ R
K , Sm ∈ R

K×K ,m = 1, ...,M . Ac-

cordingly, the entries of μm with high value represents ma-

jor patterns in m-th group. The patterns in each group will

occur at the same time with high probability. The example

of obtained co-occurrence types is shown in Figure 4. c(d)

is the indexing variable indicating one of Gaussian mixture,

ranging from 1 to M . The indexing variable c(d) is assigned

by multinomial distribution with parameter π as

c(d) ∼ mult(π). (3)

However, since {μm, Sm} for the given c(d) = m is not a

conjugate prior of θ(d) [8], the posterior distribution of θ(d)

cannot be easily induced by using {μm, Sm} as a Gaussian

prior of θ(d). To resolve the difficulty, we additionally in-

troduce an augmented variable θ̄(d) = f(θ(d)) where f(·) is

a deterministic mapping. It means that θ(d) is converted to

θ̄(d) with probability one. The performance depending on

the choice of the mapping f(·) will be discussed in section

4. The Gaussian distribution can be the prior of θ̄(d) with

any f(·) because θ̄(d) is not connected to z
(d)
l as shown in

Figure 3. After that, one of the Gaussian mixture selected

by c(d) = m is defined as a prior of θ̄(d) i.e.,

θ̄(d) ∼ N (μm, Sm). (4)

Note that p(θ̄(d) | μm, Sm, θ(d)) = p(θ̄(d) | μm, Sm) given

p(θ̄(d)|θ(d)) = 1.

The procedure in the below is designed to let origi-

nal θ(d) assign z
(d)
l indicating the dominant pattern in the

group, c(d) = m. To induce θ(d) which reflects the co-

occurring pattern information μm given c(d) = m, τ and

μm is defined as Dirichlet prior of θ(d) i.e.,

θ(d) ∼ Dir(τμm). (5)

Since Dirichlet prior τμm is pseudo count [3] of θ(d), the

entry of θ(d) has higher value as the corresponding entry

value of μm is larger. Furthermore, it is easy to induce

the marginal distribution of θ(d) because μm is conjugate

prior of θ(d). Hyper-parameters α, β, γ ∈ R in Figure 3

are Dirichlet prior and μo ∈ R
M , κo ∈ R, So ∈ R

M×M

are Nomral-Invert-Wishart prior [3] of Gaussian mixture

{μm, Sm}. These all parameters are conjugate priors of the

corresponding random variables.

Joint pdf of the whole model is induced by combining the

equations (1)-(5) altogether. However, it is impossible to get

the exact posterior distribution of each variables because in-

tegral of the joint pdf is intractable due to the indexing vari-

ables z and c. Therefore, approximated inference methods

are required to solve the problem. We use Gibbs sampling

method [29] for inference of all the hidden variables in the

proposed HTGMM. See the supplementary material for the

detailed inference procedure.

3.3. Deterministic Method for Path Prediction

This section presents the path prediction method us-

ing the movement patterns and their co-occurrence groups

learned by the proposed HTGMM. For this, we have to

resolve two main problems. The first problem is that the

movement patterns are described in quantized space. The

other problem is that transition probability among words are

defined only in the area of learned patterns. Therefore, we

first suggest a method to expand the transition information

of qk into the entire word pairs. Then, we propose the final

path prediction method inducing the future location xt+1 at

time t in continuous domain given a previous target path

xt = {x1, x2, ..., xt} in an iterative manner.

Relaxation of word to word transition: The word to word

transition qk(wi, wj) indicates the direction of k-th move-
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(a) (b) (c)

Figure 5. The result of expanded word to word transition. We ob-

tain energy potential map in (a) by expanding word to word tran-

sition of the pattern in bottom of (a). The potential goes down

from yellow to blue. We induce the potential map in continuous

domain by bi-lnear interpolation in (b). Therefore, the sink point

of the map (red ‘x’) indicates the destination of the pattern. The

points at purple ‘x’ represent xt+1 and xt. The figure (c) shows

the example path prediction result.

