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Abstract

In this work we introduce a fully end-to-end approach

for action detection in videos that learns to directly predict

the temporal bounds of actions. Our intuition is that the

process of detecting actions is naturally one of observation

and refinement: observing moments in video, and refining

hypotheses about when an action is occurring. Based on

this insight, we formulate our model as a recurrent neu-

ral network-based agent that interacts with a video over

time. The agent observes video frames and decides both

where to look next and when to emit a prediction. Since

backpropagation is not adequate in this non-differentiable

setting, we use REINFORCE to learn the agent’s decision

policy. Our model achieves state-of-the-art results on the

THUMOS’14 and ActivityNet datasets while observing only

a fraction (2% or less) of the video frames.

1. Introduction

Action detection in long, real-world videos is a challeng-

ing problem in computer vision. Algorithms must reason

not only about whether an action occurs somewhere in a

video, but also on the temporal extent of when it occurs.

Most existing work [22, 39, 13, 46] take the approach of

building frame-level classifiers, running them exhaustively

over a video at multiple temporal scales, and applying post-

processing such as duration priors and non-maximum sup-

pression. However, this indirect modeling of action local-

ization is unsatisfying in terms of both accuracy as well as

computational efficiency.

In this work, we introduce an end-to-end approach to ac-

tion detection that reasons directly on the temporal bounds

of actions. Our key intuition (Fig. 1) is that the process of

detecting an action is one of continuous, iterative observa-

tion and refinement. Given a single or a few frame obser-

vations, a human can already formulate hypotheses about

when an action may occur. We can then skip ahead or back

some frames to verify, and quickly narrow down the action

location (e.g. swinging a baseball bat in Fig. 1). We are able

to sequentially decide where to look and how to refine our

Baseball Swing
[     ]

Figure 1: Action detection is a process of observation and re-

finement. Effectively choosing a sequence of frame observations

allows us to quickly narrow down when the baseball swing occurs.

hypotheses to obtain precise localization of the action with

far less exhaustive search compared to existing algorithms.

Based on this intuition, we present a single coherent

model that takes a long video as input, and outputs the tem-

poral bounds of detected action instances. Our model is

formulated as an agent that learns a policy for sequentially

forming and refining hypotheses about action instances.

Casting this into a recurrent neural network-based architec-

ture, we train the model in a fully end-to-end fashion using

a combination of backpropagation and REINFORCE [42].

Our model draws inspiration from works that have used

REINFORCE to learn spatial glimpse policies for image

classification and captioning [19, 1, 30, 43]. However, ac-

tion detection presents the additional challenge of how to

handle a variable-sized set of structured detection outputs.

To address this, we present a model that decides both which

frame to observe next as well as when to emit a prediction,

and we introduce a reward mechanism that enables learn-

ing this policy. To the best of our knowledge, this is the first

end-to-end approach for learning to detect actions in video.

We show that our model is able to reason effectively on

the temporal bounds of actions, and achieve state-of-the-art

performance on the THUMOS’14 [11] and ActivityNet [3]

datasets. Moreover, because it learns policies for which

frames to observe, or temporally glimpse, it is able to do so

while observing only a fraction (2% or less) of the frames.
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2. Related Work

There is a long history of work in video analysis and

activity recognition [20, 49, 2, 31, 17, 8, 10, 12, 50]. For a

survey we refer to Poppe [24] and Weinland et al. [40]. Here

we review recent work relevant to temporal action detection.

Temporal action detection. Canonical work in this vein

is Ke et al. [14]. Rohrbach et al. [27] and Ni et al. [21] use

hand-centric and object-centric features, respectively, to de-

tect fine-grained cooking actions in a fixed-camera kitchen

setting. More related to our work is the unconstrained

and untrimmed setting of the THUMOS’14 action detec-

tion dataset. Oneata et al. [22], Wang et al. [39], Karaman

et al. [13], and Yuan et al. [46] use fusions of dense tra-

jectories, frame-level CNN features, and/or sound features

in a sliding window framework to perform temporal action

detection. Sun et al. [34] uses web images as a prior to im-

prove detection performance. Pirsiavash and Ramanan [23]

build grammars over complex actions and additionally de-

tect sub-components in time.

