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Abstract

In this paper, we propose a recurrent framework for

joint unsupervised learning of deep representations and

image clusters. In our framework, successive operations

in a clustering algorithm are expressed as steps in a re-

current process, stacked on top of representations output

by a Convolutional Neural Network (CNN). During train-

ing, image clusters and representations are updated jointly:

image clustering is conducted in the forward pass, while

representation learning in the backward pass. Our key

idea behind this framework is that good representations are

beneficial to image clustering and clustering results pro-

vide supervisory signals to representation learning. By in-

tegrating two processes into a single model with a uni-

fied weighted triplet loss function and optimizing it end-

to-end, we can obtain not only more powerful represen-

tations, but also more precise image clusters. Extensive

experiments show that our method outperforms the state-

of-the-art on image clustering across a variety of image

datasets. Moreover, the learned representations gener-

alize well when transferred to other tasks. The source

code can be downloaded from https://github.com/

jwyang/joint-unsupervised-learning.

1. Introduction

We are witnessing an explosion in visual content. Signif-

icant recent advances in machine learning and computer vi-

sion, especially via deep neural networks, have relied on su-

pervised learning and availability of copious annotated data.

However, manually labelling data is a time-consuming, la-

borious, and often expensive process. In order to make bet-

ter use of available unlabeled images, clustering and/or un-

supervised learning is a promising direction.

In this work, we aim to address image clustering and rep-

resentation learning on unlabeled images in a unified frame-

work. It is a natural idea to leverage cluster ids of images as

supervisory signals to learn representations and in turn the

representations would be beneficial to image clustering. At

a high-level view, given a collection of ns unlabeled images

(a) Initial stage (b) Middle stage (c) Final stage

Figure 1: Clustering outputs for MNIST [32] test set at dif-

ferent stages of the proposed method. We conduct PCA on

the image representations and then choose the first three di-

mensions for visualization. Different colors correspond to

different clusters. Samples are grouped together gradually

and more discriminative representations are obtained.

I = {I1, ..., Ins
}, the global objective function for learning

image representations and clusters can be written as:

argmin
y,θ

L(y, θ|I) (1)

whereL(·) is a loss function, y denotes the cluster ids for all
images, and θ denotes the parameters for representations. If
we hold one in {y,θ} to be fixed, the optimization can be
decomposed into two alternating steps:

argmin
y

L(y|I,θ) (2a)

argmin
θ

L(θ|I,y) (2b)

Intuitively, (2a) can be cast as a conventional clustering

problem based on fixed representations, while (2b) is a stan-

dard supervised representation learning process.

In this paper, we propose an approach that alternates be-

tween the two steps – updating the cluster ids given the cur-

rent representation parameters and updating the representa-

tion parameters given the current clustering result. Specifi-

cally, we cluster images using agglomerative clustering[16]

and represent images via activations of a Convolutional

Neural Network (CNN).

The reason to choose agglomerative clustering is three-

fold: 1) it begins with an over-clustering, which is more

reliable in the beginning when a good representation has

not yet been learned. Intuitively, clustering with represen-

tations from a CNN initialized with random weights are not
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reliable, but nearest neighbors and over-clusterings are of-

ten acceptable; 2) These over-clusterings can be merged as

better representations are learned; 3) Agglomerative clus-

tering is a recurrent process and can naturally be interpreted

in a recurrent framework.

Our final algorithm is farily intuitive. We start with an in-

tial over-clustering, update CNN parameters (2b) using im-

age cluster labels as supervisory signals, then merge clusters

(2a) and iterate until we reach a stopping criterion. An out-

come of the proposed framework is illustrated in Fig. 1. Ini-

tially, there are 1,762 clusters for MNIST test set (10k sam-

ples), and the representations (image intensities) are not that

discriminative. After several iterations, we obtain 17 clus-

ters and more discriminative representations. Finally, we

obtain 10 clusters which are well-separated by the learned

representations and interestingly correspond primarily to

the groundtruth category labels in the dataset, even though

the representation is learnt in an unsupervised manner. To

summarize, the major contributions of our work are:

1 We propose a simple but effective end-to-end learning

framework to jointly learn deep representations and

image clusters from an unlabeled image set;

2 We formulate the joint learning in a recurrent frame-

work, where merging operations of agglomerative

clustering are expressed as a forward pass, and rep-

resentation learning of CNN as a backward pass;

3 We derive a single loss function to guide agglomera-

tive clustering and deep representation learning, which

makes optimization over the two tasks seamless;

4 Our experimental results show that the proposed

framework outperforms previous methods on image

clustering and learns deep representations that can be

transferred to other tasks and datasets.