ment pattern from i-th grid to j-th grid. The (wi, wj) is a

word pair in a scene where the condition qk(wi, wj) �= 0
is satisfied. Since we do not have the transition infor-

mation for all the word pairs, the total number of trained

word pairs (wi, wj) is less then whole possible number of

word pairs Nw
2. To expand the word to word transitions

to whole word pairs, we employ an energy potential vec-

tor y = [y1, y2, ..., yNw
]T . The yi, yj are defined so that

yi − yj = qk(wi, wj). If we know the transition probabil-

ities for R pairs of words, we can set R equations for each

(yi, yj). The set of the equations can be expressed by sparse

matrix form Ay = b, A ∈ R
R×Nw , b ∈ R

R which holds

A[r, i] = 1,A[r, j] = −1 and b[r] = qk(wi, wj). A[r, i]
and A[r, j] are (r, i) and (r, j) element of matrix A. Also,

b[r] is the r-th element of vector b. In most cases, A is not

a full rank matrix. Accordingly, we can find a solution as

y = (ATA)−1ATb by using pseudo inverse. Using the

y, we induce transition probabilities of whole word pairs

in a scene. Figure 5 is an example illustrating the y. The

difference between yi and yj at each location denotes the

possibility that the target moves from high potential posi-

tion wi to low potential position wj . The Figure 5 shows

that the potential value decreases as the target moves to the

future locations.

Path Prediction in Continuous Domain: After finding

the potential map y, we iteratively update xt. The overall

path prediction procedure has three steps. In the first step,

we find the movement patterns adequate to the target object

by using the inference results from HTGMM. The second

step is the updating procedure for yt. In this step, we mod-

ify y to reflect the past trajectory of the target, xt. We denote

y at time t as yt. In the last step, we estimate future location

xt+1 of the target using the updated yt+1.

(1) Pattern selection step: This step begins with converting

the past trajectory xt = {xi | i = 1, ..., t} into a quantized

form x
(q)
t = {wi | i = 1, ..., t} where wi is a word includ-

ing xi. Then we select the pattern including x
(q)
t according

to the probability of selecting k-th pattern {φk, qk} given

the dominant pattern group c by employing the results from

HTGMM as

p({φk, qk} | x
(q)
t , μc) ∝ p(x

(q)
t | {φk, qk})p(z = k | μc).

(6)

The first term in the right-hand side of the equation can be

obtained from the equation (1). It represents the probabil-

ity that k-th movement pattern includes the target trajectory

xt. The second term is a Dirichlet multinomial distribution

over μc. The distribution is induced by marginalizing θ of

p(z = k | θ)p(θ | μc) where p(z = k | θ) and p(θ | μc) can

be obtained from the equations (2) and (5). It is a tractable

calculation because μc is a conjugate prior for θ. The sec-

ond term leads to the selection of z indicating the frequently

occurring pattern in the group c. The group c is determined

by the maximum value of the posterior probability for μc in

the HTGMM with given co-occurring KLT trajectories.

(2). Energy potential map update step: After selecting the

pattern k, we update ykt+1 using ykt and xt. We denote yk
t as

the potential vector y for k-th pattern at time t. To estimate

ykt+1 reflecting the trace xt, we first define t − 1 terms in

equation (7) from the x
(q)
t , where yi is the energy potential

assigned for the word wi in xt.

ywi+1 − ywi
= p, i = 1, ..., t− 1. (7)

Then, we add them into the rows of the matrix A, b used pre-

viously for calculating the potential vector. By solving the

linear equation Ay = b with modified A and b, we obtain

a new vector yc containing the future dynamics estimated

from the past movements. We set p as a mean value of all

qk(wu, wv) ≥ 0 in a scene. The vector ykt+1 is updated by

reflecting the yc to the present state as

ykt+1 = (1− α)ykt + αyc, (8)

where term α is a design parameter.

(3) Path prediction step: Now we finally find xt+1 using

the yk
t+1. As seen in Figure 5, the map yk

t+1 forms a valley-

like shape going down to the destination of the pattern k.

Therefore, we find xt+1 by following the slope of the valley.

To find new xt+1 in a continuous domain, we expand yk
t+1

into continuous space using bi-linear mapping [36]. Fk
t+1

refers the continuous energy potential map obtained from

ykt+1. Then, we find the sink point xs of the Fk
t+1 which

indicates the destination of the pattern k. The optimization

formulation to find xt+1 is given by

xt+1 =minxFk
t+1(x),

s.t. ‖x− xt‖2 = ‖xt − xt−1‖2,

‖x− xs‖2 ≤ ‖xt − xs‖2.