Methods for spatio-temporal action detection have also

been developed. Within the context of “unconstrained”

internet videos, this includes a body of work on spatio-

temporal action proposals [44, 16, 36, 9, 7, 45, 41]. Anal-

ysis of broader surveillance scenes for action detection is

also an active area of research. Shu et al. [32] reason about

groups of people, Loy et al. [18] across multi-camera se-

tups, and Kwak et al. [15] based on quadratic programming-

based instantiations of rules. Common among these works

is reasoning on spatio-temporal action proposals or human

tracks, typically using sliding window-based approaches in

the temporal dimension. Furthermore, these works are in

the context of trimmed or constrained-setting video clips.

In contrast, we address the task of temporal action detec-

tion in untrimmed, unconstrained videos, with an efficient

method for determining which frames to examine.

End-to-end detection. Our goal of directly reasoning on

the temporal bounds of actions shares philosophy with work

in object detection that has regressed from full images to

object bounds [29, 35, 5, 6, 26, 25]. In contrast, existing

action detection methods typically use exhaustive sliding-

window approaches and post-processing to produce action

instances [22, 39, 13, 46]. To the best of our knowledge,

our work is the first to address learning of temporal action

detection in an end-to-end framework.

Learning task-specific policies. We draw inspiration from

recent approaches that have used REINFORCE [42] to learn

task-specific policies. Mnih et al. [19], Ba et al. [1], and Ser-

manet et al. [30] learn spatial attention policies for image

classification, and Xu et al. [43] for image caption genera-

tion. In a non-visual task, Zaremba et al. [47] learn policies

for a Reinforcement Learning Neural Turing Machine. Our

method builds on these directions and uses REINFORCE to

learn policies addressing the task of action detection.

3. Method

Our goal is to take a long sequence of video and out-

put any instances of a given action. Fig. 2 shows our model

structure. The model is formulated as a reinforcement learn-

ing agent that interacts with a video over time. The agent

receives a sequence of video frames V = {v1, ..., vT } as

input, and can observe a fixed proportion of the frames. It

must learn to effectively utilize these observations, or frame

glimpses, to reason on the temporal bounds of actions.

3.1. Architecture

The model consists of two main components: an ob-

servation network (Sec. 3.1.1), and a recurrent network

(Sec. 3.1.2). The observation network encodes visual repre-

sentations of video frames. The recurrent network sequen-

tially processes these observations and decides both which

frame to observe next and when to emit a prediction. We

now describe each of these in more detail. Later in Sec. 3.2,

we explain how we use a combination of backpropagation

and REINFORCE to train the model in end-to-end fashion.

3.1.1 Observation Network

As shown in Fig. 2, the observation network fo, parameter-

ized by θo, observes a single video frame at each timestep.

It encodes the frame into a feature vector on and provides

this as input to the recurrent network.

Importantly, on encodes information about both where

in the video an observation was taken as well as what was

seen. The inputs to the observation network therefore con-

sist of the normalized temporal location of the observation,

ln ∈ [0, 1], and the corresponding video frame vln .

The architecture of the observation network is inspired

by the spatial glimpse network of [19]. Both ln and vln are

mapped to a hidden space and then combined with a fully

connected layer. vln is typically mapped with a sequence of

convolutional, pooling, and fully connected layers; in our

experiments we extract fc7 features from a fine-tuned VGG-

16 network [33] and use on ∈ R
1024.

3.1.2 Recurrent Network

The recurrent network fh, parameterized by θh, forms the

core of the learning agent. As can be seen in Fig. 2, the

input to the network at each timestep n is observation fea-

ture vector on. The network’s hidden state hn, a function of

both on and the previous hidden state hn−1, models tempo-

ral hypotheses about action instances.

As the agent reasons on a video, three outputs are pro-

duced at each timestep: candidate detection dn, binary in-

dicator pn signaling whether to emit dn as a prediction, and

temporal location ln+1 indicating the frame to observe next.

We now describe each of these in more detail.
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Figure 2: The input to the model is a sequence of video frames, and the output is a set of action predictions. We illustrate an example

of a forward pass. At timestep n, the agent observes the orange video frame and produces candidate detection dn, however prediction

indicator output pn suppresses it from being emitted into the prediction set. Observation location output ln+1 signals to observe the the

green video frame at the next timestep. The process repeats, and here again pn+1 suppresses dn+1 from being emitted. ln+2 signals to

now go backwards in the video to observe the blue frame. At timestep n + 2, the action hypothesis is sufficiently refined, and the agent

uses prediction indicator pn+2 to emit dn+2 into the prediction set (red arrow). The agent then continues proceeding through the video.

