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Abstract

We study the problem of predicting how to recognise vi-

sual objects in novel domains with neither labelled nor un-

labelled training data. Domain adaptation is now an es-

tablished research area due to its value in ameliorating the

issue of domain shift between train and test data. However,

it is conventionally assumed that domains are discrete enti-

ties, and that at least unlabelled data is provided in testing

domains. In this paper, we consider the case where domains

are parametrised by a vector of continuous values (e.g.,

time, lighting or view angle). We aim to use such domain

metadata to predict novel domains for recognition. This al-

lows a recognition model to be pre-calibrated for a new do-

main in advance (e.g., future time or view angle) without

waiting for data collection and re-training. We achieve this

by posing the problem as one of multivariate regression on

the Grassmannian, where we regress a domain’s subspace

(point on the Grassmannian) against an independent vector

of domain parameters. We derive two novel methodologies

to achieve this challenging task: a direct kernel regression

from RM → G, and an indirect method with better extrap-

olation properties. We evaluate our methods on two cross-

domain visual recognition benchmarks, where they perform

close to the upper bound of full data domain adaptation.

This demonstrates that data is not necessary for domain

adaptation if a domain can be parametrically described.

1. Introduction

The issue of domain shift arises when the testing data on

which we are interested to apply pattern recognition meth-

ods differs systematically from the training data available to

train them – violating the underlying assumption of super-

vised learning. It is becoming increasingly clear that this

issue is pervasive in practice and leads to serious drops in

performance [35, 16]. This has motivated extensive work in

the area of domain adaptation, which aims to ameliorate the

negative impact of this shift by transforming the model or

the data to bridge the train-test gap [32, 10, 28]. Although

diverse, traditional domain adaptation (DA) approaches can

be grouped according to assumptions on supervision. Su-

pervised approaches assume the target (test) domain has la-

bels but the data volume is very small [32], while in un-

supervised approaches the target domain is completely un-

labelled [10]. Nevertheless, both of these categories share

common assumptions of: (i) domains are discrete entities,

e.g., corresponding to dataset [35], or capture device [32],

and (ii) at least unlabelled data in the target domain.

Interest has recently grown in relaxing this strict assump-

tion, and expanding the scope of domain adaptation to in-

clude a wider variety of practically valuable settings includ-

ing: continuously varying rather than discrete domains [14];

domains parametrised by multiple factors rather than a sin-

gle index [30, 38]; and predicting domains in advance of

seeing any samples [18]. Continuous DA considers the sit-

uation where the domain evolves continuously, for example

with time. In this case evolving the model online allows a

recognition model to remain effective, e.g., at any time of

day [14]. Multi-factor DA considers the situation where the

domain is parametrised by a vector of multiple factors, e.g.,

[pose, illumination] [30] and [capture device, location] [38].

Here, the structured nature of the domain’s parameters can

be used to improve performance compared to treating them

as discrete entities. Finally, predictive DA considers pre-

dicting a recognition model for a domain in advance of see-

ing any data. This provides the powerful capability of pre-

creating models suited for immediate use in novel domains,

for example future data in a time-varying stream [18].

In this paper we provide a general framework for predic-

tive domain adaptation – adapting a recognition model to

a new setting for which some metadata (e.g., time or view

angle) but no data is available in advance. This capability

is important, because we may not be able to wait for ex-

tensive data collection, and re-training of models as would

be required to apply conventional (un)supervised DA. Our

framework takes as input a recognition model, and set of

previously observed domains, each described by a param-

eter or parameter vector. It then builds a predictor for do-

mains, that can be used to generate a recognition model for

any novel domain purely based on its parameter(s). Our

contribution is related to that of [38, 18], but it is signifi-
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cantly more general because: (i) we can use as input a vec-

tor of any parameters, rather than a single time parameter

only [18], (ii) we can use continuously varying rather than

discrete parameters, which is important for domains defined

by time or position [38], (iii) for continuous domains such

as time, we can predict domains at an arbitrary point in the

future rather than one time-step ahead as [18].