(9)

To find the minimal point in (9), we only need to navigate

the points x lying in the circle C(R, θ) which R = ‖xt −
xt−1‖2 and −π ≤ θ ≤ π with center xt. To find x with

minimal F k
t+1(x), we find inflection points by calculating

θ satisfying the gradient ∇θF
k
t+1(C(R, θ)) = 0 and choose

the point with the minimum field value as the future location

xt+1. By increasing the time index t, we predict the future
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location of target recursively and we terminate the recursive

iteration when the distance between predicted point xt+1

and xs is smaller than ‖xt − xt−1‖2 or xt+1 goes over the

boundary of the scene.

4. Experimental Results

To validate the proposed algorithm, we compared the

performance against the existing path prediction algo-

rithms [43, 21]. Through the comparison, we have con-

firmed that the existing path prediction algorithms [43, 21]

are not adequate for the crowded scenes which have a tem-

poral pattern co-occurrence tendency. Also, to check our

method’s applicability to pedestrian moving patterns, we

compared it with Yi’s method [45]. In addition, to check the

effects of the components of the proposed HTGMM model,

we conducted extensive experiments to evaluate our algo-

rithm by self-comparing its performance with that of three

baseline algorithms designed by naive combinations of the

existing topic and Gaussian models.

4.1. Dataset

For the experiments, we first used QMUL[16, 5], in-

cluding cross road scenes and our own complex intersec-

tion (CI) dataset captured in a wide-intersection. These

scenes include diverse moving object patterns and co-

occurrence types governed by traffic signals. Furthermore,

these scenes are very crowded, and it is hard to utilize se-

mantic scene segmentation information as in the previous

works [21, 43]. In addition, for the pedestrian data set, we

adopted PWPD [45] which does not have explicit temporal

groups among the movement patterns. The dataset captures

a crowded indoor plaza scene in a subway station, and the

movement of the objects is far less ordered compared to the

QMUL, CI datasets.

4.2. Comparison Methods

First, we compared the prediction performance with two

major existing path prediction algorithms [43, 21] for the

QMUL, CI datasets. Walker’s method [43] learns the tran-

sition probability among representative mid-level patches

and predicts the shape and future position of the patch. Ki-

tani’s method [43] trains the reward function for each lo-

cation given semantic segmentation results and finds the

predictive path which minimizes the cost. For compari-

son, we measured the error between ground truth trajectory

and predicted trajectories of each algorithms using modi-

fied Hausdorff distance (denoted by MHD in tables) [12]

and Euclidean distance (denoted by ECD in tables). Since

Walker’s method automatically determines the patches for

prediction, we generated ground truth trajectories for the

selected patches. For the PWPD dataset, we compared the

performance with Yi’s method[45] which marks the state-

of-the-art performance to the PWPD dataset. This method

does not explicitly focus on predicting trajectories but can

predict the possible destination region of objects in the

5 10 15 20 25 2 4 6 8 10Number of Patterns K Number of Groups T

Figure 6. Precision Graph with respect to number of patterns K

and number of groups M .

scene by seeing half of the entire paths.

Second, in addition to the existing algorithms [43, 21,

45], we employed our own three baseline algorithms. In

the first baseline algorithm, utilizing the movement patterns

{φk, qk} and θ(d) obtained by the HTGMM, we simply in-

ferred the co-occurrence of the movement patterns by clus-

tering θ(d) with a Gaussian mixture model. This baseline

algorithm refers to ‘B(1)’. The method naively breaks the

proposed HTGMM into two independent models and infers

the hidden variables in a greedy manner. The second base-

line algorithm is designed with the same concept as the first

baseline algorithm except for using θ̄(d) instead of θ(d). The

purpose of the second baseline is to show that only the sim-

ple mapping θ̄(d) = f(θ(d)) does not give significant im-

provement of performance without the prior design as in the

proposed HTGMM. The second baseline algorithm refers to

‘B(2)’. The other baseline algorithm ‘B(3)’ assumes just

one group. This means that the third baseline algorithm

does not consider co-occurrence information. In addition,

we added the prediction result obtained by humans to eval-

uate the prediction performance relative to human ability.

Five human participants saw the training video three times

repeatedly to learn the movement dynamics. They then pre-

dicted the future path from the same points given in the ex-

periments for the proposed algorithm.

