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Abstract

This paper deals with a challenging, frequently encoun-

tered, yet not properly investigated problem in two-frame

optical flow estimation. That is, the input frames are com-

pounds of two imaging layers – one desired background

layer of the scene, and one distracting, possibly moving

layer due to transparency or reflection. In this situation, the

conventional brightness constancy constraint – the corner-

stone of most existing optical flow methods – will no longer

be valid. In this paper, we propose a robust solution to this

problem. The proposed method performs both optical flow

estimation, and image layer separation. It exploits a gener-

alized double-layer brightness consistency constraint con-

necting these two tasks, and utilizes the priors for both of

them. Experiments on both synthetic data and real images

have confirmed the efficacy of the proposed method. To the

best of our knowledge, this is the first attempt towards han-

dling generic optical flow fields of two-frame images con-

taining transparency or reflection.

1. Introduction

Most optical flow methods assume that there is only one

imaging layer on the observed image with the brightness of

scene objects, and use the brightness constancy constraint

(BCC) to estimate the optical flow for scene objects. This

single imaging layer assumption, however, can be often vi-

olated in real-world situations, especially in cases involving

transparency or reflection. Transparencies and reflections

are frequently met in imaging process, e.g., when one is

looking at street scene from inside a car through a stained

windscreen, or seeing through a thin layer of rain, look-

ing into a window with semi-reflections on the window sur-

face etc. The BCC will generally not hold for the resultant

double-layer images, even in ideal noise-free cases.

In all the above examples, the observed image I can be
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modeled as a superposition of two constituting layers, de-

noted as I = L1⊕L2, where ⊕ denotes some suitable layer

combination operator. Without loss of generality, we call

L1 the background scene layer, which corresponds to the

image of the desired scene that we intend to capture, and

L2 the foreground distracting layer, which corresponds to

the semi-transparent media (e.g. a glass window with dirt or

reflections on it) or the semi-reflected image.

The main goal of this paper is to robustly estimate the

optical flow field of the scene objects (i.e. the background

layer), which is of concern for vision systems. We consider

two general cases: the foreground distracting layer is sta-

tionary, or dynamically changing.

Let I and I
′ be two time-consecutive frames of a scene

containing the aforementioned two layers. In the presence

of a dynamic foreground layer, there are two legitimate op-

tical flow fields – one for the foreground layer and one for

the background layer. Denote the two flow fields generated

by the movements of the two layers as U and V respec-

tively. The relationships among the observed images, the

image layers and the optical flow fields can be given as

I = L1 ⊕ L2





y

U





y

V

I
′ = L

′
1
⊕ L

′
2

When V ≡ 0 and L2 ≡ L
′
2
, i.e. the foreground layer is

static, our task is to estimate a single flow field U for back-

ground layer, and also estimate the layers L1, L′
1
, L2. Oth-

erwise when a dynamic foreground layer exists, we will es-

timate two flow fields U,V as well as the layers L1, L′
1
,

L2, L′
2
. As we explicitly perform image layer separation

(i.e. estimating L1, L′
1
, L2, L′

2
), an appealing byproduct of

our method is the restoration of the clear scene images.

For either of the two cases with a static or dynamic fore-

ground layer, this is a highly ill-posed problem, especially

considering optical flow estimation and image layer separa-

tion problems per se are known to be ill-posed. From only

two input images, our task is to recover one or two optical

fields, as well as the two unknown layers.

Little work has been reported in the literature concerning

1410



this double-layer image optical flow estimation problem,

with only a few exceptions in the early days of computer

vision research, e.g. [28][29][18][11]. These works how-

ever often used over-simplified assumption and restrictive

motion field models, such as assuming a constant flow field

over time or over space (e.g. globally translating). Bergen

et al. [3] proposed a “three-frame algorithm” to recover two

constituting flow fields, assuming the flow field is constant

over at least three frames.

In contrast, this paper removes these restrictive assump-

tions, and proposes a two-frame algorithm for robustly re-

covering the flow field(s). Our method works for generic

motions, and is thus applicable to a much wider range of

practical situations for robust optical flow estimation.

1.1. Related Works

This paper is concerned with optical flow estimation

in double-layer images where both layers can possibly be

moving. Despite that the phenomena of such multiple imag-

ing layers and motions are frequently encountered in reality,

few papers in the literature have been devoted to this topic.