To provide this capability we frame the problem as one

of multivariate regression on the Grassmannian. Points on

the Grassmannian correspond to subspaces, and differing

subspaces are a key cause of the domain shift problem –

this is the key insight of subspace-based DA techniques that

solve domain shift by aligning subspaces [10, 9, 5]. By re-

gressing points on the Grassmannian against the indepen-

dent parameters of each domain (such as time, view angle),

we can predict the appropriate subspace for any novel do-

main in advance of seeing any data. Once the subspace is

predicted, any existing subspace-based DA technique can

be used to adapt a pre-trained model for application to the

new domain. However, such regression on the Grassman-

nian is non-trivial to achieve. While methods have been pro-

posed [3], they do not scale [17], or extend to multiple inde-

pendent parameters [15]. We propose two different scalable

approaches to multivariate regression on the Grassmannian:

a direct kernel regression approach from RM → G, and an

indirect approach with better extrapolation ability.

We compare our domain prediction approaches on the

surveillance over time benchmark from [14], and on a car

recognition task in the style of [14, 18] – but using both view

and year as domain parameters. We demonstrate that we can

extrapolate to predict domains multiple time-steps ahead in

the future; and when applying our predictive domain adap-

tation framework to generate models for novel domains,

performance approaches the upper bound of fully-observed

DA, while not requiring any data or online re-training.

2. Related Work

2.1. Domain Adaptation

Domain Adaptation (DA) methods reduce the divergence

between a source and target domain so that a model trained

on the source performs well on the target. The area is now

too big to review fully, but [28] provides a good survey.

Unsupervised Domain Adaptation: We focus here on

unsupervised domain adaptation (UDA), as its lack of data

annotation requirement makes it more generally applicable,

and it is more closely connected to our contributions. In

the absence of labels, UDA aims to exploit the marginal

distributions P (XT ) and P (XS) to align domains. There

are two main approaches here: data and subspace centric.

Data-centric Approaches: These seek a transforma-

tion φ(·) that projects two domains’ data into a space that

reduces the discrepancy between the transformed target

φ(XT ) and source data φ(XS). A typical pipeline is to

perform PCA [24] or sparse coding [23] on the union of the

domains with an additional objective that minimises maxi-

mum mean discrepancy (MMD) of the new representations

a reproducing kernel Hilbert space H, i.e., ‖E[φ(XT )] −
E[φ(XS)]‖

2
H. Domain generalisation (DG) approaches [25]

find transformations that minimise distance between an ar-

bitrary number of domains, with the aim of generalising to

new domains. Thus DG is appropriate if no domain param-

eters are available, while our predictive DA is expected to

outperform DG if metadata is available.

Subspace based Approaches: These approaches make

use of the two domain’s subspaces rather than manipulating

the data directly. Here, subspace refers to a D-by-K matrix

of the first K eigenvectors of the original D-dimensional

data. We denote PS and PT as the source and target domain

subspaces learned separately by PCA. Subspace Alignment

(SA) [5] learns a linear map M for PS that minimise the

Bregman matrix divergence ||PSM − PT ||
2
F . [10] samples

several intermediate subspaces P1, P2, . . . , PN from PS to

PT . That is achieved by thinking of PS and PT as points on

the Grassmann manifold G(K,D) and finding a geodesic

(shortest path on manifold) between them. Points (sub-

spaces) are sampled from the geodesic and concatenated

to form a richer linear operator [PS , P1, P2, . . . , PN , PT ]
that projects two domains into a common space, where the

source classifier generalises better to the target domain. A

weakness of [10] is that the number of intermediate points

is a hard-to-determine hyper-parameter. An elegant solution

to this, [9] samples all the intermediate points. This pro-

duces infinitely long feature vectors, but their dot-product

is defined, and thus any kernelised classifier can be used.

New Settings: All the previously discussed methods ap-

ply in the classic DA setting of a discrete source and target

domain. The setting where domains are continuously evolv-

ing was recently considered by [14] using a sequential PCA

and subspace-based DA method. This is important for many

practical problems, however the proposed method has limi-

tations: It does not extend to a vector of domain parameters,

and most importantly it can not be used to predict future

unseen domains. Predicting future domains was recently

considered by [18]. The proposed data-centric approach re-

weights the past training samples via making a prediction

of their time-varying probability distribution. However, this

again does not extend to more than one domain parameter,

and predictions can only be made one time-step into the fu-

ture. Both [14, 18] are constrained to fixed-size time-steps.