2. Related Work

Clustering Clustering algorithms can be broadly catego-

rized into hierarchical and partitional approaches [24]. Ag-

glomerative clustering is a hierarchical clustering algorithm

that begins with many small clusters, and then merges clus-

ters gradually [12, 16, 30]. As for partitional clustering

methods, the most well-known is K-means [36], which min-

imizes the sum of square errors between data points and

their nearest cluster centers. Related ideas form the ba-

sis of a number of methods, such as expectation maxi-

mization (EM) [7, 37], spectral clustering [40, 47, 61], and

non-negative matrix factorization (NMF) based clustering

[1, 8, 60].

Deep Representation Learning Many works use raw im-

age intensity or hand-crafted features [9, 18, 19, 23, 42, 50]

combined with conventional clustering methods. Recently,

representations learned using deep neural networks have

presented significant improvements over hand-designed

features on many computer vision tasks, such as image clas-

sification [29, 44, 46, 49], object detection [13, 14, 20, 43],

etc. However, these approaches rely on supervised learn-

ing with large amounts of labeled data to learn rich rep-

resentations. A number of works have focused on learn-

ing representations from unlabled image data. One class

of approaches cater to reconstruction tasks, such as auto-

encoders [21, 28, 33, 41, 53], deep belief networks (DBN)

[31], etc. Another group of techniques learn discriminative

representations after fabricating supervisory signals for im-

ages, and then finetune them supervisedly for downstream

applications [10, 11, 55]. Unlike our approach, the fabri-

cated supervisory signal in these previous works is not up-

dated during representation learning.

Combination A number of works have explored combin-

ing image clustering with representation learning. In [51],

the authors proposed to learn a non-linear embedding of the

undirected affinity graph using stacked autoencoder, and

then ran K-means in the embedding space to obtain clus-

ters. In [52], a deep semi-NMF model was used to factorize

the input into multiple stacking factors which are initialized

and updated layer by layer. Using the representations on

the top layer, K-means was implemented to get the final re-

sults. Unlike our work, they do not jointly optimize for the

representation learning and clustering.

To connect image clustering and representation learning

more closely, [58] conducted image clustering and code-

book learning iteratively. However, they learned codebook

over SIFT feature [35], and did not learn deep represen-

tations. Instead of using hand-crafted features, Chen [2]

used DBN to learn representations, and then conducted a

nonparametric maximum margin clustering upon the out-

puts of DBN. Afterwards, they fine-tuned the top layer of

DBN based on clustering results. A more recent work on

jointly optimizing two tasks is found in [56], where the au-

thors trained a task-specific deep architecture for cluster-

ing. The deep architecture is composed of sparse coding

modules which can be jointly trained through back prop-

agation from a cluster-oriented loss. However, they used

sparse coding to extract representations for images, while

we use a CNN. Instead of fixing the number of clusters to

be the number of categories and predicted labels based on

softmax outputs, we predict the labels using agglomerative

clustering based on the learned representations. In our ex-

periments we show that our approach outperforms [56].

3. Approach

3.1. Notation

We denote an image set with ns images by I =
{I1, ..., Ins

}. The cluster labels for this image set are

y = {y1, ..., yns
}. θ are the CNN parameters, based on

which we obtain deep representations X = {x1, ...,xns
}

from I . Given the predicted image cluster labels, we or-
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Figure 2: Proposed recurrent framework for unsupervised

learning of deep representations and image clusters.

ganize them into nc clusters C = {C1, ..., Cnc
}, where

Ci = {xk|yk = i, ∀k ∈ 1, ..., ns}. N
Ks

i are the Ks

nearest neighbours of xi, and NKc

Ci
is the set of Kc near-

est neighbour clusters of Ci. For convenience, we sort clus-

ters in NKc

Ci
in descending order of affinity with Ci so that

the nearest neighbour argmaxC∈Ct A(Ci, C) is the first en-

try NKc

Ci
[1]. Here, A is a function to measure the affinity

(or similarity) between two clusters. We add a superscript t
to {θ, X , y, C} to refer to their states at timestep t. We use

Y to denote the sequence {y1, ...,yT } with T timesteps.

3.2. Agglomerative Clustering

As background, we first briefly describe conventional ag-

glomerative clustering [16, 30]. The core idea in agglomer-

ative clustering is to merge two clusters at each step until

some stopping conditions. Mathematically, it tries to find

two clusters Ca and Cb by

{Ca, Cb} = argmax
Ci,Cj∈C,i 6=j

A(Ci, Cj) (3)

There are many methods to compute the affinity between

two clusters [16, 30, 38, 62, 64]. More details can be found

in [24]. We now describe how the affinity is measured byA
in our approach.