Candidate detection. A candidate detection dn is pro-

duced using the function dn = fd(hn; θd), where fd is a

fully connected layer. dn is a tuple (sn, en, cn) ∈ [0, 1]3,

where sn and en are the normalized start and end locations

of the detection, and cn is the confidence level of the

detection. This candidate detection represents the agent’s

hypothesis surrounding a current action instance. However,

it is not emitted as a prediction at each timestep, which

would lead to a large amount of noise and many false

positives. Instead, the agent uses a separate prediction

indicator output to signal when a candidate detection

should be emitted as a prediction.

Prediction indicator. The binary prediction indicator

pn signals whether corresponding candidate detection dn
should be emitted as a prediction. pn = fp(hn; θp), where

fp is a fully connected layer followed by a sigmoid non-

linearity. At training time, fp is used to parameterize a

Bernoulli distribution from which pn is sampled; at test

time, the maximum a posteriori estimate is used.

The combination of the candidate detection and predic-

tion indicator is crucial for the detection problem, where

positive instances may occur anywhere or not at all. It en-

ables the network to indicate when it has identified a unique

action instance to add to the prediction set, and essentially

folds non-maximum suppression in as a learnable compo-

nent of our end-to-end framework.

Location of next observation. The temporal location

ln+1 ∈ [0, 1] indicates the video frame that the agent

chooses to observe next. This location is not constrained,

and the agent may skip both forwards and backwards

around a video.

The location is computed as ln+1 = fl(hn; θl), where

fl is a fully connected layer, such that the agent’s decision

is a function of its past observations and their temporal lo-

cations. At training time, ln+1 is sampled from a Gaussian

distribution with a mean of fl(hn; θl) and a fixed variance;

at test time, the maximum a posteriori estimate is used.

Fig. 2 further illustrates the roles of these outputs and

their interaction with an example of a forward pass through

the network.

3.2. Training

Our end goal is to learn to output a set of detected ac-

tions. To achieve this, we need to train the three outputs at

each step of the agent’s recurrent network: candidate detec-

tion dn, prediction indicator pn, and next observation loca-

tion ln+1. Given supervision from temporal action annota-

tions in long videos, training these involves challenges of

designing suitable loss and reward functions, and handling

non-differentiable model components. We now explain how

we address these challenges. We use standard backpropaga-

tion to train dn, and REINFORCE to train pn and ln+1.
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3.2.1 Candidate detections

Candidate detections are trained using backpropagation to

maximize the correctness of each candidate. We wish to

maximize correctness regardless of whether a candidate is

ultimately emitted, since the candidates encode the agent’s

hypotheses about actions. This requires matching each can-

didate with a ground truth instance during training. We use

the insight that at each timestep, the agent should form a

hypothesis around the action instance (if any) nearest its

current location in the video. This enables us to design a

simple yet effective matching function.

Matching to ground truth. Given a set of candidate de-

tections D = {dn|n = 1, ..., N} produced by a recurrent

network of N timesteps, and given ground truth action in-

stances g1,...,M , each candidate is matched to one ground

truth instance, or none if M = 0.

We define matching function

ynm =

{

1 if m = argminj=1,...,M dist(ln, gj)

0 otherwise
(1)

In other words, candidate dn is matched to ground truth

gm if the agent’s temporal location ln at timestep n is closer

to gm than any other ground truth instance. Defining gm =
(sm, em) as the start and end location of a ground truth in-

stance, dist(ln, gm) is simply min(|sm − ln|, |em − ln|).

Loss function. Once candidate detections have been

matched to ground truth instances, we optimize a multi-task

classification and localization loss function over the set D:

L(D) =
∑

n

Lcls(dn) + γ
∑

n

∑

m

✶[ynm = 1]Lloc(dn, gm)

(2)

Here the classification term Lcls(dn) is a standard cross-

entropy loss on the detection confidence cn, encouraging

the confidence to be closer to 1 if detection dn is matched

to a ground truth instance, and 0 otherwise.

If the detection is matched to a ground truth gm (i.e.

ynm = 1), the localization term Lloc(dn, gm) is an L2-

regression loss that further encourages minimizing the dis-

tance ‖(sn, en)− (sm, em)‖ between the two segments.