Some previous studies considered vector-parametrised do-

mains [30, 38]. [30] is limited in application to multi-view

recognition type problems where the same instance (e.g.,

face) is seen in each domain, thus it does not extend to gen-

eral recognition tasks. [38] is restricted to discrete domain

parameters as it uses 1-of-K coding that applies to categor-
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Table 1. Contrasting our direct (D) and indirect (ID) methods ver-

sus existing predictive/non-predictive domain adaptation studies.

Capability D ID [14] [18] [38]

Predictive ✓ ✓ ✗ ✓ ✓

Multi-factor ✓ ✓ ✗ ✗ ✓

Continuous Parameters ✓ ✓ ✓ ✓ ✗

Extrapolation ✗ ✓ ✗ ✓ ✗

Extrapolate arbitrarily far ✗ ✓ ✗ ✗ ✗

ical parameters only. In this paper, we generalise all these

settings by developing a model to predict a new subspace

P ∈ G given its corresponding parameter z ∈ RM . Since

z is a vector, multiple factors can be used, and extrapola-

tions made arbitrarily far in the future. Tab 1 contrasts our

contribution with prior work.

2.2. ZeroShot Learning

A related problem to predictive domain adaptation is

Zero-Shot Learning (ZSL). In ZSL, a classifier is created for

a novel task, in the absence of any training data for the task,

by using task metadata. This has been extensively studied

in applications such as character [20], object [19, 7], and ac-

tion [22] recognition. Instead of building a map (classifier)

directly from the image to label space, ZSL studies [20, 27]

learn the classifier in terms of an intermediate semantic rep-

resentation such as attributes [19, 22] or word-vectors [7].

Recognisers can then be built on-the-fly for novel objects

given only their semantic representations. For example by

assigning the attributes [‘black’, ‘white’, ‘stripes’] to the

new object ‘zebra’. We aim to achieve a similar on-the-fly

capability for DA: adapting a trained model to any target do-

main given only its (often freely available) metadata. Such

metadata is termed herein as domain parameter.

2.3. Manifoldvalued Data Regression

Several studies address regression in the setting that the

independent variable is a point in Euclidean space and the

dependent variable is a point in non-flat space such as Rie-

mann or Grassmann manifolds. These can be grouped into:

(i) Parametric approaches like [15, 6, 31, 13, 8] typically

try to find a formulation for the geodesic and then pro-

vide a numerical solution for its estimation and (ii) Non-

parametric approaches such as [3, 4] adapt kernel regression

to the manifold case by observing that they are all essen-

tially about searching for a point for which the sum of its

(reweighed) distances with all training points is minimised.

For most parametric solutions, the independent variable

is assumed to be scalar. This is because: (i) In applica-

tions where these methods are popular, e.g., medical imag-

ing, one usually wants to find a pattern against a single fac-

tor (e.g., age) and (ii) it is technically challenging to extend

these to the multivariate case [17], because the prediction no

longer corresponds to a single geodesic curve, which makes

the gradient derivation problematic.

The non-parametric method [3] provides the solution for

a very special manifold 3D rotation group SO(3), so it is

not applicable for our problem. However, it inspires us to

extend kernel regression, since the kernel function does not

make assumptions on whether the input is a scalar or vector.

This then forms the core of our direct prediction method.

3. Methodology

In order to build predictive model for domains (sub-

spaces), we need to build a mapping from an M -

dimensional vector of independent variables to points on

the Grassmannian (represented by a matrix with orthonor-

mal columns): RM → G. The output constraint means it

can not be treated as conventional Euclidean regression. In

the following we present direct kernel regression (Sec 3.1)

and an indirect solution (Sec 3.2) to achieve this.

3.1. Direct Kernel Regression on the Grassmannian

Kernel Regresison Review We first review kernel regres-

sion. Assume we are given a set of (data, label) pairs,

{(z1, P1), (z2, P2), . . . , (zN , PN )} (1)

where z ∈ RM and P ∈ R1; and a kernel function

k(z1, z2) that measures the similarity between z1 and z2.

