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Abstract

We develop a deep learning algorithm for contour de-

tection with a fully convolutional encoder-decoder network.

Different from previous low-level edge detection, our al-

gorithm focuses on detecting higher-level object contours.

Our network is trained end-to-end on PASCAL VOC with

refined ground truth from inaccurate polygon annotations,

yielding much higher precision in object contour detection

than previous methods. We find that the learned model gen-

eralizes well to unseen object classes from the same super-

categories on MS COCO and can match state-of-the-art

edge detection on BSDS500 with fine-tuning. By combining

with the multiscale combinatorial grouping algorithm, our

method can generate high-quality segmented object propos-

als, which significantly advance the state-of-the-art on PAS-

CAL VOC (improving average recall from 0.62 to 0.67) with

a relatively small amount of candidates (∼1660 per image).

1. Introduction

Object contour detection is fundamental for numerous

vision tasks. For example, it can be used for image segmen-

tation [44, 3], for object detection [16, 19], and for occlu-

sion and depth reasoning [22, 2]. Given its axiomatic im-

portance, however, we find that object contour detection is

relatively under-explored in the literature [49]. At the same

time, many works have been devoted to edge detection that

responds to both foreground objects and background bound-

aries (Figure 1 (b)). In this paper, we address “object-only”

contour detection that is expected to suppress background

boundaries (Figure 1(c)).

Edge detection has a long history. Early research fo-

cused on designing simple filters to detect pixels with high-

est gradients in their local neighborhood, e.g. Sobel [17]

and Canny [9]. The main problem with filter based methods

(a) Image (b) [13] Ours

Figure 1. Object contour detection. Given input images (a), our

model can effectively learn to detect contours of foreground ob-

jects (c) in contrast to traditional edge detection (b).

is that they only look at the color or brightness differences

between adjacent pixels but cannot tell the texture differ-

ences in a larger receptive field. With the advance of texture

descriptors [37], Martin et al. [39] combined color, bright-

ness and texture gradients in their probabilistic boundary

detector. Arbelaez et al. [3] further improved upon this

by computing local cues from multiscale and spectral clus-

tering, known as gPb, which yields state-of-the-art accu-

racy. However, the globalization step of gPb significantly

increases the computational load. Lim and Dollar [32, 13]

analyzed the clustering structure of local contour maps and

developed efficient supervised learning algorithms for fast

edge detection [13]. These efforts lift edge detection to a

higher abstract level, but still fall below human perception

due to their lack of object-level knowledge.

Recently deep convolutional networks [31] have demon-

strated remarkable ability of learning high-level represen-

tations for object recognition [19, 11]. These learned fea-

tures have been adopted to detect natural image edges [27,

6, 46, 51] and yield a new state-of-the-art performance [51].

All these methods require training on ground truth contour

annotations. However, since it is very challenging to col-

lect high-quality contour annotations, the available datasets
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for training contour detectors are actually very limited and

in small scale. For example, the standard benchmarks,

Berkeley segmentation (BSDS500) [38] and NYU depth v2

(NYUDv2) [47] datasets only include 200 and 381 training

images, respectively. Therefore, the representation power

of deep convolutional networks has not been entirely har-

nessed for contour detection. In this paper, we scale up

the training set of deep learning based contour detection to

more than 10k images on PASCAL VOC [15]. To address

the quality issue of ground truth contour annotations, we

develop a method based on dense CRF [28] to refine the

object segmentation masks from polygons.

Given image-contour pairs, we formulate object contour

detection as an image labeling problem. Inspired by the

success of fully convolutional networks [36] and deconvolu-

tional networks [40] on semantic segmentation, we develop

a fully convolutional encoder-decoder network (CEDN).

Being fully convolutional, our CEDN network can operate

on arbitrary image size and the encoder-decoder network

emphasizes its asymmetric structure that differs from de-

convolutional network [40]. We initialize our encoder with

VGG-16 net [48] (up to the “fc6” layer) and to achieve

dense prediction of image size our decoder is constructed

by alternating unpooling and convolution layers where un-

pooling layers re-use the switches from max-pooling layers

of encoder to upscale the feature maps. During training,

we fix the encoder parameters (VGG-16) and only optimize

decoder parameters. This allows the encoder to maintain its

generalization ability so that the learned decoder network

can be easily combined with other tasks, such as bounding

box regression or semantic segmentation.