We optimize this loss function using backpropagation.

3.2.2 Observation and emission sequences

The observation location and prediction indicator out-

puts are non-differentiable components of our model that

cannnot be trained with standard backpropagation. How-

ever, REINFORCE [42] is a powerful approach that enables

learning in non-differentiable settings. We first briefly de-

scribe REINFORCE below. We then introduce a reward

function that we use with REINFORCE to learn effective

policies for observation and prediction emission sequences.

REINFORCE. Given A, a space of action sequences, and

pθ(a), a distribution over a ∈ A and parameterized by θ,

the REINFORCE objective can be expressed as

J(θ) =
∑

a∈A

pθ(a)r(a) (3)

Here r(a) is a reward assigned to each possible action

sequence, and J(θ) is the expected reward under the distri-

bution of possible action sequences. In our case we wish

to learn network parameters θ that maximize the expected

reward of a sequence of location and prediction indicator

outputs.

The gradient of the objective is

∇J(θ) =
∑

a∈A

pθ(a)∇ log pθ(a)r(a) (4)

This leads to a non-trivial optimization problem due to

the high-dimensional space of possible action sequences.

REINFORCE addresses this by learning network parame-

ters using Monte Carlo sampling and an approximation to

the gradient equation:

∇J(θ) ≈
1

K

K
∑

i=1

N
∑

n=1

∇ log πθ(a
i
n|h

i
1:n, a

i
1:n−1)R

i
n (5)

Given an agent interacting with an environment, in our

case a video, πθ is the agent’s policy. This is a learned distri-

bution over actions conditioned on the interaction sequence

thus far. At timestep n, an is the policy’s current action

(e.g. location ln+1 or prediction indicator pn), h1:n is the

history of past states including the current, and a1:n−1 is the

history of past actions. Rn =
∑N

t=n rt is the cumulative fu-

ture reward obtained from the current timestep onward, for

a sequence of N timesteps. The approximate gradient is

computed by running an agent’s current policy in its envi-

ronment to obtain K interaction sequences.

To reduce the variance of the gradient estimate, a base-

line reward bin is often estimated, e.g. via a separate net-

work, and subtracted so that the gradient equation becomes:

∇J(θ) ≈
1

K

K
∑

i=1

N
∑

n=1

∇ log πθ(a
i
n|h

i
1:n, a

i
1:n−1)(R

i
n − b

i
n)

(6)

REINFORCE learns model parameters according to this

approximate gradient. The log-probability log πθ of actions

leading to high future reward are increased, and those

leading to low reward are decreased. Model parameters can

then be updated using backpropagation.

Reward function. Training with REINFORCE requires

designing an appropriate reward function. Our goal is to

learn policies for the location and prediction indicator out-

puts that lead to action detection with both high recall and

high precision. We therefore introduce a reward function
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α=0.5 α=0.4 α=0.3 α=0.2 α=0.1

Karaman et al. [13] 0.9 1.4 2.1 3.4 4.6

Wang et al. [39] 8.3 11.7 14.0 17.0 18.2

Oneata et al. [22] 14.4 20.8 27.0 33.6 36.6

Ours (full) 17.1 26.4 36.0 44.0 48.9

Ablation Experiments

Ours w/o dpred 12.4 19.3 26.0 32.5 37.0

Ours w/o dobs 9.3 15.2 20.6 26.5 31.2

Ours w/o dobs w/o dpred 8.6 14.6 20.0 27.1 33.3

Ours w/o loc 5.5 9.9 16.2 22.7 27.5

CNN with NMS 6.4 9.6 12.8 16.7 18.5

LSTM with NMS 5.6 7.8 10.3 13.9 15.7

Table 1: Action detection results on THUMOS’14. Comparison with the top 3 performers on the THUMOS’14 challenge leaderboard is

shown, as well as with ablation models. mAP is reported for different intersection-over-union (IOU) thresholds α.

that seeks to maximize true positive detections while mini-

mizing false positives:

rN =

{

Rp if M > 0 and Np = 0

N+R+ +N−R− otherwise
(7)

All reward is provided at the N th (final) timestep, and is

0 for n < N , since we want to learn policies that jointly lead

to high overall detection performance. M is the number of

ground truth action instances, and Np is the number of pre-

dictions emitted by the agent. N+ is the number of true

positive predictions, N
−

is the number of false positive pre-

dictions, and R+ and R
−

are positive and negative rewards

contributed by each of these predictions, respectively. A

prediction is considered correct if its overlap with a ground

truth is both greater than a threshold and higher than that of

any other prediction. In order to encourage the agent not to

be overly conservative, a negative reward Rp is provided if

the the video contains ground truth instances (M > 0) but

the model did not emit any predictions (Np = 0).