The Nadaraya-Watson [26] kernel regression prediction for

P given a test point z is

P =

∑N

i=1 k(z, zi)Pi∑N

i=1 k(z, zi)
(2)

From Euclidean to Grassmannian When P ∈ M where

M is a non-flat manifold and P is no longer a scalar, Eq. 2

can be invalid. So this does not provide a solution to our

problem. For example, suppose M is a Grassmann mani-

fold G(K,D), so its numerical representation1 is now ma-

trices P ∈ RD×K with constraints PTP = IK . Eq. 2

could be applied, but this is meaningless because adding

two points on the Grassmannian does not necessarily give

another point on the Grassmannian.

Inspired by [3], we propose to think of kernel regression

as the solution of the following optimisation problem:

argmin
P∈R1

N∑

i=1

wi(P − Pi)
2 (3)

where wi =
k(z,zi)∑
N

i=1
k(z,zi)

. More generally, we have

1Strictly speaking, it is inaccurate to say a matrix with orthonormal

columns is a point on the Grassmann manifold, though many papers use

this terminology [10, 9]. The correct manifold to mention is Stiefel man-

ifold, but this does not affect the correctness of these subspace-based DA

methods because such a matrix is one of the non-unique numerical repre-

sentations of a point on the Grassmann manifold.
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Figure 1. Illustration of the proposed methods. Direct kernel regression: Domain parameters to subspace: RM
→ G. Indirect regression:

Domain parameters to distances of a reference set to subspace: RM
→ R

N , RN
→ G.

argmin
P

N∑

i=1

wi d
2(P, Pi) (4)

where d2(·, ·) is a metric (distance function). P is the

Fréchet mean if the minimizer is unique (or Karcher mean

when it is a local minimum). The Fréchet mean is defined

in general metric space, thus it provides a way to work with

manifold-valued data as long as we can find a well defined

distance function for points on the manifold.

Grassmann Manifold Background We first review

some concepts about the Grassmannian, before solving

Eq 4. Many distances on the Grassmannian are defined

based on the concept of ‘principal angle’, which can be cal-

culated by SVD. E.g., for two points P1 and P2 on G(K,D),

PT
1 P2 = USV T (5)

where S = diag(cos(θ1), cos(θ2), . . . , cos(θK)). The an-

gle θk = cos−1(Sk,k) is the kth principal angle. Multi-

ple distance functions exist on the Grassmannian (Table 2).

[12, 39] provide a variety of metrics and their derivations.

Table 2. Distances d2(P1, P2) on G(K,D) in terms of principal

angles and orthonormal bases

Principal angles Orthonormal bases

Binet–Cauchy 1−
∏K

k=1 cos
2 θk 1− (det(PT

1 P2))
2

Martin log
∏K

k=1(cos
2 θk)

−1 − log((det(PT

1 P2))
2)

Manifold-valued Data Regression with Vector Input

For our manifold-valued data regression task, Binet–

Cauchy (BC) and Martin distances are suitable because they

are amenable to deriving gradients w.r.t. the target matrix,

and their sensitivity properties are more favourable than al-

ternatives [12]. However, when the core part of BC dis-

tance, i.e., the determinant, is so small that underflow oc-

curs, Martin distance is a better choice as it calculates the

log-determinant. Substituting Martin distance into Eq. 4,

we obtain the following objective function to optimise:

argmin
P∈RD×K

−

N∑

i=1

wi log((det(P
TPi))

2) (6)

which is subject to constraint PTP = IK . The gradient

with respect to P is:

∇P = −2
N∑

i=1

wiPi(P
TPi)

−1. (7)

Vanilla gradient descent is not applicable because of the or-

thogonality constraints. It is a non-trivial optimisation prob-

lem as the constraints lead to non-convexity. A simple solu-

tion is to do gradient descent and re-orthogonalise the ma-

trix after each step, but it is numerically expensive. Some

studies have addressed this issue, e.g., [34, 29, 33]. We ap-

ply the solution from [36]: an efficient update scheme based

on the Cayley transformation that preserves the constraints.

Given a feasible point P and the gradient G = ∇P , a

skew-symmetric matrix A is defined as,

A := GPT − PGT (8)

The new trial point is determined by the Crank-Nicolson-

like scheme,

PUpdate(η) = P −
η

2
A(P +APUpdate(η)) (9)

where η is the step size that can be found by curvilinear

search, and PUpdate(η) is given by the closed form,
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PUpdate(η) = QP where Q = (I+
η

2
A)−1(I−

η

2
A) (10)

Iterating Eq. 10 is guaranteed to converge to a stationary

point as a solution for Eq. 6. Thus we can predict an unseen

domain’s subspace P given its domain parameter z.