We evaluate the trained network on unseen object cat-

egories from BSDS500 and MS COCO datasets [33], and

find the network generalizes well to objects in similar

“super-categories” to those in the training set, e.g. it gener-

alizes to objects like “bear” in the “animal” super-category

since “dog” and “cat” are in the training set. We also show

the trained network can be easily adapted to detect natu-

ral image edges through a few iterations of fine-tuning and

yields comparable results with the state-of-the-art [51].

An immediate application of contour detection is gener-

ating object proposals. Previous literature has investigated

various methods of generating bounding box or segmented

object proposals by scoring edge features [53, 12] and com-

binatorial grouping [50, 10, 4] and etc. In this paper, we use

a multiscale combinatorial grouping (MCG) algorithm [4]

to generate segmented object proposals from our detected

contour maps. As a result, our method significantly im-

proves the quality of segmented object proposals on the

PASCAL VOC 2012 validation set, achieving 0.67 aver-

age recall from overlap 0.5 to 1.0 with only about 1660

candidates per image, compared to the 0.62 average re-

call by original MCG algorithm with near 5140 candidates

per image. We also evaluate object proposals on the MS

COCO dataset with 80 object classes and analyze the av-

erage recalls from different object classes and their super-

categories. Our key contributions are summarized below:

• We develop a simple yet effective fully convolutional

encoder-decoder network for object contour detection

and the trained model generalizes well to unseen ob-

ject classes from the same super-categories, yielding

significantly higher precision than previous methods.

• We show we can fine tune our network for edge detec-

tion and match the state-of-the-art in terms of precision

and recall.

• We develop a method to generate accurate object con-

tours from imperfect polygon based segmentation an-

notations, which makes training easier.

• Our method significantly improves the state-of-the-art

results on segmented object proposals by integrating

with combinatorial grouping [4].

2. Related Work

Semantic contour detection. Hariharan et al. [20] study

the problem of detecting semantic boundaries between

different object classes without considering the occlusion

boundaries of two adjacent object instances from the same

class, e.g. a mom hugging her daughter. Although their

method can be extended to detect object instance contours,

it might encounter challenges of generalizing to unseen ob-

ject classes due to the use of object detector output. Berta-

sius et al. [7] improve semantic contour detection with con-

volutional features and shows its application to semantic

segmentation. Our object contour detector can be poten-

tially used to improve a more challenging and practical

problem of instance-level semantic segmentation [21].

Occlusion boundary detection. Hoiem et al. [22] study

the problem of recovering occlusion boundaries from a sin-

gle image. It is a very challenging ill-posed problem due

to the partial observability while projecting 3D scenes onto

2D image planes. They formulate a CRF model to inte-

grate various cues: color, position, edges, surface orienta-

tion and depth estimates. We believe our instance-level ob-

ject contours will provide another strong cue for addressing

this problem that is worth investigating in the future.

Object proposal generation. There is a large body of

works on generating bounding box or segmented object pro-

posals. Hosang et al. [23] and Pont-Tuset et al. [42] present

nice overviews and analyses about the state-of-the-art algo-

rithms. Bounding box proposal generation [50, 53, 12, 1] is
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Figure 2. Architecture of the proposed fully convolutional encoder-decoder network.

motivated by efficient object detection. One of their draw-

backs is that bounding boxes usually cannot provide accu-

rate object localization. More related to our work is gener-

ating segmented object proposals [4, 10, 14, 24, 26, 29, 43].

At the core of segmented object proposal algorithms is con-

tour detection and superpixel segmentation. We experiment

with a state-of-the-art method of multiscale combinatorial

grouping [4] to generate proposals and believe our object

contour detector can be directly plugged into most of these

algorithms. In addition, Pinheiro et al. [41] propose a net-

work that learns to generate proposals directly from the test

image without the grouping stage.

3. Object Contour Detection

In this section, we introduce the proposed fully convo-

lutional encoder-decoder network for object contour detec-

tion.