We use this function with REINFORCE to train the loca-

tion and prediction indicator outputs, and learn observation

and emission policies optimized for action detection.

4. Experiments

We evaluate our model on two datasets - THU-

MOS’14 [11] and ActivityNet [3]. We show that our end-

to-end approach enables the model to outperform state-of-

the-art results by a large margin on both datasets. Further-

more, the learned policy of frame observations is both ef-

fective and efficient; the model achieves these results while

observing in total only 2% or less of the video frames.

4.1. Implementation Details

We learn a 1-vs-all model for each action class. In the

observation network, we use a VGG-16 network [33] fine-

tuned on the dataset to extract visual features from observed

video frames. Fc7-layer features are extracted and embed-

ded with the temporal location of the frame into a 1024-

dimensional observation vector.

For the recurrent network, we use a 3-layer LSTM net-

work with 1024 hidden units in each layer. Videos are

downsampled to 5fps in THUMOS’14 and 1fps in Activ-

ityNet, and processed in sequences of 50 frames. The agent

is given a fixed number of observations for each sequence,

typically 6 in our experiments. All temporal locations are

normalized to [0, 1] in a video sequence. Any predictions

overlapping or crossing sequence bounds are merged with

a simple union rule. We learn with mini-batches of 256

sequences, and use RMSProp [37] to modulate the per-

parameter learning rate during optimization. Other hyper-

parameters are learned through cross-validation. The ratio

of sequences containing positive examples in each mini-

batch is an important hyperparameter to prevent the model

from being overly conservative. Approximately one-third

to one-half positive examples is typically used.

4.2. THUMOS’14 Dataset

The action detection task of THUMOS’14 [11] consists

of 20 classes of sports, and Table 1 shows results on this

dataset. Since the task comprises only 20 of the 101 ac-

tion classes in the dataset, we first coarsely filter the full

set of test videos for these classes, using video-level aver-

age pooling over class probabilities that are computed ev-

ery 300 frames (0.1 fps). We report mAP for different IOU

thresholds α, and compare with the top 3 performers on the

THUMOS’14 challenge leaderboard [11]. All these meth-

ods compute dense trajectories [38] and/or CNN features

over temporal windows, and use a sliding window approach

with non-maximum suppression to obtain predictions. [13]

uses dense trajectories only, [39] uses temporal windows

of combined dense trajectories and CNN features, and [22]

uses temporal windows of dense trajectories with video-

level CNN classification predictions.
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Figure 3: Comparison of Our full model with the Ours w/o dobs
model. Refer to Fig. 5 caption for explanation of figure structure

and color scheme. Each model’s observed frames are shown in

green, and the prediction extent in red. Allowing the model to

choose which frames to observe enables the necessary resolution

to reason precisely on action bounds.

Our model outperforms existing methods at all values of

α. The relative margin increases as we decrease α, indi-

cating that our model more frequently predicts actions near

ground truth instances even when not precisely localized.

Our model achieves these results while processing only 2%

of videos frames using its learned observation policy.

Ablation experiments. Table 1 also shows results for ab-

lation experiments analyzing the contributions of different

model components. The ablation models are as follows:

• Ours w/o dpred removes the prediction indicator out-

put. The candidate detection at every timestep is emit-

ted, and merged with non-maximum suppression.

• Ours w/o dobs removes the location output indicat-

ing where to observe next. Observations are instead

determined by uniform sampling with the same total

number of observations.

• Ours w/o dobs w/o dpred removes both the prediction

indicator and location observation outputs.

• Ours w/o loc removes localization regression. All

emitted detections are of median length from the train-

ing set, and centered on the currently observed frame.

• CNN with NMS removes direct prediction of tempo-

ral action bounds. Per-frame class probabilities from

the VGG-16 Network [33] used in our observation net-

work are densely obtained at multiple temporal scales

and aggregated with non-maximum suppression, simi-

lar to existing work [13, 39, 22].