3.2. Indirect Regression on the Grassmannian

A limitation of the previous direct approach is that, sim-

ilarly to Euclidean kernel regression, it is fundamentally in-

terpolation-based. This makes it unable to extrapolate to

out-of-sample (e.g., far future) subspaces. To address this,

we propose an indirect approach for RM → G regression.

Indirect Prediction with a Single Reference: Instead

of regressing domain parameter z ∈ RM to subspace P ∈
G, consider setting the dependent variable of our regression

problem to be the distance l ∈ R1 between P and a fixed

reference point (subspace). Then the problem is reduced to

standard multivariate regression RM → R1.

A natural question arises: how to choose the refer-

ence point on the Grassmannian? A simple answer is

to use the Karcher mean of all observed points (sub-

spaces). Assume that the Karcher mean is P̄ , then the

N training instances/labels for the regression model are

{(z1, d
2(P1, P̄ )), (z2, d

2(P2, P̄ )), . . . , (zN , d2(PN , P̄ ))}.

For a given testing instance z, the regression model predicts

the distance between its associated subspace and the

reference subspace: l̂. We could then estimate the target

subspace by solving the following optimisation problem.

argmin
P∈RD×K

(l̂ − d2(P, P̄ ))2 (11)

However, Eq. 11 is underdetermined, so does not guarantee

a meaningful result.

Indirect Prediction with Multiple References: To find a

unique optimum, rather than use a fixed reference point, we

instead use all observed subspaces P as references. This

results in a multi-output regression problem RM → RN .

For a given test instance z, it will yield a N -dimensional

vector l̂ = [l̂1, l̂2, . . . , l̂N ], where l̂i is the estimated distance

between the target subspace and the ith observed subspace.

Thus rather than the direct regression z → P we now have

z → l̂ → P . The objective for the second step is then

argmin
P∈RD×K

N∑

i=1

(l̂i − d2(P, Pi))
2 (12)

Eq. 12 can be solved by the constrained gradient descent

from Sec. 3.1, where the gradient with respect to P is:

∇P =
N∑

i=1

4(l̂i + log((det(PTPi))
2))Pi(P

TPi)
−1 (13)

3.3. Predictive Domain Adaptation

Using the methodology developed in Sec. 3.1-3.2, our

goal of predictive domain adaptation becomes possible. We

assume that we are given: (i) a classifier trained on any

source domain, and (ii) N additional unlabelled domains:

{(X1, z1), (X2, z2), . . . , (XN , zN )}, (14)

where Xi is ith domain data, from which we can learn a

subspace Pi by PCA; and zi is ith domain’s parameters.

For an unseen domain with parameters z∗, we

can predict its subspace P∗ based on the proposed

method (Eq. 6 or Eq. 12) and the training data

{(z1, P1), (z2, P2), . . . , (zN , PN )}. Once P∗ is obtained,

any subspace-based DA method (e.g., [5, 10, 9]) can be ap-

plied to align the unseen (target) domain P∗ to any labelled

source domain PS where a classifier was trained. An illus-

tration of our approaches is given in Fig. 1.

4. Experiments

We evaluate our contributions on two benchmark tasks:

(i) surveillance scene classification, which is well suited to

testing extrapolation and (ii) vehicle type classification over

time and viewing angle, suited for testing multi-factor based

prediction. For the direct method, RBF kernel is used for

measuring the domain parameter similarity, and its band-

width is set to be the median of pairwise distances of the

domain parameters [11]. For the indirect method, the re-

gression from domain parameter to reference set distances

is done by kernel ridge regression with same RBF kernel

above, and ℓ2 regularisation weight chosen by cross valida-

tion. Given our methods’ predicted subspaces, we need to

plug in a subspace-based DA method to complete the adap-

tation. We choose to use Geodesic Flow Kernel (GFK)

[9] because of its better performance and fewer hyper-

parameters to tune. GFK takes in source and target domain

subspaces and produces a positive semi-definite matrix G,

with which we can calculate the training and testing kernels

by xT
i Gxj . The precomputed kernel is then fed into LIB-

SVM [1] for classifier training, for which the cost parameter

is tuned by 10-fold cross validation.

