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Abstract

Recently, Deep Convolutional Neural Networks (DC-

NNs) have been applied to the task of human pose estima-

tion, and have shown its potential of learning better fea-

ture representations and capturing contextual relationships.

However, it is difficult to incorporate domain prior knowl-

edge such as geometric relationships among body parts into

DCNNs. In addition, training DCNN-based body part de-

tectors without consideration of global body joint consis-

tency introduces ambiguities, which increases the complex-

ity of training. In this paper, we propose a novel end-to-end

framework for human pose estimation that combines DC-

NNs with the expressive deformable mixture of parts. We ex-

plicitly incorporate domain prior knowledge into the frame-

work, which greatly regularizes the learning process and

enables the flexibility of our framework for loopy models or

tree-structured models. The effectiveness of jointly learn-

ing a DCNN with a deformable mixture of parts model is

evaluated through intensive experiments on several widely

used benchmarks. The proposed approach significantly im-

proves the performance compared with state-of-the-art ap-

proaches, especially on benchmarks with challenging artic-

ulations.

1. Introduction

Articulated human pose estimation is one of the fun-

damental tasks in computer vision. It solves the problem

of localizing human parts in images, and has many im-

portant applications such as action recognition [45], cloth-

ing parsing [49, 50], and human tracking [6]. The main

challenges of this task are articulation, occlusion, cluttered

background, and variations in clothing and lighting. Re-

cently, state-of-the-art performance of human pose estima-

tion has been achieved with Deep Convolutional Neural

Networks (DCNNs) [42, 41, 40, 4, 3, 16, 15, 10, 7]. These

approaches primarily fall into two categories: 1) regressing
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Figure 1. Motivation. Left: Ground-truth locations of head (a) and ankle

(d). Middle: The noisy heat-maps predicted by conventional DCNN during

the training stage. Right: With body joint consistency considered by the

proposed framework, the heat-maps are better predicted.

heat-maps of each body part location with DCNNs [16, 40];

2) learning deep structured output to further model the rela-

tionships among body joints [15, 41].

DCNN-based heat-map regression models have shown

the potential of learning better feature representations.

However, geometric constraints among body parts, which

are essential to ensure the joint consistency, are usually

missed in training the DCNNs. As a consequence, during

the training stage, these approaches may produce many im-

perfect results, as shown in Figure 1 (b, e). For example,

regions with high response to head in Figure 1 (b) are heads

of unannotated persons, which are reasonable but will be

treated as false positives in learning the DCNN. Errors on

these regions will be back propagated to penalize the fea-

tures correspond to head detection, which is inappropriate.

We observe that this problem could be addressed by consid-

ering global joint consistency during the training stage: the

unannotated persons do not have their full bodies appearing

in the image, hence can be suppressed when considering the
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full pose configuration, as shown in Figure 1 (c). Another

example is shown in Figure 1 (e), where the false positive

region for ankle at the background (top-left corner) will be

treated as the hard negative for learning the DCNN. It is

no longer a hard negative when the structure of full body is

considered, as shown in Figure 1 (f).

Deep structured output learning has attracted consider-

able attention recently, and has shown promising results in

tasks such as semantic segmentation [2], scene parsing [23],

object detection [44], and depth estimation [24]. For hu-

man pose estimation, recent studies combine DCNNs with

fully-connected Markov Random Field [41] or weakly spa-

tial histogram over body part locations [15] to exploit struc-

tural constraints between body joint locations. However, the

parameter space of learning spatial constraints with convo-

lutional kernels [41] is too large, which makes the learning

difficult. Additionally, for persons with a large range of pos-

sible poses, e.g., the head is not always above the shoulder,

these approaches will be less effective.

In vision community, domain knowledge has been

proved effective in many tasks such as object recogni-

tion [11], detection [27, 14, 20, 47, 28], and person re-

identification [48]. For pose estimation, the deformable

mixture of parts model [51, 30] uses domain knowledge and

designs a deformable model to constrain the spatial configu-

ration between a pair of parts with multiple appearance mix-

tures. By using a DCNN for feature extraction together with

deformable model for spatial constraints, Chen and Yuille

[4] achieve a significant improvement. However, features

and spatial constraints are still learned separately. There-

fore, the problem in learning DCNNs as shown in Figure 1

still exists.