This is in a sharp contrast to the existence of vast amount of

papers on the classic optical flow problems (an analysis of

recent practices of optical flow can be found in [31]).

One of the first work for multiple optical flow compu-

tation is possibly due to Shiwaza et al. [28][29]. By as-

suming the two underlying flow fields to be constant (e.g.

pure translating), they derived a generalized brightness con-

stancy constraint for the multi-motion case. However, this

constant motion assumption is restrictive, not applicable for

general flow fields with complex motions. Nevertheless,

their method, being one of the first, has inspired a number

of variants and extensions [24][1][25][36]. Some variants

operate in the Fourier domain, e.g. [17][18][11].

The flow estimation problem for two-layer images in this

paper should not be confused with those works concerning

“motion-layer segmentation”, albeit the two do share some

similarity and the boundary between them can sometimes

be fuzzy. For example, Wang and Adelson [38] proposed

to segment the image layers based on a pre-computed op-

tical flow field. Irani et al. [15] used temporal integration

to track occluding or transparent moving objects with para-

metric motion. Black and others [4][16][32][42] proposed

a number of algorithms for multiple parametric motion es-

timation and segmentation. Yang and Li [44] fit a flow filed

with piecewise parametric models. Weiss [39] presented a

nonparametric motion estimation and segmentation method

to handle generic smooth motions, thus this method is more

related to ours. However, the method of Weiss and most

other aforementioned methods primarily focused on image

and motion segmentation, while we decompose the whole

image into two composite brightness layers, and compute

one generic flow field on each layer.

The proposed method involves solving two tasks si-

multaneously: optical flow field estimation, and reflec-

tion/transparent layer separation. For the second task, many

researches have been published previously. For example,

Levin et al. [20][19] proposed methods for separating an

image into two transparent layers using local statistics pri-

ors of natural images. Single image solutions are also inves-

tigated in [22] and [46]. To utilize multiple frames, layer

separation methods have been proposed based on align-

ing the frames with one layer [41][21][14] or multiple lay-

ers [33][13]. Sarel and Irani [26] presented an informa-

tion theory based approach for separating transparent lay-

ers by minimizing the correlation between the layers. Chen

et al. [10] gave a gradient domain approach for moving

layer separation which is also based on information the-

ory. Schechner et al. [27] developed a method for layer

separation using image focus as a cue. By using indepen-

dent component analysis, Farid and Adelson [12] proposed

a layer separation method which works on multiple observa-

tions under different mixing weights. Techniques for image

layer separation were also developed in the field of intrinsic

image/video extraction [35][40][45].

In the context of stereo matching with transparency,

Szeliski and Golland [34] simultaneously recovered dispar-

ities, true colors, and opacity of visible surface elements.

Tsin et al. [37] estimated both depth and colors of the com-

ponent layers. Li et al. [23] proposed a simultaneous video

defogging and stereo matching algorithm.

The recent work of Xue et al. [43] has a very similar for-

mulation compared to ours. However, the goal and motiva-

tion of obstruction-free photography from a video sequence

in [43] are different from ours. The underlying assumptions

on the flow fields, the employed flow solvers and the initial-

ization techniques are dissimilar.

2. Problem Setup

For ease of presentation, in formulating the problem

(Sec. 2 and Sec. 3) and presenting the optimization (Sec. 4),

we will focus on the dynamic foreground case (i.e. double-

layer flow estimation). The static foreground case (i.e.

single-layer flow estimation) is simpler and can be derived

accordingly. Note that, the static foreground case, though

relatively simpler, is also of interest and very challenging.

2.1. Linear Additive Imaging Model

In previous discussion, we simply used I = L1 ⊕ L2 to

denote the layer superposition operation, but did not give its

exact form. To make the idea of this paper more concrete,

we opt for the linear additive model + as a concrete example

for ⊕, i.e., I = L1 + L2.

The linear additive model itself, while simple, has been

used successfully in the past in solving many vision prob-

lems involving transparency and reflection (e.g., in shadow
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removal [46], image matting [34] and reflection separation

[22]). Moreover, by applying logarithm operation, a mul-

tiplicative superposition model can also be converted to an

additive one.

Taking two frames of observations, I and I
′, at two con-

secutive time steps t and t+ 1, we have

I(X) = L1(X) + L2(X), (1)

I
′(X) = L

′
1
(X) + L

′
2
(X), (2)

where X is a matrix indexing all pixel coordinates.