Ours w/o dpred obtains lower performance compared to

the full model, due to many false positives. Ours w/o dobs
also lowers performance since uniform sampling does not

provide sufficient resolution to localize action boundaries

(Fig. 3). Interestingly, removing dobs cripples the model

more than removing dpred, highlighting the importance of

the observation policy. As expected, removing both outputs

in Ours w/o dobs w/o dpred decreases performance further.

Ours w/o loc is the poorest performing model at α = 0.5,

even below the CNN, showing the importance of tempo-

ral regression. The relative difference with the CNN de-

creases and then flips when we decrease α, indicating that

[22] Ours [22] Ours

Baseball Pitch 8.6 14.6 Hamm. Throw 34.7 28.9

Basket. Dunk 1.0 6.3 High Jump 17.6 33.3

Billiards 2.6 9.4 Javelin Throw 22.0 20.4

Clean and Jerk 13.3 42.8 Long Jump 47.6 39.0

Cliff Diving 17.7 15.6 Pole Vault 19.6 16.3

Cricket Bowl. 9.5 10.8 Shotput 11.9 16.6

Cricket Shot 2.6 3.5 Soccer Penalty 8.7 8.3

Diving 4.6 10.8 Tennis Swing 3.0 5.6

Frisbee Catch 1.2 10.4 Throw Discus 36.2 29.5

Golf Swing 22.6 13.8 Volley. Spike 1.4 5.2

mAP 14.4 17.1

Table 2: Per-class breakdown (AP) on THUMOS’14, at IOU of

α = 0.5.
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Figure 4: Examples of predicted action instances on THU-

MOS’14. Each row shows sampled frames during or just outside

the temporal extent of a detected action. Faded frames indicate

location outside the detection and illustrate localization ability.

the model still detects the rough location of actions but suf-

fers from imprecise localization. Finally, the CNN with

NMS achieves significantly lower performance than all ab-

lation models except the Ours w/o loc model, quantifying

the contribution of our end-to-end framework. Its perfor-

mance is also in the range of but lower than [39], which

uses dense trajectories [38] and Imagenet-pretrained [28]

CNN features. This suggests that additionally incorporat-

ing motion-based features would further improve the per-

formance of our model.

As an additional baseline, we perform NMS on top of an

LSTM, a standard temporal network which produces frame-

level smoothing and consistency [4]. The LSTM with NMS

achieves lower performance than the CNN with NMS, de-

spite adding greater temporal consistency. The main reason

appears to be that increasing the temporal smoothness of

frame-level class probabilities is actually harmful, not bene-

ficial, to the task of action instance detection, where precise

localization of temporal boundaries is required.
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Figure 5: Examples of learned observation policies on THUMOS’14. The top example shows a javelin throw and the bottom example

shows diving. Observed frames are colored in green and labeled with the frame index. Prediction extents are shown in red, and ground truth

in grey. For reference, we also show frame-level CNN probabilities from the VGGNet used in our observation network; higher intensity

indicates higher probability and provides insight into frame-level signal for the class. Dashed arrows indicate the observation sequence,

and red arrows indicate frames where a prediction was emitted.

Finally, we experimented with different numbers of ob-

servations per video sequence, e.g. 4, 8, and 10. Detec-

tion performance was not substantially different across this

range. This is consistent with other work on CNNs for ac-

tion recognition using max-pooling [48], highlighting the

importance of learning effective frame observation policies.

Per-class breakdown. Table 2 shows the per-class AP

breakdown of our model, and comparison with the top per-

former [22] on the THUMOS’14 leaderboard. Our model

outperforms [22] on 12 out of 20 classes. Notably, it shows

significant improvement on some of the most challenging

classes in the dataset such as basketball dunk, diving, and

frisbee catch. Fig. 4 shows examples of our model’s pre-

dictions, including several from these challenging classes.

The model’s ability to reason holistically on action extents

enables it to infer temporal boundaries even when frame ap-

pearance is challenging: e.g. similar pose and environment,

or abrupt scene change in the second diving example.