In this paper, we propose to incorporate the DCNN and

the expressive mixture of parts model into an end-to-end

framework. This enables us to predict the body part loca-

tions with the consideration of global pose configurations

during the training stage, hence our framework is able to

predict heat-maps with less false positives, as shown in Fig-

ure 1 (c), (f). Therefore, jointly learning the DCNN with

the deformable model makes the feature learning more ef-

fective in handling the negative samples that are difficult

when taking the full body pose into account. In addition,

we explicitly incorporate human pose priors including body

part mixture types and standard quadratic deformation con-

straints into our model. This greatly reduces the parameters

to be learned compared with the use of convolution or his-

togram, and still keeps the flexibility of our framework in

building loopy models or tree-structured models.

We show the efficiency of the proposed framework

on three widely used pose estimation benchmarks: the

LSP [18] dataset, the FLIC [35] dataset and the Image

Parse [33] dataset. Our approach improves the state-of-the-

art on all these datasets. The generalization ability of our

framework is also validated by cross-dataset experiments on

the Image Parse dataset.

The main contributions of this work are three folds:

• We design a novel message passing layer, which is flexi-

ble to build tree-structured models or loopy models with

appearance mixtures.

• An end-to-end deep CNN framework for human pose es-

timation is proposed. By jointly learning DCNNs with

deformable mixture of parts models, global pose consis-

tency is considered. Hence our framework is able to re-

duce the ambiguity and mine hard negatives effectively

when learning features and part deformation.

• Domain knowledge is incorporated into our framework.

Through quadratic deformation constraints, we reduce

the parameter space in modeling the spatial and the ap-

pearance mixture relationships among parts.

2. Related Work

In literature, part-based models have been widely used

to model the articulated relationships between rigid hu-

man body parts. Specifically, tree-structured pictorial struc-

tures [13] have been made tractable together with the devel-

opment of general distance transform [11], and is popular

in human pose estimation [39, 46, 9, 18, 29, 30, 18, 19, 35].

For example, Yang and Ramanan [51] proposed a flexi-

ble mixture model to capture contextual co-occurrence re-

lations between parts. Johnson and Everingham [19] used

a cascade of body parts detectors to obtain mixture mod-

els on the full model scale. Pishchulin et al. [30] extended

part-based model based on rigid body parts with Pose-

let [1] priors. Despite efficient inference and impressive

successes, tree-structured models suffer from the double-

counting problem, which often happens to limbs.

To overcome the limited expressiveness of tree-

structured models, there have been a lot of efforts that

focused on constructing more expressive models [17, 34,

12, 46, 38]. For example, symmetry of appearance be-

tween limbs has been considered in [34, 38]. Ferrari et

al. [12] proposed repulsive edges between opposite-sided

arms to overcome double counting in upper-body pose esti-

mation. These strong pose priors, however, may overfit to

the statistics of some particular datasets [43]. To consider

higher-order part relationships beyond primitive rigid parts,

Wang et al. [46] incorporated hierarchical poselets for hu-

man parsing. In video pose estimation, Cherian et al. [5]

designed temporal links between body parts to address in-

consistency between parts that across the sequences. These

methods achieved better expressiveness by loopy models.

Inference on such models, however, requires approximate

methods such as integer programs [17], integer quadratic

programs [34], or loopy belief propagation [36]. Moreover,

the above mentioned approaches are based on hand-crafted

features (e.g., HOG [8] and Shape Context [25]), and may
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Figure 2. Illustration of the proposed framework. (a) visualizes a loopy model, where nodes (red circles) specify the positions and mixture types of body

parts, and edges (white lines) indicate the relationships between parts. During inference, a node sends a message to each of its neighbors and receives

messages from each neighbor (indicated by arrows). The proposed framework can be viewed as two components: (b) a front-end DCNN for learning feature

representations of body parts and (c) message passing layers for conducting inference and learning on mixture of parts with deformation constraints between

parts. Specifically, each message passing layer performs one iteration of message passing in a forward pass. (d) are predicted heat-maps for parts. Please

refer to the text for the notations.

be limited by the representation ability.