2.2. Double Layer Brightness Constancy

In the presence of transparencies or reflections, it is im-

portant to note that the conventional BCC condition cannot

be applied directly to the observed images. Below, we will

derive a generalized BCC condition which is applicable to

the double-layer case.

The basic assumption that we will base our method on is:

any component layer of the observed image must satisfy the

brightness constancy condition individually. This is a realis-

tic and mild assumption which is applicable to a wide range

of transparency and reflection phenomena encountered in

natural images. Cases that violate this basic assumption are

deemed beyond the scope of this current paper.

Suppose, during two small time steps, layer L1 changed

to L
′
1

according to a motion field of U, and layer L2

changed to L
′
2

according to a different motion field V.

Based on the assumption that the brightness of the objects

in each individual layer is constant, we have

L1(X) = L
′
1
(X+U), (3)

L2(X) = L
′
2
(X+V). (4)

Together with the imaging model in (1) and (2), we call the

above constraints the generalized double-layer BCC condi-

tion for an input double-layer image pair (I, I′).

2.3. The Double Layer Optical Flow Problem

Given the above linear additive imaging model as well

as the generalized BCC conditions, we aim to recover both

L1, L′
1
, L2, L′

2
and U, V.

To make this severely ill-posed problem trackable, we

adopt the energy minimization framework, and base it on

the generalized BCC conditions as well as priors for optical

flows and image layers. The energy function reads as

E = EB + λLEL + λFEF , (5)

where EB corresponds to the double-layer BCC condition,

EL and EF are the regularization terms (or prior terms) for

the latent image layers, and the unknown optical flow fields,

respectively. The λs are trade-off parameters.

In energy (5), we use EB = EB(L1,L
′
1
,L2,L

′
2
,U,V)

to represent the BCC condition in the following way1:

EB =‖L1(X)− L
′
1
(X+U)‖+ ‖L2(X)− L

′
2
(X+V)‖.

(6)

We use ‖·‖ to denote the ℓ1-norm in this paper unless other-

wise specified. We choose to use ℓ1-norm as the cost func-

tion mainly for its robustness [6, 47] and its convenience in

optimization. The two regularization terms EL and EF will

be detailed in the following section.

3. Regularization

Using prior information as regularization is a common

practice for solving ill-posed problems. In this paper, the

task is to separate the input frames into latent layers, and to

recover the associated flow fields.

Priors are generally task-dependent. By enforcing differ-

ent priors to latent layers and to optical flow fields, the algo-

rithm can be adapted to solving different tasks. For exam-

ple, if one knows the two latent layers are images of natural

scenes, then the layers can be assumed to have sparse gradi-

ents (i.e., satisfying the well-known natural image priors).

Moreover, for general optical flow fields, one can assume

they are piecewise constant or piecewise smooth.

3.1. Natural Image Prior: Sparse Gradient

The research in natural image statistics shows that im-

ages of typical real-world scenes obey sparse spatial gra-

dient distributions [35, 19]. The distribution of a natural

image L can often be modeled as a generalized Laplace dis-

tribution (a.k.a., generalized Gaussian distribution), i.e.,

P (L) =
∏

x∈X

exp(−|∂xL(x)|
p − |∂yL(x)|

p), (7)

where the power p is a parameter usually within [0.0, 1.0].
A convenient choice is p = 1, with which the energy is

reduced to the ℓ1-norm of image spatial gradients. For ease

exposition, we will let p = 1 in this paper, though bear in

mind that using other values of p is possible and may be

advantageous in particular applications.

Taking the negative logarithm, the prior in (7) can be

represented in the energy minimization form, i.e.

‖∇L(X)‖ → min, (8)

where ∇ = (∂x, ∂y)
⊤. Therefore, the latent layer regular-

ization term EL = EL(L1,L
′
1
,L2,L

′
2
) can be written as

EL=‖∇L1(X)‖+‖∇L
′
1
(X)‖+‖∇L2(X)‖+‖∇L

′
2
(X)‖.

(9)

1For brevity, hereafter we use a short-hand notation for functions de-

fined on all pixel coordinates X: a function f(X) should be understood as∑
x∈X

f(x), unless otherwise specified.
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3.2. Optical Flow Priors: Spatial Smoothness

Early methods for solving multi-layer optical flow prob-

lem often made restrictive assumption about the unknown

flow fields. For example, [3] proposed a three-frame algo-

rithm for recovering two component motion fields by as-

suming that the motion fields are constant over time, and

[28] was built upon a local constant motion assumption to

derive its basic equation. In this paper, these restrictions are

removed and the proposed method can handle more general

and more complex motion fields.