3.1. Fully Convolutional Encoder­Decoder Network

We formulate contour detection as a binary image la-

beling problem where “1” and “0” indicates “contour” and

“non-contour”, respectively. Image labeling is a task that re-

quires both high-level knowledge and low-level cues. Given

the success of deep convolutional networks [31] for learn-

ing rich feature hierarchies, image labeling has been greatly

advanced, especially on the task of semantic segmenta-

tion [11, 36, 34, 52, 40, 35]. Among those end-to-end

methods, fully convolutional networks [36] scale well up

to the image size but cannot produce very accurate label-

ing boundaries; unpooling layers help deconvolutional net-

works [40] to generate better label localization but their

symmetric structure introduces a heavy decoder network

which is difficult to train with limited samples.

We borrow the ideas of full convolution and unpooling

from above two works and develop a fully convolutional

encoder-decoder network for object contour detection. The

network architecture is demonstrated in Figure 2. We use

the layers up to “fc6” from VGG-16 net [48] as our encoder.

Since we convert the “fc6” to be convolutional, so we name

it “conv6” in our decoder. Due to the asymmetric nature of

image labeling problems (image input and mask output), we

break the symmetric structure of deconvolutional networks

and introduce a light-weighted decoder. The first layer of

decoder “deconv6” is designed for dimension reduction that

projects 4096-d “conv6” to 512-d with 1×1 kernel so that

we can re-use the pooling switches from “conv5” to upscale

the feature maps by twice in the following “deconv5” layer.

The number of channels of every decoder layer is properly

designed to allow unpooling from its corresponding max-

pooling layer. All the decoder convolution layers except

“deconv6” use 5×5 kernels. All the decoder convolution

layers except the one next to the output label are followed

by relu activation function. We also add a dropout layer

after each relu layer in the decoder. A complete decoder

network setup is listed in Table 1 and the loss function is

simply the pixel-wise logistic loss.

Table 1. Decoder network setup.

name deconv6 deconv5 deconv4

setup conv unpool-conv unpool-conv

kernel 1×1×512 5×5×512 5×5×256
acti relu relu relu

name deconv3 deconv2 deconv1 pred

setup unpool-conv unpool-conv unpool-conv conv

kernel 5×5×128 5×5×64 5×5×32 5×5×1
activation relu relu relu sigmoid

3.2. Contour Ground Truth Refinement

Drawing detailed and accurate contours of objects is a

challenging task for human beings. This is why many large

scale segmentation datasets [45, 15, 33] provide contour an-

notations with polygons as they are less expensive to col-

lect at scale. However, because of unpredictable behaviors

of human annotators and limitations of polygon representa-

tion, the annotated contours usually do not align well with

the true image boundaries and thus cannot be directly used

as ground truth for training. Among all, the PASCAL VOC

dataset is a widely-accepted benchmark with high-quality

annotation for object segmentation. VOC 2012 release in-

cludes 11540 images from 20 classes covering a majority of

common objects from categories such as “person”, “vehi-

cle”, “animal” and “household”, where 1464 and 1449 im-

ages are annotated with object instance contours for train-

ing and validation. Hariharan et al. [20] further contribute
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(a) Image (b) Annotation

(c) GraphCut refinement (d) DenseCRF refinement

Figure 3. Contour refinement. The polygon based annotations (a)

cannot be directly used for training due to its inaccurate boundaries

(thin white area reflects unlabeled pixels between objects). We

align them to image boundaries by re-labeling the uncertain areas

with dense CRF (d), compared to Graph Cut (c).

more than 10000 high-quality annotations to the remaining

images. Together there are 10582 images for training and

1449 images for validation (the exact 2012 validation set).

We choose this dataset for training our object contour detec-

tor with the proposed fully convolutional encoder-decoder

network.

The original PASCAL VOC annotations leave a thin un-

labeled (or uncertain) area between occluded objects (Fig-

ure 3(b)). To find the high-fidelity contour ground truth for

training, we need to align the annotated contours with the

true image boundaries. We consider contour alignment as

a multi-class labeling problem and introduce a dense CRF

model [28] where every instance (or background) is as-

signed with one unique label. The dense CRF optimization

then fills the uncertain area with neighboring instance labels

so that we obtain refined contours at the labeling boundaries

(Figure 3(d)). We also experimented with the Graph Cut

method [8] but find it usually produces jaggy contours due

to its shortcutting bias (Figure 3(c)).