3.3. Affinity Measure

First, we build a directed graph G =< V, E >, where V
is the set of vertices corresponding to deep representations

X for I , and E is the set of edges connecting vertices. We

define an affinity matrix W ∈ R
ns×ns corresponding to the

edge set. The weight from vertex xi to xj is defined by

W (i, j) =

{

exp(− ||xi−xj ||
2

2

σ2 ), if xj ∈ N
Ks

i

0, otherwise
(4)

where σ2 = a
nsKs

∑

xi∈X

∑

xj∈NKs
i

||xi − xj ||
2
2. This

way to build up a directed graph can be found in many pre-

vious works such as [62, 64]. Here, a and Ks are two pre-

defined parameters (their values are listed in Table 2). After

constructing a directed graph for samples, we then adopt the

graph degree linkage in [62] to measure the affinity between

cluster Ci and Cj , denoted by A(Ci, Cj).

3.4. A Recurrent Framework

Our key insight is that agglomerative clustering can be

interpreted as a recurrent process in the sense that it merges

clusters over multiple timesteps. Based on this insight, we

propose a recurrent framework to combine the image clus-

tering and representation learning processes.

As shown in Fig. 2, at the timestep t, images I are first

fed into the CNN to get representations Xt and then used in

conjunction with previous hidden state ht−1 to predict cur-

rent hidden state ht, i.e, the image cluster labels at timestep

t. In our context, the output at timestep t is yt = ht. Hence,

at timestep t
X

t = fr(I|θ
t) (5a)

h
t = fm(Xt

,h
t−1) (5b)

y
t = fo(h

t) = h
t

(5c)

where fr is a function to extract deep representations Xt

for input I using the CNN parameterized by θt, and fm is a

merging process for generating ht based on Xt and ht−1.

In a typical Recurrent Neural Network, one would un-

roll all timesteps at each training iteration. In our case, that

would involve performing agglomerative clustering until we

obtain the desired number of clusters, and then update the

CNN parameters by back-propagation.

In this work, we introduce a partial unrolling strategy,

i.e., we split the overall T timesteps into multiple periods,

and unroll one period at a time. The intuitive reason we

unroll partially is that the representation of the CNN at the

beginning is not reliable. We need to update CNN param-

eters to obtain more discriminative representations for the

following merging processes. In each period, we merge a

number of clusters and update CNN parameters for a fixed

number of iterations at the end of the period. An extreme

case would be one timestep per period, but it involves up-

dating the CNN parameters too frequently and is thus time-

consuming. Therefore, the number of timesteps per period

(and thus the number of clusters merged per period) is de-

termined by a parameter in our approach. We elaborate on

this more in Sec. 3.6.

3.5. Objective Function

In our recurrent framework, we accumulate the losses

from all timesteps, which is formulated as

L({y1
, ...,y

T }, {θ1
, ...,θ

T }|I) =
T
∑

t=1

Lt(yt
,θ

t|yt−1
, I) (6)

Here, y0 takes each image as a cluster. At timestep t, we

find two clusters to merge given yt−1. In conventional ag-

glomerative clustering, the two clusters are determined by
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finding the maximal affinity over all pairs of clusters. In

this paper, we introduce a criterion that considers not only

the affinity between two clusters but also the local struc-

ture surrounding the clusters. Assume from yt−1 to yt, we

merged a cluster Cti and its nearest neighbour. Then the loss

at timestep t is a combination of negative affinities, that is,

Lt(yt,θt|yt−1, I) = −A(Cti ,N
Kc

Ct
i

[1])

(7a)

−
λ

(Kc − 1)

Kc
∑

k=2

(

A(Cti ,N
Kc

Ct
i

[1])−A(Cti ,N
Kc

Ct
i

[k])
)

(7b)

where λ weighs (7a) and (7b). Note that yt, yt−1 and θt

are not explicitly presented at the right side, but they de-

termine the loss via the image cluster labels and affinities

among clusters. On the right side of the above equation,

there are two terms: 1) (7a) measures the affinity between

cluster Ci and its nearest neighbour, which follows conven-

tional agglomerative clustering; 2) (7b) measures the differ-

ence between affinity of Ci to its nearest neighbour cluster

and affinities of Ci to its other neighbour clusters. This term

takes the local structure into account. See Sec. 3.5.1 for

detailed explanation.