Deep Models for Human Pose Estimation: Recently,

deep models have been successfully applied in human pose

estimation. Ouyang et al. [26] proposed a multi-source

deep model for constructing the non-linear representation

from multiple information sources. DeepPose [42] esti-

mated body part locations by learning a regressor based on

DCNNs in a holistic manner. However, this method suf-

fered from inaccuracy in the high-precision regions. Jain et

al. [15] used a multi-resolution DCNN and adopted motion

features to improve the accuracy of body parts localization.

Tompson et al. [40] proposed spatial pooling to overcome

the reduced localization accuracy caused by pooling opera-

tions. Chen and Yuille [4] used a DCNN to learn the condi-

tional probabilities for the presence of parts and their spatial

relationships. They further proposed flexible compositions

of object parts [3] to handle significant occlusions in im-

ages, and showed state-of-the-art results. However, part de-

tection scores and detectors are fixed in [4, 3] but are not

fixed in our model. The approaches in [4, 3] learned part

detectors and spatial relationships independently, while we

jointly learned them. Besides, our model learns global pose

configuration and is not constrained to tree models while

tree models were used in [4, 3].

To capture contextual relationships directly within DC-

NNs, some recent studies explored to combine DCNNs

with Conditional Random Fields (CRFs), Markov Random

Fields (MRFs), or Deformable Part Models, and showed

promising results on several applications, such as depth esti-

mation [24], semantic segmentation [22], and object detec-

tion [14, 44, 27]. For pose estimation, Tompson et al. [41]

jointly trained a multi-scale DCNN with an approximate

MRF, which is to model the spatial relationships between

body parts. Our approach is different from this approach

in the following aspects. First, their model has difficulty

in learning effective spatial relationships on datasets with

large pose variations. Our method addresses this problem

by using appearance mixtures. Second, to cover the largest

body joint displacement, very large 128 × 128 convolution

kernels were used in [41]. Hence its parameter space is very

large, and it is hard to learn when body parts are with large

variations in relative locations. We take the body part ar-

ticulation property into account and model spatial relations

by mixture of deformation constraints, which are only 4 pa-

rameters for each pair of mixture-of-parts. Therefore, our

model is better in handling large range of possible poses.

Parameterized deformation constraints are also jointly

learned with DCNN for pedestrian detection in [27] and

object detection in [14]. However, these approaches do

not consider the appearance mixtures, hence are limited to

body part variances, while we learn deformation constraints

taking the appearance mixture into account to handle the

variation. In addition, only the star model is considered in

[27, 14] while our approach is flexible for star models, tree-

structured models or loopy models.
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3. The Model

We formulate the human pose estimation problem by us-
ing a graph. Let G = (V, E) denote a graph with ver-
tices V specifying the positions as well as the mixture
types of body parts, and edges E ⊆ V × V indicating
the spatial relationships between parts. Let K = |V | be
the number of parts, and i ∈ {1, · · · ,K} be the ith part.
Given an image I, we denote the pixel locations of parts by
l = {li}

K
i=1

= {(xi, yi)}
K
i=1

, and denote the mixture type

of different spatial relationships by t = {ti}
K
i=1

, where
ti ∈ {1, · · · , Ti}. The full score of a pose configuration
given an input image I is as follows:

F (l, t|I;θ,w)

=
∑

i∈V

φ(li, ti|I;θ) +
∑

(i,j)∈E

ψ(li, lj , ti, tj |I;w
ti,tj
i,j ), (1)

where θ and w = {w
ti,tj
i,j } are parameters of the model.

Part Appearance Terms: Given an image patch located
at li, the unary terms φ(li, ti|I;θ) provide local confidence
of the appearance of part i with mixture type ti, which are
defined as the log probability,

φ(li, ti|I;θ) = log p(li, ti|I;θ) = log σ(f(li, ti|I;θ)). (2)

The probability p(li, ti|I;θ) is given by the softmax func-

tion σ(·), which is to predict the probability of the ith part at

location li with type ti in image I. f(li, ti|I;θ) is modeled

by the front-end DCNN to predict a score for part i located

at li with type ti, where θ are its parameters. Appearance

terms φ(li, ti|I;θ) are obtained from the DCNN through a

classification layer as shown in Figure 2 (b).