3.3. Training

We train the network using Caffe [25]. For each training

image, we randomly crop four 224×224×3 patches and to-

gether with their mirrored ones compose a 224×224×3×8
minibatch. The ground truth contour mask is processed in

the same way. We initialize the encoder with pre-trained

VGG-16 net and the decoder with random values. Dur-

ing training, we fix the encoder parameters and only op-

timize the decoder parameters. This allows our model to

be easily integrated with bounding box regression [18] and

other decoders such as semantic segmentation [40] for joint

training. As the “contour” and “non-contour” pixels are ex-

tremely imbalanced in each minibatch, the penalty for being

“contour” is set to be 10 times the penalty for being “non-

contour”. We use the Adam method [5] to optimize the net-

work parameters and find it is more efficient than standard

stochastic gradient descent. We set the learning rate to 10−4

and train the network with 30 epochs with all the training

images being processed each epoch. Note that we fix the

training patch to 224×224 for memory efficiency and the

learned parameters can be used on images of arbitrary size

because of its fully convolutional nature. Our CEDN net-

work can be trained easily and efficiently in a single stage

without batch-normalization due to the much smaller “de-

conv6” layer, which only contains 4096×1×1×512 param-

eters in comparison with 4096×7×7×512 parameters of

“deconv-fc6” layer of DeconvNet [40].

4. Results

In this section, we evaluate our method on contour detec-

tion and proposal generation using three datasets: PASCAL

VOC 2012, BSDS500 and MS COCO. We will explain the

details of generating object proposals using our method af-

ter the contour detection evaluation. More evaluation results

are in the supplementary materials.

4.1. Contour Detection

Given trained models, all the test images are fed-forward

through our CEDN network in their original sizes to pro-

duce contour detection maps. The detection accuracies

are evaluated by precision-recall curves and F-measure (F).

Note that a standard non-maximum suppression is used to

clean up the predicted contour maps (thinning the contours)

before evaluation.

PASCAL val2012. We present quantitative results on

the PASCAL VOC 2012 validation set, shortly “PAS-

CAL val2012”, with comparisons to three baselines, struc-

tured edge detection (SE) [13], singlescale combinatorial

grouping (SCG) and multiscale combinatorial grouping

(MCG) [4]. We also compare with the latest holistically-

nested edge detection (HED) algorithm [51]. Note that

the HED model was originally trained on the BSDS

dataset [38]. We refer the results of applying the pretrained

HED model to PASCAL val2012 as “HED-pretrain”. To

have a fair comparison, we further re-trained the HED

model on PASCAL VOC using the same training data as

our model with 30000 iterations. The contour prediction

precision-recall curves from our CEDN model, baselines,

HED-pretrain and HED are illustrated in Figure 5. It can

be seen that the F-score of HED is improved (from 0.42 to

0.44) by training on PASCAL VOC but still significantly

lower than CEDN (0.57). Note that we use the originally

annotated contours instead of our refined ones as ground

truth for unbiased evaluation. Accordingly we consider the
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(a) (b) (c) (d) (e)

Figure 4. Example results on PASCAL VOC val2012. In each row from left to right we present (a) input image, (b) ground truth annotation,

(c) edge detection [13], (d) our object contour detection and (e) our best object proposals.
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Figure 5. PR curve for contour detection on PASCAL val2012.

refined contours as the upper bound since our network is

learned from them. Its precision-recall value is referred as

“GT-DenseCRF” with a green spot in Figure 5. Compared

to the baselines, our method (CEDN) yields very high pre-

cisions, which means it generates visually cleaner contour

maps with background clutters well suppressed (the third

column in Figure 4). Note that the occlusion boundaries be-

tween two instances from the same class are also well recov-

ered by our method (the second example in Figure 4). We

also note that there is still a big performance gap between

our current method (F=0.57) and the upper bound (F=0.74),

which requires further research for improvement.