It is hard to simultaneously derive the optimal

{y1, ...,yT } and {θ1, ...,θT } that minimize the overall loss

in Eq. (6). As aforementioned, we optimize iteratively in a

recurrent process. We divide T timesteps into P partially

unrolled periods. In each period, we fix θ and search op-

timal y in the forward pass, and then in the backward pass

we derive optimal θ given the optimal y. Details will be

explained in the following sections.

3.5.1 Forward Pass

In forward pass of the p-th (p ∈ {1, ..., P}) partially un-

rolled period, we update the cluster labels with θ fixed to

θp, and the overall loss in period p is

Lp(Yp|θp
, I) =

tep
∑

t=tsp

Lt(yt|θp
,y

t−1
, I) (8)

where Yp is the sequence of image labels in period p, and

[tsp, t
e
p] is the corresponding timesteps in period p. For opti-

mization, we follow a greedy search similar to conventional

agglomerative clustering. Starting from the time step tsp, it

finds one cluster and its nearest neighbour to merge so that

Lt is minimized over all possible cluster pairs.

In Fig. 3, we present a toy example to explain the rea-

son why we employ the term (7b). As shown, it is often

the case that the clusters are densely populated in some

regions while sparse in some other regions. In conven-

tional agglomerative clustering, it will choose two clusters

with largest affinity (or smallest loss) at each time no mater

b

d

a

e

c

(a)

b

d

a

e

c

(b)

Figure 3: A toy illustration of (a) conventional agglom-

erative clustering strategy and (b) the proposed one. For

simplification, we use a single circle to represent a clus-

ter/sample. In conventional agglomerative clustering, node

b and its nearest neighbour are chosen to merge because

they are closest to each other; while node e is chosen in our

proposed strategy considering the local structure.

where the clusters are located. In this specific case, it will

choose cluster Cb and its nearest neighbour to merge. In

contrast, as shown in Fig. 3(b), our algorithm by adding (7b)

will find cluster Ce, because it is not only close to it nearest

neighbour, but also relatively far away from its other neigh-

bours, i.e., the local structure is considered around one clus-

ter. Another merit of introducing (7b) is that it will allow us

to write the loss in terms of triplets as explained next.

3.5.2 Backward Pass

In forward pass of the p-th partially unrolled period, we

have merged a number of clusters. Let the sequence of opti-

mal image cluster labels be given by Yp
∗ = {yt

∗}, and clus-

ters merged in forward pass are denoted by {[Ct∗,N
Kc

Ct
∗

[1]]},

t ∈ {tsp, ..., t
e
p}. In the backward pass, we aim to derive the

optimal θ to minimize the losses generated in forward pass.

Because the clustering in current period is conditioned on

the clustering results of all previous periods, we accumulate

the losses of all p periods, i.e.,

L(θ|{Y1

∗, ...,Y
p
∗}, I) =

p
∑

k=1

Lk(θ|Yk
∗, I) (9)

Minimizing (9) w.r.t θ leads to representation learning

on I supervised by {Y1

∗, ...,Y
p
∗} or {y1

∗, ...,y
tep
∗ }. Based

on (7a) and (7b), the loss in Eq. 9 is reformulated to

−
λ

Kc − 1

tep
∑

t=1

Kc
∑

k=2

(

λ
′
A(Ct

∗,N
Kc

Ct
∗

[1])−A(Ct
∗,N

Kc

Ct
∗

[k])
)

(10)

where λ′ = (1 + 1/λ). (10) is a loss defined on clusters

of points, which needs the entire dataset to estimate, mak-

ing it difficult to use batch-based optimization. However,

we show that this loss can be approximated by a sample-

based loss, enabling us to compute unbiased estimators for

the gradients using batch-statistics.
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Algorithm 1 Joint Optimization on y and θ

Input:

I: = collection of image data;

n∗
c : = target number of clusters;

Output:

y∗,θ∗: = final image labels and CNN parameters;

1: t← 0; p← 0
2: Initialize θ and y

3: repeat

4: Update yt to yt+1 by merging two clusters

5: if t = tep then

6: Update θp to θp+1 by training CNN

7: p← (p+ 1)
8: end if

9: t← t+ 1
10: until Cluster number reaches n∗

c

11: y∗ ← yt; θ∗ ← θp

The intuition behind reformulation of the loss is that ag-

glomerative clustering starts with each datapoint as a clus-

ter, and clusters at a higher level in the hierarchy are formed

by merging lower level clusters. Thus, affinities between

clusters can be expressed in terms of affinities between dat-

apoints. We show in the supplement that the loss in (10) can

be approximately reformulated as

L(θ|y
tep
∗ , I) = −

λ

Kc − 1

∑

i,j,k

(γA(xi,xj)−A(xi,xk))

(11)

where γ is a weight whose value depends on λ′ and how

clusters are merged during the forward pass. xi and xj

are from the same cluster, while xk is from the neighbour-

ing clusters, and their cluster labels are merely determined

by the final clustering result y
tep
∗ . To further simplify the

optimization, we instead search xk in at most Kc neigh-

bour samples of xi from other clusters in a training batch.