4.3. Qualitative Evaluation

To evaluate the robustness of design parameters, we

tested our work with different parameters, namely the num-

ber of patterns K and the number of groups M . As seen in

the left graph in Figure 6, our method is robust in relation

to K unless the number is too small. M is a more sensi-

tive parameter than K. In the traffic scenario, we observed

that selecting three to five groups achieves the best perfor-

mance. It is noticeable that the performance gap is less se-

vere if we choose a value larger than the fitted parameters.

Figure 7 shows the patterns and their co-occurrence types

extracted by the proposed algorithm. Each pattern is illus-

trated by utilizing regional probability φk and the potential

energy map F (k). The co-occurrence groups of the patterns

are illustrated in the right four images in each row of Fig-

ure 7. By utilizing the results, we measured the pattern-

trajectory matching accuracy, indicating whether a trajec-

tory is matched to an appropriate pattern in the situation at

the prediction time.

CI Dataset: We set the number of patterns, K, and

the number of groups, M , to 15 patterns and three co-
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Figure 7. The inferred movement patterns and their co-occurrence groups. In each rows, three images in the left indicates the examples of

movement patterns. Other images in the rightside depict their groups. The color of each pattern indicates the direction of the pattern, from

red to blue. The bar in each picture in the rightside of each rows represents the µm of each Gaussian group. The gray-scaled color in the

bar indicates the occurrence probability of a pattern, where a white color shows a high probability. It means that the white entries of the

bar show the major patterns of the group in the corresponding picture. Best viewed in color.

Figure 8. Illustration of diverse path prediction results in different groups. The solid lines indicate the ground truth trajectories and dot

lines denote the predicted paths. The green arrows indicate the other possible directions if the co-occurrence groups are changed.

(a) (b) (c)

Figure 9. Path prediction results of Walkers’ [43] for CI dataset.

occurrence groups, respectively, to learn the CI dataset. As

shown in the right three images of Figure 7-(a), the pro-

posed model can successfully make three groups with co-

occurring patterns depending on the major co-occurrence

types generated by traffic signals: horizontal straight, turn-

ing left with vertical straight, and vertical straight. By uti-

lizing those patterns and groups, we conducted a predic-

tion task and evaluated the prediction performance with

189 ground truth trajectories. As illustrated in Figure 8-

(a), we can see that the predicted trajectories do not go

toward moving objects (green arrow direction) considering

co-occurrence group and arrive at the destination by follow-

ing the valley obtained by the energy potential map and are

matched to the ground truth. Conversely, as in Figure 9,

the predicted path by [43] for CI data set guides cars to

avoid other cars, which results in an erroneous prediction

in crowded traffic conditions.

QMUL Dataset: For this dataset, we set K and M to

24 patterns and four co-occurrence groups, respectively, be-

cause the scene structure is more complicated. Figure 7-(b)

represents the patterns and co-occurrence groups, extracted

from the QMUL dataset. In Figure 7-(b), it is worth high-

lighting that the vertical straight patterns depicted by red

circles in the first two groups are included in different co-

occurrence groups even though they are passing the same

region. Hence, their future paths will be different from

each other depending on the movements of other objects.

In other words, the object in the first pattern will keep go-

ing according to the vertical straight pattern, but the object

in the second pattern will stop near the crosswalk region

to avoid a collision with the horizontal movements. Fig-

ure 8-(b) shows the prediction results given the groups. We

executed the prediction experiment and evaluated the per-

formance with 246 ground truth trajectories. In this scene,

there are many locations too complicated for choosing the

pattern, but our algorithm successfully selects adequate pat-

terns for prediction. For example, the trajectory in the first

image and int the second image in Figure 8-(b) start from al-

most the same location, but the predicted path is completely

different depending on the co-occurrence group that is dom-

inant at the prediction time.

PWPD Dataset: We tested our method in the pedestrian

walking path dataset [45] which captures complex dynamic

crowd movements. The experimental results in the PWPD

dataset [45] shows that the applicability of the proposed al-

gorithm is not restricted to cross-road traffic scenes, but can

be used for a more disordered situation. Since this scene

does not include the temporal group, such as traffic con-

trolled by traffic signals, we set the number of group M
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Video measure Human Proposed Proposed(2) W14(1) W14(2) K12 B(1) B(2) B(3)

QMUL Precision 99.37 92.14% - - - - 67.36% 73.14% 49.58%

MHD [12] 23.32 23.38 11.65 49.36 76.20 86.73 41.90 35.34 65.70

ECD 45.71 50.19 36.80 85.5 115.29 107.43 71.47 59.51 88.05

CI Precision 99.20 91.49% - - - - 63.29% 65.42% 55.31%

MHD 21.22 27.89 14.72 62.03 115.51 127.62 45.04 43.91 49.68

ECD 40.15 44.95 28.60 92.50 150.43 143.60 63.29 56.15 68.59
Table 1. Quantitative results of cross-street dataset. MHD indicates modified Hausdorff distance [12] and ECD denotes Euclidean distance.