BSDS500 with fine-tuning. BSDS500 [38] is a standard

benchmark for contour detection. Different from our object-

centric goal, this dataset is designed for evaluating natural

edge detection that includes not only object contours but

also object interior boundaries and background boundaries

(examples in Figure 6(b)). It includes 500 natural images

with carefully annotated boundaries collected from multi-

ple users. The dataset is divided into three parts: 200 for

training, 100 for validation and the rest 200 for test. We

first examine how well our CEDN model trained on PAS-

CAL VOC can generalize to unseen object categories in

this dataset. Interestingly, as shown in the Figure 6(c),

most of wild animal contours, e.g. elephants and fish are

accurately detected and meanwhile the background bound-

aries, e.g. building and mountains are clearly suppressed.

We further fine-tune our CEDN model on the 200 training

images from BSDS500 with a small learning rate (10−5)

for 100 epochs. As a result, the boundaries suppressed

by pretrained CEDN model (“CEDN-pretrain”) re-surface

from the scenes. Quantitatively, we evaluate both the pre-

trained and fine-tuned models on the test set in compar-

isons with previous methods. Figure 7 shows that 1) the
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(a) (b) (c) (d)

Figure 6. Example results on BSDS500 test set. In each row from

left to right we present (a) input image, (b) ground truth contour,

(c) contour detection with pretrained CEDN and (d) contour de-

tection with fine-tuned CEDN.
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Figure 7. PR curve for contour detection on the BSDS500 set set.

pretrained CEDN model yields a high precision but a low

recall due to its object-selective nature and 2) the fine-tuned

CEDN model achieves comparable performance (F=0.79)

with the state-of-the-art method (HED) [51]. Note that our

model is not deliberately designed for natural edge detec-

tion on BSDS500, and we believe that the techniques used

in HED [51] such as multiscale fusion, carefully designed

upsampling layers and data augmentation could further im-

prove the performance of our model.

4.2. Object Proposal Generation

Object proposals are important mid-level representations

in computer vision. Most of existing methods use bound-

ary detection as cues for proposal generation. Thus the im-
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Figure 8. Average best overlap (ABO) and average recall (AR) on

PASCAL val2012.

provements on contour detection will immediately boost the

performance of object proposals. We choose the MCG algo-

rithm to generate segmented object proposals from our de-

tected contours. The MCG algorithm is based on low-level

edge detectors, e.g. gPb and SE. It first computes ultramet-

ric contour maps from multiscale edge maps and then aligns

them into a single hierarchical segmentation. To obtain ob-

ject proposals, a multi-objective optimization is designed to

reduce the redundancy of combinatorial grouping of adja-

cent regions. The reduced set of grouping candidates are

then ranked as the final segmented object proposals. If built

on singlescale edge maps, the algorithm is referred as sin-

glescale combinatorial grouping (SCG). Based on the pro-

cedure above, we simply replace the low-level edge detec-

tor with our CEDN contour detector to generate proposals.

The multiscale and singlescale versions are referred to as

“CEDN-MCG” and “CEDN-SCG”, respectively.

We evaluate the quality of object proposals by two mea-

sures: Average Recall (AR) and Average Best Overlap

(ABO). Both measures are based on the overlap (Jaccard

index or Intersection-over-Union) between a proposal and

a ground truth mask. AR is measured by 1) counting the

percentage of objects with their best Jaccard above a cer-

tain threshold T and then 2) averaging them within a range

of thresholds T ∈ [0.5, 1.0]. It is established in [23, 42]

to benchmark the quality of bounding box and segmented

object proposals. ABO is measured by calculating the best

proposal’s Jaccard for every ground truth object and then

2) averaging them over all the objects. We compare with

state-of-the-art algorithms: MCG, SCG, Category Indepen-
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Figure 9. Per-class average recall on PASCAL val2012.

dent object proposals (CI) [14], Constraint Parametric Min

Cuts (CPMC) [10], Global and Local Search (GLS) [43],

Geodesic Object Proposals (GOP) [29], Learning to Pro-

pose Objects (LPO) [30], Recycling Inference in Graph

Cuts (RIGOR) [24], Selective Search (SeSe) [50] and Shape

Sharing (ShSh) [26]. Note that these abbreviated names are

inherited from [4].

PASCAL val2012. We feed the HED edge maps into

MCG for generating proposals and compare with others.