Hence, the batch-wise optimization can be performed using

conventional stochastic gradient descent method. Note that

such triplet losses have appeared in other works [45, 54].

Because it is associated with a weight, we call (11) the

weighted triplet loss.

3.6. Optimization

Given an image dataset with ns samples, we assume the

number of desired clusters n∗
c is given to us as is standard in

clustering. Then we can build up a recurrent process with

T = ns − n∗
c timesteps, starting by regarding each sample

as a cluster. However, such initialization makes the opti-

mization time-consuming, especially when datasets contain

a large number of samples. To address this problem, we can

first run a fast clustering algorithm to get the initial clus-

ters. Here, we adopt the initialization algorithm proposed

in [63] for fair comparison with their experiment results.

Note that other kind of initializations can also be used, e.g.

K-means. Based on the algorithm in [63], we obtain a num-

ber of clusters which contain a few samples for each (av-

erage is about 4 in our experiments). Given these initial

clusters, our optimization algorithm learns deep represen-

tations and clusters. The algorithm is outlined in Alg. 1.

In each partially unrolled period, we perform forward and

backward passes to update y and θ, respectively. Specif-

ically, in the forward pass, we merge two clusters at each

timestep. In the backward pass, we run about 20 epochs to

update θ, and the affinity matrix W is also updated based

on the new representation. The duration of the p-th period

is np = ceil(η × ns
c) timesteps, where ns

c is the number of

clusters at the beginning of current period, and η is a param-

eter called unrolling rate to control the number of timesteps.

The less η is, the more frequently we update θ.

4. Experiments

4.1. Image Clustering

We compare our approach with 12 clustering algorithms,

including K-means [36], NJW spectral clustering (SC-

NJW) [40], self-tuning spectral clustering (SC-ST)[61],

large-scale spectral clustering (SC-LS) [3], agglomerative

clustering with average linkage (AC-Link)[24], Zeta func-

tion based agglomerative clustering (AC-Zell) [64], graph

degree linkage-based agglomerative clustering (AC-GDL)

[62], agglomerative clustering via path integral (AC-PIC)

[63], normalized cuts (N-Cuts) [47], locality preserving

non-negative matrix factorization (NMF-LP) [1], NMF with

deep model (NMF-D) [52], task-specific clustering with

deep model (TSC-D) [56].

For evaluation, we use a commonly used metric: nor-

malized mutual information (NMI) [59]. It ranges in [0, 1].
Larger value indicates more precise clustering results.

4.1.1 Datasets

We evaluate the clustering performance on two hand-

written digit image datasets (MNIST [32] and USPS1), two

multi-view object image datasets (COIL20 and COIL100

[39]), and four face image datasets (UMist [17], FRGC-

v2.02, CMU-PIE [48], Youtube-Face (YTF)) [57]. The

number of samples and categories, and image size are listed

in Table 1. MNIST consists of training set (60,000) and

testing set (10,000). To compare with different approaches,

we experiment on the full set (MNIST-full) and testing set

(MNIST-test), separately. For face image datasets such as

UMist, CMU-PIE, we use the images provided as is with-

out any changes. For FRGC-v2.0 and YTF datasets, we first

1http://www.cs.nyu.edu/˜roweis/data.html
2http://www3.nd.edu/˜cvrl/CVRL/Data_Sets.html
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Table 1: Datasets used in our experiments.

Dataset MNIST USPS COIL20 COIL100 UMist FRGC-v2.0 CMU-PIE YTF

#Samples 70000 11000 1440 7200 575 2462 2856 10000

#Categories 10 10 20 100 20 20 68 41

Image Size 28×28 16×16 128×128 128×128 112×92 32×32 32×32 55×55

Table 2: Hyper-parameters in our approach.

Hyper-parameter Ks a Kc λ γ η

Value 20 1.0 5 1.0 2.0 0.9 or 0.2

crop faces and then resize them to a constant size. In FRGC-

v2.0 dataset, we randomly choose 20 subjects. As for YTF

dataset, we choose the first 41 subjects which are sorted by

their names in alphabet order.