4.1. Surveillance Scene Classification

Dataset: We use the benchmark dataset studied by [14].

It contains video frames (320x240 RGB, 20 per hour) of a

traffic intersection captured by a fixed camera over an ex-

tended period of time. Over time, factors such as illumina-

tion change cause a challenging domain shift problem.

Setup: We use the 512-dimensional GIST feature pro-

vided by [14]. For direct comparison, we also adopt their

task: recognising if one or more vehicles appear in the

frame. For this binary classification, model performance

is measured by Precision = true positive

true positive+false positive
.
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Figure 2. Surveillance experiment results

The source domain where the classifier is trained is the

same as [14]: it contains 50 consecutive images (2.5 hours).

Then we test on the immediately following 40 hours (800

images). The testing frames are split into eight domains

equally in time, so each target domain has 100 images. For

simplicity, we denote the source domain as τ0, and the ith

target domain as τi. Six methods are evaluated:

No-DA: A lower bound. The classifier trained on τ0 is di-

rectly applied to every τi.

Rolling UDA Baseline: Approximately adapt to τi by using

the subspace of its previous domain τi−1 as input to GFK.

Note that this is only reasonable in such a continuous online

application, not for arbitrary subspace prediction.

Direct: Our direct method (Sec 3.1) predicts τi’s subspace

P̂i given the observed subspaces from {τ0, τ1, · · · , τi−1}.

Indirect: As above, but using the proposed indirect method

(Sec 3.2) to predict the subspace of τi.

EDD [18]: Predictive DA by modelling the data’s time-

varying distribution. The paper [18] assumed all domains

are labelled because it essentially re-weights the classifica-

tion loss on the level of individual domain. So we provide

labels of all domains, giving it a significant advantage

CMA [14]: Rather than predicting the subspace from its

timestamp, CMA assumes we have observed data in τi from

which the true subspace Pi is learned, and then fed into

GFK for domain adaptation. By using the true rather than

predicted subspace, this provides an upper bound.

Instead of learning the subspace of τi from scratch every

time, we use sequential PCA [21] that processes the data in

τi and its previous subspace Pi−1. The motivation is two-

fold: (i) it encourages subspace smoothing that fits the na-

ture of this task well and (ii) by doing so CMA reproduces

the result of [14]. The number of eigenvectors used for Pi

is 10 (same as [14]). The domain parameter is intuitive:

integers starting from 0 (i.e., the index of τ ).

Domain Prediction Results: Fig. 2(a) summarises the

performance of the methods as time proceeds. The results

are cumulative so, for example, the 5th result is the preci-

sion evaluated on the first 5 target domains. From the raw

results on the left, we can see that: (i) Without DA, perfor-

mance drops significantly as time passes and domain shift

increases and (ii) All alternatives are better than the baseline

of No-DA. For easier comparison, Fig. 2(a) also presents

the results as % improvement over the simple baseline of

Rolling UDA. From here we can see that: (i) In each case

our methods improve on Rolling UDA, indicating success-

ful prediction of future subspaces. (ii) The performance of

EDD is considerably worse than predicted/actual subspace-

based DA methods, though it surpassed the baseline of No-

DA. The reason might be that its adaptation strategy (re-

weight the loss of each domain) is more crude than GFK.

(iii) Our direct method is comparable to the CMA upper

bound in early predictions. (iv) Our indirect method sur-

passes the direct method, and occasionally the CMA upper

bound, particularly as the domain grows more distant (τ7
and τ8) from the initial source τ0.

Extrapolating Far Future Domains: The previous ex-

periment predicted domains one time-step ahead. This

strong assumption enabled Rolling UDA as competitive

baseline because with only one time-step change, the

domain shift was always small. To test the ability to

extrapolate and predict domains arbitrarily far ahead in

time, the next experiment fixed a set of observed domains

{τ0, τ1, · · · , τ4}. We then tested on the following four do-

mains without seeing any data (given their parameters only).

The proposed methods are compared with two baselines:

No-DA (classifier trained on τ0 is directly used) and UDA-

τ4 (GFK using the last available domain τ4’s subspace in

place of subspaces of unseen test domains). The results in

Fig. 2(b) show that when required to extrapolate further into

the future, our indirect method is clearly superior to our di-

rect method and other baselines.