W14 refers to Walker’s method[43] and K12 refers to Kitani’s method[21]. B1,B2 and B3 indicates Baseline algorithms in section 4.2.

W14(1) is mean value of the top 10% lowest error. W14(2) represents error of the path which has the highest probability. The result K12

is from the same configuration as W14(2).

Figure 10. Qualitative Prediction Results for PWPD dataset [45].

(a) Extracted patterns of ours, (b) Our prediction results.

to 1 and the number of patterns K to 40 via experiments

which were not sensitive. We used the object trajectories

given by the author [45]. As shown in Figure 10-(a), our

model successfully learned movement patterns. Figure 10-

(b) describes examples of path prediction results. The re-

sults show that our model successfully predicts the future

when the object(human) does not loiter, as in Figure 10-(b).

4.4. Quantitative Evaluation

First, we conducted a quantitative comparison of the

algorithms[21, 43] with the videos proposed in the pa-

per. Table 1 shows the comparison results. For Walker’s

method[43], we used the mid-level features trained by the

car chase dataset and the CI, QMUL datasets. For Kitani’s

work[21], manual ground truth segmentation results were

adopted. Although the conditions of the experiment were

advantageous to them, our method yielded superior perfor-

mance because the two methods are designed to avoid ob-

stacles such as cars and lawns.

We also measured the performance of the algorithm and

compared the results with the baseline methods as well as

with human prediction. As shown in Table 1, the proposed

algorithm outperformed the other baseline algorithms in

both datasets. The result implies that the proposed method

has a meaningful contribution compared to the naive use

of the existing topic and Gaussian mixture models. The

baseline algorithm ‘B(1)’ achieved better performance than

the baseline algorithm ‘B(3)’ which does not group the pat-

terns. However, since the group information learned by the

first baseline algorithm was inaccurate, the performance im-

provement by GMM was insufficient. Considering that the

baseline algorithm uses the same θ(d) learned by the pro-

posed HTGMM, we conclude that the performance jump

of the proposed method in comparison with the baseline

algorithm ‘B(1)’ validates our model’s superior ability to

group co-occurring patterns. The result of ‘B(2)’ implies

Video measure Y15(1) Y15(2) Y15(3) Ours

PWPD Precision 48% 38% 33% 43.2%
Table 2. Pedestrian destination results. Y15(1)[45] is the result

which uses the stationary crowd factor. Y15(2),(3) are the base-

lines which do not, or naively use the factor.

that utilizing sigmoid function without the proposed con-

jugate prior design in HTGMM does not yield a good per-

formance. Furthermore, the prediction result (MHD, ECD)

from humans and ‘Proposed(2)’ shows that our algorithm

has a comparable prediction ability to that of humans in

view of distance error. The result of ‘Human’ in Table 1
is the average value for the five humans. Interestingly, even

humans were confused in predicting the path of the target,

which can go in multiple directions depending on the co-

occurrence dynamics.

Also, as shown in Table 2, our method achieved des-

tination predicting performance comparable to the newest

method [45] without employing the stationary crowd infor-

mation, claimed to be the essential feature by Yi et al. [45]

for analyzing a crowded scene like the PWPD dataset. It

is noted that our method outperforms the other baselines of

[45]: Y15(2), Y15(3), which do not utilize that factor.

5. Conclusion

In this paper, we have proposed a novel path predic-

tion algorithm that considers the moving dynamics of co-

occurring objects. To solve the problem, we first designed

two-layered probabilistic model to extract the major move-

ment patterns and their co-occurrence groups in a scene.

Utilizing the result from the proposed model, we have pre-

sented an effective path prediction method. By extensive

qualitative/quantitative experiments, we have shown that

our algorithm can predict the future paths of objects in com-

plex scenes including many moving objects and changing

situations such as cross streets with traffic lights. This pa-

per explores a meaningful progress in path prediction re-

search in that the proposed algorithm considers the other

co-occurring objects as well as the target itself.
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