4.1.2 Experimental Setup

All the hyper-parameters and their values for our approach

are listed in Table 2. In our experiments, Ks is set to 20, the

same value to [62]. a and λ are simply set to 1.0. We search

the values of Kc and γ for best performance on MNIST-test

set. The unrolling rate η for first four datasets is 0.9; and

0.2 for face datasets. The target cluster number n∗
c is set to

be the number of categories in each dataset.

We use Caffe [26] to implement our approach. We

stacked multiple combinations of convolutional layer, batch

normalization layer, ReLU layer and pooling layer. For all

the convolutional layers, the number of channels is 50, and

filter size is 5×5 with stride = 1 and padding = 0. For pool-

ing layer, its kernel size is 2 and stride is 2. To deal with

varying image sizes across datasets, the number of stacked

convolutional layers for each dataset is chosen so that the

size of the output feature map is about 10×10. On the top of

all CNNs, we append an inner product (ip) layer whose di-

mension is 160. ip layer is followed by a L2-normalization

layer before being fed to the weighted triplet loss layer or

used for clustering. For each partially unrolled period, the

base learning rate is set to 0.01, momentum 0.9, and weight

decay 5 × 10−5. We use the inverse learning rate decay

policy, with Gamma=0.0001 and Power=0.75. Stochastic

gradient descent (SGD) is adopted for optimization.

4.1.3 Quantitative Comparison

We report NMI for different methods on various datasets.

Results are averaged from 3 runs. We report the results by

re-running the code released by original papers. For those

that did not release the code, the corresponding results are

borrowed from the papers. We find the results we obtain

are somewhat different from the one reported in original

papers. We suspect that these differences may be caused

by the different experimental settings or the released code

is changed from the one used in the original paper. For all

test algorithms, we conduct L2-normalization on the image

intensities since it empirically improves the clustering per-

formance. We report our own results in two cases: 1) the

straight-forward clustering results obtained when the recur-

rent process finish, denoted by OURS-SF; 2) the clustering

results obtained by re-running clustering algorithm after ob-

taining the final representation, denoted by OURS-RC. The

quantitative results are shown in Table 3. In the table cells,

the value before ’/’ is obtained by re-running code while the

value after ’/’ is that reported in previous papers.

As we can see from Table 3, both OURS-SF and OURS-

RC outperform previous methods on all datasets with no-

ticeable margin. Interestingly, we achieved perfect results

(NMI = 1) on COIL20 and CMU-PIE datasets, which means

that all samples in the same category are clustered into the

same group. The agglomerative clustering algorithms, such

as AC-Zell, AC-GDL and AC-PIC perform better than other

algorithms generally. However, on MNIST-full test, they

all perform poorly. The possible reason is that MNIST-full

has 70k samples, and these methods cannot cope with such

large-scale dataset when using image intensity as represen-

tation. However, this problem is addressed by our learned

representation. We show that we achieved analogous per-

formance on MNIST-full to MNIST-test set. In most cases,

we can find OURS-RC performs better on datasets that

have room for improvement. We believe the reason is that

OURS-RC uses the final learned representation over the en-

tire clustering process, while OURS-SF starts with image

intensity, which indicates that the learned representation is

more discriminative than image intensity. 3

4.1.4 Generalization Across Clustering Algorithms

We now evaluate if the representations learned by our joint

agglomerative clustering and representation learning ap-

proach generalize to other clustering techniques. We re-run

all the clustering algorithms without any changes of param-

eters, but using our learned deep representations as features.

The results are shown in Table 4. It can be seen that all

3We experimented with hand-crafted features such as HOG, LBP, spa-

tial pyramid on a subset of the datasets with some of the better clustering

algorithms from Table 3, and found that they performed worse than image

intensity.
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Table 3: Quantitative clustering performance (NMI) for different algorithms using image intensities as input.