We use a general assumption on flow field, namely, the

optical flows are generally piecewise constant or piecewise

smooth. To capture this prior, we adopt the total varia-

tion (TV) model [47] or total generalized variation (TGV)

model [5]. Specifically, a flow field U will be regularized

by the following energy:

‖U‖TGVk → min, (10)

where ‖U‖TGVk

.
= TGVk(Ux)+TGVk(Uy), and TGVk( · )

denotes the k-th order TGV measure for horizontal and ver-

tical flow components Ux and Uy .

In general, the k-th order TGV favors solutions that are

piecewise composed of (k−1)-th order polynomials: with

k = 1, TGV1 reduces to the TV model which favors piece-

wise constant fields; with k = 2, TGV2 favors piece-

wise affine fields. We will only consider TV and TGV2

in this paper, and the resultant prior regularization term

EF = EF (U,V) for the flow fields can be written as

EF (U,V) = ‖U‖TGVk + ‖V‖TGVk . (11)

where k = 1 (i.e. TV) or 2.

4. Energy Minimization

4.1. The Overall Objective Function

By stacking all the constraints over both latent layers and

flow fields, we reach an energy minimization problem as

minE(L1,L
′
1
,L2,L

′
2
,U,V) = EB + λLEL + λFEF

=(‖L1(X)−L
′
1
(X+U)‖+ ‖L2(X)−L

′
2
(X+V)‖)

+ λL (‖∇L1‖+‖∇L
′
1
‖+‖∇L2‖+‖∇L

′
2
‖)

+ λF (‖U‖TGVk + ‖V‖TGVk) , (12)

subject to

I = L1 + L2, I
′ = L

′
1
+ L

′
2
, (13)

0 ≤ L2 ≤ min(I, c), 0 ≤ L
′
2
≤ min(I′, c). (14)

where the X’s in the gradient terms of (9) are omitted for

brevity.

Note that, to distinguish background and foreground

layers, we introduce in (14) the element-wise bound con-

straints on the layers. We assume the foreground layer con-

taining transparency or reflection has weaker signal, and use

a small constant scalar c (e.g. c = 0.25 for brightness values

in the range of [0,1]) as its brightness upper bound. This can

be understood as an additional bound prior for layer separa-

tion. Also note that, putting aside (14), there is a global shift

ambiguity for the layer values: adding an arbitrary scalar

s ∈ R to L1,L
′
1

then −s to L2,L
′
2

dose not change the en-

ergy in (12), nor dose it affect (13). This is because all the

terms in (12) depend on value difference rather than abso-

lute value. Nevertheless, both the lower and upper bounds

in (14) help constrain the absolute values.

4.2. Alternated Minimization

To solve the above energy minimization problem, we

first substitute the additive model constraints in (13) as hard

constraints to eliminate L1 and L
′
1

in (12). Consequently,

the energy function is now defined only on latent layers

L2,L
′
2

and optical flows U,V.

Then, examining the energy form in (12), we notice that:

i) the prior terms for optical flow field, i.e. EF , is indepen-

dent of the prior term for latent layers EL; and ii) the BCC

energy term EB is the only term that links the flow estima-

tion with latent layer separation. Based on these observa-

tions, we solve the minimization problem via block coordi-

nate descent in an alternating fashion.

Specifically, starting from a proper initialization, our al-

gorithm alternately solves the following two sub-problems:

• (Layer Separation): Given current flow field esti-

mates {U,V}, solve for image layers {L2,L
′
2
} via the

following minimization:

min
L2,L

′

2

(EB(L2,L
′
2
) + λLEL(L2,L

′
2
)) . (15)

• (Flow Computation): Given current image layers

{L2,L
′
2
}, estimate {U,V} by solving the following

two-layer optical flow problem:

min
U,V

(EB(U,V) + λFEF (U,V)) . (16)

More details are given below.