Observation policy analysis. Fig. 5 shows examples of ob-

servation policies that our model learns, as well as accom-

panying predictions. For reference, we also show frame-

level CNN probabilities from the VGGNet used in our ob-

servation network, to provide insight into frame-level sig-

nal for the action. In the top example of a javelin throw,

the model begins to take more frequent observations once

the person begins running. Near the end boundary of the

action, it takes a step backwards to refine its hypothesis and

then emits a prediction before moving on.

The lower example of diving is a challenging case where

two action instances occur in quick succession. While the

strength of the frame-level CNN probabilities over the se-

quence would be difficult for standard sliding-window ap-

proaches to handle, our model is able to discern the two

separate instances. The model once again takes steps back-

wards to refine its prediction, including once (frame 93)

when motion blur makes it difficult to discern much from

the frame. However, the predictions are also somewhat

longer than the ground truth, and upon observing its first
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Figure 6: Example of a learned observation policy on the Work subset of ActivityNet. The action is Organizing Boxes. Refer to Fig. 5 for

explanation of figure structure and color scheme.

frame of the second instance (frame 101), the model imme-

diately emits a prediction of comparable but slightly longer

duration than the first. This suggests that the model may

have learned duration priors that, while generally beneficial,

were overly strong in this case.

4.3. ActivityNet Dataset

The ActivityNet action detection dataset [3] consists

of 68.8 hours of temporal annotations in 849 hours of

untrimmed, unconstrained video. There are 1.41 action in-

stances per video and 193 instances per class. Tables 3

and 4 show per-class and mAP performance on the “Play-

ing sports” and “Work, main job” subsets of ActivityNet,

respectively. Evaluation uses the ActivityNet validation set,

and hyperparameters are cross-validated on the training set.

Our model outperforms existing work [3], which is

based on a combination of dense trajectories, SIFT, and

ImageNet-pretrained CNN features, by significant margins.

It outperforms [3] in 13 out of 21 classes on the Sports sub-

set and in 10 out of 15 classes on the Work subset. The im-

provement is particularly large on the Work subset. This is

partially attributable to the fact that work activities are gen-

erally less well-defined and have less discriminative move-

ments. In the example sequence of the Organizing Boxes

action in Fig. 6, this is evident in the weaker, more dif-

fuse frame-level CNN probabilities for the action. While

this creates a challenge for approaches that rely on post-

processing, our model’s direct reasoning on action extents

enables it to still produce strong predictions.

5. Conclusion

In conclusion, we have introduced an end-to-end ap-

proach for action detection in videos that learns to directly

predict the temporal bounds of actions. Our model achieves

state-of-the-art results on the THUMOS’14 and ActivityNet

[3] Ours [3] Ours

Archery 34.7 5.2 Long Jump 41.1 56.8

Bowling 51.3 52.2 Mountain Climb. 31.0 53.0

Bungee 42.6 48.9 Paintball 31.2 12.5

Cricket 27.9 38.4 Playing Kickball 33.8 60.8

Curling 16.4 30.1 Playing Volley. 32.1 40.2

Discus Throw 26.2 17.6 Pole Vault 47.7 35.5

Dodgeball 26.6 61.3 Shot put 29.4 50.9

Doing Moto. 30.2 46.2 Skateboarding 21.3 34.4

Ham. Throw 22.2 13.7 Start Fire 25.3 38.4

High Jump 41.3 21.9 Triple Jump 36.4 16.1

Javelin Throw 48.1 35.7

mAP 33.2 36.7

Table 3: Per-class breakdown and mAP on the ActivityNet Sports

subset, at IOU of α = 0.5.

[3] Ours [3] Ours

Attend Conf. 28.3 56.5 Phoning 34.7 52.1

Search Security 24.5 33.9 Pumping Gas 54.7 34.0

Buy Fast Food 34.4 45.8 Setup Comp. 37.4 30.3

Clean Laptop Fan 26.0 35.8 Sharp. Knife 36.3 35.2

Making Copies 18.2 41.7 Sort Books 29.3 16.7

Organizing Boxes 29.6 19.1 Using Comp. 37.4 50.2

Organiz. Cabin. 19.0 43.7 Using ATM 29.5 64.9

Packing 28.0 39.1

mAP 31.1 39.9

Table 4: Per-class breakdown and mAP on the ActivityNet Work

subset, at IOU of α = 0.5.

action detection datasets while observing only a fraction of

frames. A direction for future work is to extend our frame-

work to learn joint spatio-temporal observation policies.
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