Dataset COIL20 COIL100 USPS MNIST-test MNIST-full UMist FRGC CMU-PIE YTF

K-means [36] 0.775 0.822 0.447 0.528 0.500 0.609 0.389 0.549 0.761

SC-NJW [40] 0.860/0.889 0.872/0.854 0.409/0.690 0.528/0.755 0.476 0.727 0.186 0.543 0.752

SC-ST [61] 0.673/0.895 0.706/0.858 0.342/0.726 0.445/0.756 0.416 0.611 0.431 0.581 0.620

SC-LS [49] 0.877 0.833 0.681 0.756 0.706 0.810 0.550 0.788 0.759

N-Cuts [47] 0.768/0.884 0.861/0.823 0.382/0.675 0.386/0.753 0.411 0.782 0.285 0.411 0.742

AC-Link [24] 0.512 0.711 0.579 0.662 0.686 0.643 0.168 0.545 0.738

AC-Zell [64] 0.954/0.911 0.963/0.913 0.774/0.799 0.810/0.768 0.017 0.755 0.351 0.910 0.733

AC-GDL [62] 0.945/0.937 0.954/0.929 0.854/0.824 0.864/0.844 0.017 0.755 0.351 0.934 0.622

AC-PIC [63] 0.950 0.964 0.840 0.853 0.017 0.750 0.415 0.902 0.697

NMF-LP [1] 0.720 0.783 0.435 0.467 0.452 0.560 0.346 0.491 0.720

NMF-D [52] 0.692 0.719 0.286 0.243 0.148 0.500 0.258 0.983/0.910 0.569

TSC-D [56] -/0.928 - - - -/0.651 - - - -

OURS-SF 1.000 0.978 0.858 0.876 0.906 0.880 0.566 0.984 0.848

OURS-RC 1.000 0.985 0.913 0.915 0.913 0.877 0.574 1.00 0.848

Table 4: Quantitative clustering performance (NMI) for different algorithms using our learned representations as inputs.

Dataset COIL20 COIL100 USPS MNIST-test MNIST-full UMist FRGC CMU-PIE YTF

K-means [36] 0.926 0.919 0.758 0.908 0.927 0.871 0.636 0.956 0.835

SC-NJW [40] 0.915 0.898 0.753 0.878 0.931 0.833 0.625 0.957 0.789

SC-ST [61] 0.959 0.922 0.741 0.911 0.906 0.847 0.651 0.938 0.741

SC-LS [49] 0.950 0.905 0.780 0.912 0.932 0.879 0.639 0.950 0.802

N-Cuts [47] 0.963 0.900 0.705 0.910 0.930 0.877 0.640 0.995 0.823

AC-Link [24] 0.896 0.884 0.783 0.901 0.918 0.872 0.621 0.990 0.803

AC-Zell [64] 1.000 0.989 0.910 0.893 0.919 0.870 0.551 1.000 0.821

AC-GDL [62] 1.000 0.985 0.913 0.915 0.913 0.870 0.574 1.000 0.842

AC-PIC [63] 1.000 0.990 0.914 0.909 0.907 0.870 0.553 1.000 0.829

NMF-LP [1] 0.855 0.834 0.729 0.905 0.926 0.854 0.575 0.690 0.788

clustering algorithms obtain more precise image clusters by

using our learned representation. Some algorithms like K-

means, AC-Link that performed very poorly with raw in-

tensities perform much better with our learned representa-

tions, and the variance in performance across all clustering

algorithms is much lower. These results clearly demonstrate

that our learned representation is not over-fitting to a single

clustering algorithm, but generalizes well across various al-

gorithms. Interestingly, using our learned representation,

some of the clustering algorithms perform even better than

AC-GDL we build on in our approach.

4.2. Transferring Learned Representation

4.2.1 Cross-Dataset Clustering

Table 5: NMI performance across COIL20 and COIL100.

Layer data top(ip) top-1 top-2

COIL20 → COIL100 0.924 0.927 0.939 0.934

COIL100 → COIL20 0.944 0.949 0.957 0.951

Table 6: NMI performance across MNIST-test and USPS.

Layer data top(ip) top-1 top-2

MNIST-test → USPS 0.874 0.892 0.907 0.908

USPS → MNIST-test 0.872 0.873 0.886 -

In this section, we study whether our learned represen-

tations generalize across datasets. We train a CNN based

on our approach on one dataset, and then cluster images

from another (but related) dataset using the image fea-

tures extracted via the CNN. Specifically, we experiment on

two dataset pairs: 1) multi-view object datasets (COIL20

and COIL100); 2) hand-written digit datasets (USPS and

MNIST-test). We use the representation learned from one

dataset to represent another dataset, followed by agglom-

erative clustering. Note that because the image sizes or

channels are different across datasets, we resize the input

images and/or expand the channels before feeding them to

CNN. The experimental results are shown in Table 5 and 6.

We use the representations from top ip layer and also the

convolutional or pooling layers (top-1, top-2) close to top
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Table 7: Face verification results on LFW.