Summary: Overall, both our proposed methods for pre-

dicting domains from metadata (in this case future time-

stamp), perform comparably or better than CMA-based DA,

which requires the much stronger assumption that data in

these domains was available for training models. Moreover,

we are not restricted to small domain-shifts: our indirect
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Figure 3. Demonstration of domain shift: Accuracies of every

source-target combination without DA. Each off-diagonal cell cor-

responds to one of 870 experiments. Rows indicate domain for

classifier training, and columns correspond to the target domain.

method can effectively predict domains that are distant from

available training domains. These capabilities enable use

cases where we can calibrate (domain adapt) a model and

deploy it for immediate use in a new context without wait-

ing to collect data and retrain the model.

4.2. Vehicle Type Classification

Dataset: Comprehensive Cars [37] is a recent large-scale

dataset of vehicle photos. We use the first subset (Part-I in

[37]) in our second experiment. This subset contains 30,955

images of entire cars, in which there are 431 unique models.

The manufacturing year ranges from 2004 to 2015, and each

image is associated with one of five view points.

Setup: We use the state-of-the-art CNN model VGG-full

[2] as feature extractor. The image is preprocessed by crop-

ping the given bounding box, rescaling to 224×224 and

subtracting the mean. Then it is fed into the CNN, where

values in the penultimate layer (4096 neurons) is used as

the feature vector for further experiments. We define a

multi-class recognition task: to determine if the vehicle is

an MPV, SUV, sedan, or hatchback. For the domain param-

eters, we use a two-dimensional vector [Year, Viewpoint].

We encode years 2009-2014 as integers 1-6, and viewpoint

(Front, Front-Side, Side, Rear-Side, Rear) as integers 1-5.

We exclude years 2004-08 and 2015 because there are too

few examples, producing extremely small domains.

The two domain factors are orthogonal, so they produce

6× 5 = 30 domains in total. The number of images per do-

main ranges from 347 to 1410, with 24151 in total – about

80% of the dataset. To evaluate Predictive-DA, we use a

hold-one-domain-out strategy. In each round, we observe

all domains’ data (not necessarily labels) except the held-

out target domain. For this target domain, we only know

the domain parameters, but use the proposed methods to es-

timate its subspace. Subsequently we perform a standard

UDA analysis: from one of the 30 − 1 = 29 source do-

mains, we train a classifier with or without the help of the

predicted subspace and domain adaptation (via GFK).

For parsimony, we exhaustively consider each possible

source and target domain, resulting in a total of 30 × 29 =
870 experiments. In each round of the experiment, we

report Accuracy of four methods: (i) No-DA No domain

adaptation lower bound, (ii) Direct subspace prediction (iii)

Indirect subspace prediction and (iv) GT-DA Upper bound

of DA with ground-truth subspace. No-DA versus GT-DA is

the typical comparison made by studies of unsupervised do-

main adaptation. Meanwhile our Direct and Indirect meth-

ods address the new predictive domain adaptation setting,

and will perform somewhere between the lower and upper

bounds of No-DA and GT-DA respectively.

Domain Shift Analysis: We first verify the existence of

the domain shift problem. Fig. 3 shows the performance of

all 870 experiments without domain adaptation. We can see

that performance is better closer to the diagonal. This is be-

cause the domains are ordered by view and by year. We can

also find five ‘block’ patterns along the diagonal, that cor-

respond to the five different viewpoints: The performance

is better if the target domain’s viewpoint is the same as the

training domain viewpoint. Zooming in on one view block,

e.g., ([2009-2014, Side]), we see that performance drops as

the gap between source and target year grows (Fig. 3, inset).

These visualisations verify the existence of two independent

sources of domain shift, and thus support the value of our

multi-variate regression contribution.

Table 3. Vehicle Classification Results. Accuracy average over all

870 source-target domain combinations.

No-DA Direct Indirect GT-DA

54.06± 12.09 58.12± 9.69 58.21± 9.56 58.23± 9.68

Predictive DA Analysis: We next investigate whether the

proposed methods can predict the target subspace in order

to alleviate the domain-shift problem visualised in Fig. 3.

Table 3 reports the mean and standard deviation of the ac-

curacies calculated from 870 experiments. From this we

can observe that: (i) The DA methods surpass the No-DA

baseline and (ii) Our Direct and Indirect methods match the

upper bound of fully observed DA in performance and sta-

bility. It strongly suggests that our proposed methods can

synthesise useful subspaces for use with UDA methods.