We refer the results from the BSDS-trained HED model

as HEDB-MCG and the ones from the PASCAL-trained

HED model as HED-MCG. Figure 8 shows that CEDN-

MCG achieves 0.67 AR and 0.83 ABO with ∼1660 pro-

posals per image, which improves the original MCG by 5%

in AR and by 3% in ABO with a third as many proposals. At

1000 proposals, CEDN-MCG outperforms the second best

HEDB-MCG by 8% in AR and by 2.5% in ABO, respec-

tively. It takes 0.1 second to compute the CEDN contour

map for a PASCAL image on a high-end GPU and 18 sec-

onds to generate proposals with MCG on a standard CPU.

We notice that the CEDN-SCG achieves similar accuracies

with CEDN-MCG, but it only takes less than 3 seconds to

run SCG. We also plot the per-class ARs in Figure 9 and

find that CEDN-MCG and CEDN-SCG improves MCG and

SCG for all of the 20 classes. Notably, the bicycle class has

the worst AR and we guess it is likely because of its incom-

plete annotations. Some examples of object proposals are

demonstrated in Figure 4(d).

MS COCO val2014. We present results in the MS COCO

2014 validation set, shortly “COCO val2014” that in-

cludes 40504 images annotated by polygons from 80 object

classes. This dataset is more challenging due to its large

variations of object categories, contexts and scales. Com-

pared to PASCAL VOC, there are 60 unseen object classes

for our CEDN contour detector. Note that we did not train

CEDN on MS COCO. We report the AR and ABO results

in Figure 10. It turns out that the CEDN-MCG achieves a
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Figure 10. Average best overlap (ABO) and average recall (AR)

on the MS COCO 2014 validation set.

competitive AR to MCG with a slightly lower recall from

fewer proposals, but a weaker ABO than LPO, MCG and

SeSe. Taking a closer look at the results, we find that our

CEDN-MCG algorithm can still perform well on known ob-

jects (first and third examples in Figure 12) but less effec-

tively on certain unknown object classes, such as food (sec-

ond example in Figure 12). It is likely because those novel

classes, although seen in our training set (PASCAL VOC),

are actually annotated as background. For example, there is

a “dining table” class but no “food” class in the PASCAL

VOC dataset. Quantitatively, we present per-class ARs in

Figure 11 and have following observations: 1) CEDN ob-

tains good results on those classes that share common super-

categories with PASCAL classes, such as “vehicle”, “ani-

mal” and “furniture”; 2) CEDN fails to detect the objects

labeled as “background” in PASCAL VOC, such as “food”

and “applicance”; 3) CEDN works well on unseen classes

that are not prevalent in PASCAL VOC, such as “sports”.

These observations urge training on COCO, but we also ob-

serve that the polygon annotations in MS COCO are less

reliable than the ones in PASCAL VOC (third example in

Figure 12(b)). We will need more sophisticated methods

for refining the COCO annotations.

5. Conclusion

We have developed an object-centric contour detection

method using a simple yet efficient fully convolutional

encoder-decoder network. Concerned with the imperfect

contour annotations from polygons, we have developed a
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Figure 11. Average recall per class on the MS COCO 2014 validation set.

(a) (b) (c) (d) (e)

Figure 12. Example results on MS COCO val2014. In each row from left to right we present (a) input image, (b) ground truth annotation,

(c) edge detection [13], (d) our object contour detection and (e) our best object proposals.

refinement method based on dense CRF so that the pro-

posed network has been trained in a fully-supervised man-

ner. As a result, the trained model yielded high precision

on PASCAL VOC and BSDS500, and achieved compara-

ble performance with the state-of-the-art on BSDS500 after

fine-tuning. We have combined the proposed contour de-

tector with MCG algorithm for generating segmented ob-

ject proposals, which significantly advances the state-of-

the-art on PASCAL VOC. We also found that the proposed

model generalized well to unseen object classes from the

known super-categories and demonstrated competitive per-

formance on MS COCO without re-training the network.
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[28] P. Krähenbühl and V. Koltun. Efficient inference in fully con-

nected CRFs with gaussian edge potentials. In NIPS, 2011.
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