#Samples 10k 20k 30k 50k 100k

Supervised 0.737 0.746 0.748 0.764 0.770

OURS 0.728 0.743 0.750 0.762 0.767

layer for image clustering. In two tables, compared with

directly using raw image from the data layer, the cluster-

ing performance based on learned representations from all

layers improve, which indicates that the learned representa-

tions can be transferred across these datasets. As perhaps

expected, the performance on target datasets is worse com-

pared to learning on the target dataset directly. For COIL20

and COIL100, a possible reason is that they have different

image categories. As for MNIST and USPS, the perfor-

mance beats OURS-SF, but worse than OURS-RC. We find

transferring representation learned on MNIST-test to USPS

gets close performance to OURS-RC learned on USPS.

4.2.2 Face Verification

We now evaluate the performance of our approach by ap-

plying it to face verification. In particular, the representa-

tion is learned on Youtube-Face dataset and evaluated on

LFW dataset [22] under the restricted protocol. For train-

ing, we randomly choose about 10k, 20k, 30k, 50k, 100k

samples from YTF dataset. All these subsets have 1446 cat-

egories. We implement our approach to train CNN model

and cluster images on the training set. Then, we remove the

L2-normalization layer and append a softmax layer to fine-

tune our unsupervised CNN model based on the predicted

image cluster labels. Using the same training samples and

CNN architecture, we also train a CNN model with a soft-

max loss supervised by the groundtruth labels of the training

set. According to the evaluation protocol in [22], we run 10-

fold cross-validation. The cosine similarity is used to com-

pute the similarity between samples. In each of 10 cross-

validations, nine folds are used to find the optimal thresh-

old, and the remaining one fold is used for evaluation. The

average accuracy is reported in Table. 7. As shown, though

no groundtruth labels are used for representation learning

in our approach, we obtain analogous performance to the

supervised learning approach. Our approach even (slightly)

beats the supervised learning method in one case.

4.3. Image Classification

Recently, unsupervised representation learning methods

are starting to achieve promising results for a variety of

recognition tasks [4, 5, 25, 34]. We are interested in know-

ing whether the proposed method can also learn useful rep-

resentation for image classification. We experiment with

CIFAR-10 [27]. We follow the pipeline in [5], and base

our experiments on their publicly available code. In this

Table 8: Image classification accuracy on CIFAR-10.

#Samples K-means [5] conv1 conv2 conv1&2

5k 62.81% 63.05% 63.10% 63.50%

10k 68.01% 68.30% 68.46% 69.11%

25k 74.01% 72.83% 72.93% 75.11%

50k (full set) 76.59% 74.68% 74.68% 78.55%

pipeline, codebook with 1600 codes is build upon 6 × 6
ZCA-whitened image patches, and then used to code the

training and testing samples by extracting 1,600-d feature

from each of 4 image quadrants. Afterwards, a linear SVM

[6] is applied for image classification on 6,400-d feature. In

our approach, the only difference is that we learn a new rep-

resentation from 6× 6 patches, and then use these new rep-

resentations to build the codebook with 1,600 codes. The

CNN architecture we use contains two convolutional lay-

ers, each of which is combined with a ReLu and a pooling

layer, followed by an inner product layer. Both convolu-

tional layers have 50 3 × 3 filters with pad = 1. The kernel

size of pooling layer is 2, and the stride is 2. To save on

training time, 40k randomly extracted patches are extracted

from 50k training set and used in all the experiments.

Classification accuracies on test set with different set-

tings are shown in Table 8. We vary the number of train-

ing samples and evaluate the performance for representa-

tions from different layers. As we can see, the combination

of representations from the first and second convolutional

layer achieve the best performance. We also use the rep-

resentation output by inner product layer to learn the code-

book. However, it performs poorly. A possible reason is

that it discards spatial information of image patches, which

may be important for learning a codebook. When using

400k randomly extracted patches to learn the codebook, [5]

achieved 77.9%. However, it is still lower than what we

achieved. This performance also beats several other meth-

ods listed in [4, 15, 25, 34].

5. Conclusion

In this paper, we have proposed an approach to jointly

learn deep representations and image clusters. In our ap-

proach, we combined agglomerative clustering with CNNs

and formulate them as a recurrent process. We used a par-

tially unrolling strategy to divide the timesteps into mul-

tiple periods. In each period, we merged clusters step by

step during the forward pass and learned representation in

the backward pass, which are guided by a single weighted

triplet-loss function. The extensive experiments on image

clustering, deep representation transfer learning and im-

age classification demonstrate that our approach can obtain

more precise image clusters and discriminative representa-

tions that generalize well across many datasets and tasks.
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