4.2.1 Update the image layers

Given current optical flow estimates U and V, the latent im-

age layers L2,L
′

2
can be updated by solving the following

optimization problem:

min
L2,L

′

2

‖(I−L2)(X)−(I′−L′
2
)(X+U)‖+‖L2(X)−L

′
2
(X+V)‖

+λL(‖∇(I−L2)‖+‖∇(I′−L
′
2
)‖+‖∇L2‖+‖∇L

′
2
‖)

subject to 0≤L2≤min(I, c), 0≤L
′
2
≤min(I′, c), (17)

This is a convex optimization problem defined on L2 and

L
′
2
, and the cost function can be arranged into

min
l

‖A · l− b‖,

subject to lbi ≤ li ≤ ubi, ∀i (18)
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where A and b encode all the ℓ1 constraints on latent lay-

ers, which are extremely sparse (only a few elements in each

row are non-zero). l is a column vector containing elements

in L2 and L
′
2
. lbi and ubi are constant bounds from (14).

The constraints are linear function of the latent layers L2

and L
′
2
, thus this problem can be solved as a linear pro-

gramming using off-the-self solvers.

Nevertheless, to utilize the sparse structure in the prob-

lem and speed up the implementation, we solve the problem

by using a tailored version of Iteratively Reweighted Least

Squares (IRLS) [9]. With IRLS, one can also adapt the for-

mulation to different priors readily, e.g., replacing ℓ1-norm

with ℓp-norm (0< p< 1). Details of our IRLS variant can

be found in the Supplementary Material.

Use of color images. The above formulations can be eas-

ily extended to color RGB images. With color images, the

double-layer BCC term EB and layer regularization term

EL will be evaluated at R-G-B channels separately. The

flow fields U and V are shared by all three channels.

4.2.2 Update the flow fields U and V

Given current layer estimates L2,L
′
2
, and L1 = I − L2,

L
′
1
= I

′ − L
′
2
, the next step is to update the associated two

flow fields U and V. This is done by solving the following

optimization problem:

min
U,V

‖L1(X)− L
′
1
(X+U)‖+ ‖L2(X)− L

′
2
(X+V)‖

+ λF (‖U‖TGVk + ‖V‖TGVk) . (19)

The computations for these two flow fields are in fact

separable. This can be easily seen from the above optimiza-

tion, as the cost function can be expressed as the sum of two

terms, each of which can be solved in isolation, i.e., given

{L1,L
′
1
,L2,L

′
2
}, solve

min
U

‖L1(X)− L
′
1
(X+U)‖+ λF ‖U‖TGVk , (20)

min
V

‖L2(X)− L
′
2
(X+V)‖+ λF ‖V‖TGVk . (21)

To solve the above optical flow problems, we use quadratic

relaxation and introduce an auxiliary flow field to decouple

the BCC term and regularization term, similar to [47, 30].

To solve the resulting TV-L2 (a.k.a. the ROF model) and

TGV2-L2 problem, we apply the primal-dual method of [8]

which is GPU-friendly. Details of our algorithm and imple-

mentation can be found in the Supplementary Material.

5. Experimental Results

In this section, we validate the proposed model and

framework, and evaluate the performance of our method.

We report the experimental results on both synthetic data
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Figure 1: Convergence of the proposed method. Top: opti-

cal flow estimation error (EPE) w.r.t. iterations. Bottom: en-

ergy and layer estimation errors w.r.t. iterations. The layer

error is evaluated as 1−NCC(GT L2, estimated L2).

and real images (e.g. Middlebury [2] and Sintel [7] flow

datasets, and the reflection dataset in [21]).

Initialization. Being an alternated method, the proposed

algorithm requires an initialization to start the alternation.

One can start from either an initial optical flow estimation

or from an initial layer separation. The latter one is used in

our experiments, and the initialization details will be given

later in the experiments.

Parameters. In the following experiments, the weights

of the priors, i.e. λL, λF , are roughly tuned according to

the results. Both TV and TGV2 flow regularizers worked

well, consistently improving the accuracy upon initializa-

tion. Due to space limitation, in the following we report the

results using TV (i.e. k = 1). The results using TGV2 (i.e.

k = 2) can be found in the Supplementary Material.