Further Analysis: To analyse the previous results in

more detail, we plot the accuracy broken down over target

or source domain (Fig. 4(a)). Since the number of domains

is large, we rescale the accuracies as:

acc =
acc. − acc. of No-DA

|acc. of DA-with-true-subspace − acc. of No-DA|

To interpret the results, divide the rescaled figures into three

intervals: [1,+∞] means the proposed method outperforms

DA with ground-truth subspace; [0, 1] means the proposed

method makes positive contribution, but less than DA with

ground-truth subspace; [−∞, 0] means negative transfer

happens – using DA is worse than not using it.
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(b) Examples of dependence of accuracy on number of observed domains to train Grassmann regression.

Left: 2010 Front-side→2013 Rear-side Right: 2011 Side→2011 Rear-side

Figure 4. Evaluating multivariate domain prediction on comprehensive cars database

Fig. 4(a,top) shows that for all target domains, the pro-

posed methods surpass the baseline of not using DA, and

sometimes even surpass DA-with-ground-truth-subspace.

Similarly, Fig. 4(a,bottom) shows that most source domains

provide positive transfer on average. However, three source

domains produce ‘hard-to-transfer’ classification models.

Negtive transfer analysis: The reason behind negative

transfer in Fig. 4(a,bottom) could be: (i) Two domains have

fewer examples (438, 621) than average (805), (ii) The third

domain has enough examples (1082), but its label set is im-

balanced by a very low number of MPV cars. However,

note that for these source domains, negative transfer is also

observed when DA-with-ground-truth-subspace is used as

well, so these are examples of downstream UDA failure,

rather than failures of our subspace prediction.

For reference, in 870 experiments, DA (with ground-

truth subspace) improved 711 (81.72%). Of these 711 ex-

periments, Direct improves 687 (of its 700 positive transfer

cases in total) and Indirect improves 678 (of its total 690

positive transfer cases). Thus overall, as long as DA can al-

leviate the domain shift, it is likely that our predictive DA

can as well – but without accessing the domain’s data.

Effect of number of observed domains: The experi-

ments so far have considered a hold-one-out setting, with

all domains except the target being observed. In prac-

tice, we may not have such a such dense collection

of known domains, so we investigate the relation be-

tween number of training domains and performance. We

select two representative examples from the 870 avail-

able source→target pairs: 2010/Front-Side→2013/Rear-

Side and 2011/Side→2011/Rear-Side. Then we sample

an increasing number (1 to 27) of domains (together with

source domain’s subspace) for training our models. We run

each experiment 20 times randomly choosing the sources

each time. Fig. 4(b) illustrates the results. Generally more

observed domains leads to better performance. However

this dependence is weak once a few domains have been ob-

served: The accuracy is close to the upper bound once the

number of observed domains is larger than 15. This reas-

suringly suggests that dense observations of prior domains

is not critical for the efficacy of predictive-DA.

5. Conclusion

We proposed the problem of vector-parametrised predic-

tive domain adaptation and developed two solutions based

on manifold-valued data regression. This allows us to pre-

dict a test-time subspace and thus align a source classifier

to a test-domain in advance of seeing any data. Results

on two benchmarks demonstrate that our approach matches,

and sometimes surpasses the upper bound of using the true

test-time subspace. This could impact a variety of areas

where it would be useful to be able to pre-calibrate a model,

or calibrate it on the fly based on sensor metadata.

There are numerous areas for future work. We studied

vector domain parameters, but kernel regression could ap-

ply to any domain parameter where kernels exist (e.g., trees,

strings). While the proposed method uses a set of avail-

able source domains’ data to learn the subspace regressor, it

can only exploit a single source domain’s labels. A useful

extension would be to exploit multiple source domains’ la-

bels. It is also interesting is to see if the predicted subspace

can act as a regulariser that still helps when target data are

available but limited. We assume (in common with most

other DA work) that the domain parameter is observed and

accurate. Relaxing this assumption to deal with missing or

noisy parameters is also an interesting direction. Finally, al-

though our application was predictive-DA, our methods for

regression on the Grassmannian are general contributions

that could be used in other areas such as medical imaging.
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