5.1. Static Foreground Cases

We start from the simpler case where only background

layer L1 is dynamically changing by an unknown motion

field U, while the foreground layer is static (i.e. L2 ≡ L
′
2

and V ≡ 0). The task is to estimate flow field U and com-

ponent layers L1,L
′
1
,L2. Again, we would like to empha-

size that, even though we call it the “simpler case”, to jointly

estimate an accurate flow field and recover latent layers re-

mains a challenging task. To the best of our knowledge,
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(a) Input I (b) Output L1 (c) Output L′

1
(d) Output L2 (e) Output U (epe 0.29) (f) Naive U (epe 1.01)

(g) Input I′ (h) GT L1 (i) GT L
′

1
(j) GT L2 (k) GT U (l) Oracle U (epe 0.16)

Figure 2: Performance evaluation of the proposed method on a single flow case, where a rain image is superimposed on the

Dimetrodon image pair. The estimated flow (e) is significantly better than the initialization (f), a naive optical flow estimate

without layer separation. The error evolution curve is shown in Fig. 1. Oracle flow (l) is computed with clean background

images (i.e. with ground-truth layer separations). (Best viewed on screen)

(a) Input I (b) Output L1 (c) Output L2 (d) Output U (epe 0.30) (e) Naive U (epe 0.61)

(f) Input I (g) Output L1 (h) Output L2 (i) Output U (epe 0.21) (j) Naive U (epe 0.33)

Figure 3: Typical results of our method on single-flow cases, where the rain drop image is superimposed on images from the

Sintel dataset. For clarity, we only show here the first frame I and its layer separation result. (Best viewed on screen)

Table 1: Mean flow EPE for the two Sintel image sequences

superimposed with the static rain image. Oracle flows are

computed with clean background images.

Sequence Naive flow Our flow Oracle

“alley1” 0.49 0.35 0.22

“sleeping1” 0.80 0.33 0.12

“sleeping2” 0.26 0.21 0.07

there was no previous method that recovers both a complex

dense flow field under transparency/reflection, and separate

the two constituting layers.

In the following tests, a rather conservative strategy is

used to initialize the proposed method: we initiate the static

foreground image L2 to be all zeros. Consequently, in the

beginning of the optimization we compute an initial optical

flow field naively based on the two input images.

Seeing through rain is a practical situation where mea-

sures should be taken to avoid the rain ruining vision sys-

tems. In the first test, we first synthesized a scene by super-

imposing a static rain image over the pair of Dimetrodon in

the Middlebury dataset. Gray images were used. As illus-

trated in Fig. 1, within about 25 iterations, the optical flow

estimation error has been decreased from about 1.0 pixels

to about 0.3 pixels. This demonstrates the advantage of our

formulation for robust optical flow estimation. The qualita-

tive results are demonstrated in Fig. 2.

Additionally, we overlay the rain image with two color

image sequences from the Sintel dataset. We evenly sam-

pled 10 images from the “alley 1”, “sleeping 1” , and “sleep-

ing 2” sequences respectively, and Table 1 shows that the

proposed method has clearly reduced the mean EPE of ini-

tial flows. Two typical results are shown in Fig. 3.

To further test the performance of our method, we syn-

thesized another pair by superimposing the Lena image with

the Grove image in the Middlebury dataset. The results are

demonstrated in Fig. 4. Again, we obtained a much better

optical flow compared to the initial naive optical flow es-

timate. As for the layer separation results, the portrait of

Lena can be hardly seen in the restored grove images.

In Fig. 5 we show the image gradient statistics of the

three foreground images used in the above experiments.

The experimental results have shown that the proposed

method works well on these images with the sparse gradient

prior. Whenever available, other strong statistical priors can

be incorporated into the optimization framework to further

improve the performance.
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(a) Input I (b) Output L1 (c) Output L′

1
(d) Output L2 (e) Output U (epe 0.88) (f) Naive U (epe 1.45)

(g) Input I′ (h) GT L1 (i) GT L
′

1
(j) GT L2 (k) GT U (l) Oracle U (epe 0.67)

Figure 4: Performance evaluation of the proposed method on a single flow case, where the Lena image is superimposed on

the Grove image pair. The estimated flow (e) is significantly better than the initialization (f), a naive optical flow estimate

without layer separation. Oracle flow (l) is computed with ground-truth L2. (Best viewed on screen)
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Figure 5: Gradient statistics of three used images.

5.2. Dynamic Foreground Cases

In this section, we test the proposed method in the dy-

namic foreground cases, where the task is that given two

frames of input images I and I
′, recover four component

layers L1,L
′
1
,L2,L

′
2
, and two dense motion fields U, V.

In the problem of reflection removal, both the background

scene and the reflection can be dynamic, which can give rise

to such a situation.

We use two pairs of dynamic reflection scenes from [21]

to test the proposed method on the double-layer optical flow

problem. In previous single-flow experiments, we initialize

the method with foreground layers being all zero. How-

ever, this simple strategy did not work for the double-flow

case. No reasonably good flow field could be obtained with

this strategy for the background or reflection layer, espe-

cially for the reflection layer as its signal is weak. Indeed,

the fact that the background layer is much more prominent

has been took advantage of by some layer separation meth-

ods [21][14] which align the input images with respect to

the background layer. To obtain proper initialization, we

first ran method of [21] for initial layer separations2, then

computed initial optical flows on them.

The initial and final results are presented in Fig. 6. Vi-

2Method of [21] takes multiple images as input, with one of them be-

ing the reference on which the reflection is to be removed. We apply this

method on two images, and run it twice with each image as reference.

Table 2: Mean image warping errors (in gray levels) from

the double-flow estimation results.

Image pair Initial results Our final results

#1 6.27 2.55

#2 3.86 1.49

sually inspected, the final optical flow fields are smoother

and more consistent (see e.g. the results on the back wall

in the first example, and results on the floor in the second

example). As no ground truth optical flow is available, we

use image warping error to quantitatively evaluate the esti-

mated flows. The warping error for a pixel x in L1 or L2

is ‖L1(x+U(x))−L
′
1
(x)‖2 or ‖L2(x+V(x))−L

′
2
(x)‖2,

respectively. We compute the mean warping errors for all

pixels on L1 and L2. As shown in Table 2, our method has

significantly reduced the warping error upon the initializa-

tions. Figure 6 shows the improvements of the reflection

removal results upon the initial estimates.

Discussion. The dynamic foreground case with double-

layer flow estimation is generally much harder than the

single-flow case. This is not only because the former has

more unknown variables to be solved for, but also due to

the difficulties in obtaining a good initialization. Neverthe-

less, our experiments show that the proposed method con-

sistently improved the reasonable initializations given to it,

for both the single-flow and double-flow cases.

Limitation. The proposed method is better suited for sce-

narios where the correlation between latent layers and their

flow fields are relatively small. It will fail if both the two

layers are textureless (as infinite numbers of possible mo-

tions exist satisfying the BCC constraints), or they undergo

a same motion (thus the original BCC holds and only a sin-

gle motion field can be extracted).
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Input I Initial L1 Final L1 Initial L2 Final L2 Initial U Final U

Input I′ Initial L′

1
Final L′

1
Initial L′

2
Final L′

2
Initial V Final V

Close-up of initial L1 Close-up of final L1 Close-up of initial L′

1
Close-up of final L′

1

Input I Initial L1 Final L1 Initial L2 Final L2 Initial U Final U

Input I′ Initial L′

1
Final L′

1
Initial L′

2
Final L′

2
Initial V Final V

Close-up of initial L1 Close-up of final L1 Close-up of initial L′

1
Close-up of final L′

1

Figure 6: Experimental results on real reflection images. The initial layer separations are estimated by running method of

[21] on the two input images. Visually inspected, the final optical flow fields are smoother and more consistent (see e.g. the

results on the back wall in the first example, and results on the floor in the second example). The corresponding warping

errors are presented in Table 2. The close-up images in the third rows show the improvements of the reflection removal results

upon the initial estimates. (Best viewed on screen)

6. Conclusions and Future Work

This paper has defined the problem of robust optical flow

estimation in the presence of possibly moving transparent

or reflective layers. To our knowledge, the problem goes

beyond the scope of conventional optical flow methods and

was not properly investigated before.

We have presented a generalized double-layer brightness

constancy condition as well as an optimization framework

to solve this problem. The double-layer brightness con-

stancy condition couples the flow fields and the brightness

layers. Encouraging experimental results of optical flow es-

timation and layer separation on challenging data have been

obtained, even though we are using simple priors for them.

We hope that this paper can inspire future works to further

address this challenging ill-posed problem.

Our current framework is based on a generative model,

which is applied uniformly to both the foreground and back-

ground layers. In future, we plan to leverage discriminative

models to exploit the differences between the two layers

for better layer separation. We also would like to explore

some other optical flow priors. One possible strategy is to

apply piecewise parametric motion model [16, 44], which

provides stronger constraints than general smoothness reg-

ularizers such as a TV, and is recently demonstrated to have

advanced performances [44]. Some other issues such as oc-

clusion handling could also be considered.
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