Spatial Relationship Terms: The pairwise terms model
the spatial compatibility of two neighboring parts i and j.
We define the pairwise terms as follows:

ψ(li, lj , ti, tj |I;w
ti,tj
i,j ) =< w

ti,tj
i,j , d(li − lj) > . (3)

Here we incorporate standard quadratic deformation con-

straints into our model, where d(li− lj) is deformation fea-

ture defined as d(li − lj) = [∆x ∆x2 ∆y ∆y2]T , and

∆x = xi − xj and ∆y = yi − yj are the relative loca-

tions of part i with respect to part j, and w
ti,tj
i,j are the 4-

dimensional deformation weights to encode pairwise terms

for mixture types (ti, tj).

4. Inference

Inference is to find the optimal part locations l
∗

and mixture types t
∗ that maximize the score function

F (l, t|I;θ,w) as follows:

(l∗, t∗) = argmax
l,t

F (l, t|I;θ,w). (4)

An overview of the inference procedure is demonstrated in

Figure 2 (b-d). Given an image, the heat-maps f(li, ti|I;θ)
of each part are computed by a forward pass through the

DCNN. Then the log probability φ(li, ti) of each part with

each type is obtained from f(li, ti|I;θ) through a softmax

layer and a logarithm layer. Taking φ(li, ti) as input, we

propose to pass messages in neural networks by designing a

novel message passing layer, which is flexible to build tree-

structured models or loopy models.

4.1. Message Passing

We first give a brief review of message passing on the

proposed model. Max-sum algorithm has been widely used

for inferring the best configuration in graphical models. Al-

though the max-sum algorithm is only an approximation

and the convergence cannot be guaranteed on loopy struc-

tures, it still provided excellent experimental results [36].
At each iteration, a vertex sends a message to its neigh-

bors and receives messages from its neighbors. We denote
mij(lj , tj) as the message sent from part i to part j, and
ui(li, ti) as the belief of part i, then the max-sum algorithm
updates the messages and beliefs as follows:

mij(lj , tj)← αm max
li,ti

(ui(li, ti) + ψ(li, lj , ti, tj)) , (5)

ui(li, ti)← αu(φ(li, ti) +
∑

k∈N(i)
mki(li, ti)), (6)

where αm and αu are normalization terms, and N(i) denotes

the set of neighbors of part i. To simplify the notation, we

omit model parameters here. Figure 2 (a) gives a visualiza-

tion of this message passing procedure.

The algorithm starts with all message vectors initialized

to constant functions. The normalization terms in Eq.(5-6)

are not necessary. However, we find that they help to make

the inference more stable in practice.

Maximum Score Assignment: Suppose the algorithm
converges at the N th iteration, then the belief for each loca-
tion and each type (li, ti) is the approximation of the max-
imum score function. Hence we can obtain the max-sum
assignment (l∗i , t

∗

i ) by

(l∗i , t
∗

i ) = argmax
li,ti

u
∗

i (li, ti), ∀i ∈ {1, · · · ,K}, (7)

where u∗

i (li, ti) is the belief computed in the last iteration,

and (l∗i , t
∗

i ) is the solution for the maximum score in Eq.(4).

Special Case: Tree-Structured Model: For tree struc-

tures, exact inference can be performed efficiently by one

pass of dynamic programming, which is a special case

of max-sum algorithm by passing messages from leaves

to a chosen root node. By keeping track of indexes of

argmaxl∗
k
,t∗

k
for each pass, the maximum score assignment

can be obtained by backtracking from the root node to the

leaves. This procedure is also known as Verberti decoding,

and has been widely used in previous pose estimation works

with tree-structured models [51, 52, 4, 3].

4.2. The Message Passing Layer in Neural Networks

In literature, there are mainly two possible ways to orga-

nize the message passing schedule. The flooding schedule
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Figure 3. From left to right, we show the estimated poses generated by

the first, the second, and the third message passing layer, respectively. In-

tuitively, a part could receive messages from further parts as the number of

message passing layers increases, which may result in better results.

simultaneously passes messages across every link in both

directions at each time step, while the serial schedule passes

one message at each time. By following the flooding sched-

ule, we integrate the procedure introduced in Eq.(5-6) into

the network by designing a novel message passing layer.

As shown in Figure 2 (c), each node sends a message

to each of its neighbors simultaneously (solid lines in Fig-

ure 2 (c)), and the belief of each part is updated by summing

its unary potential φ(li, ti) (dashed lines) and the incoming

messages. The belief ui(∗, ti) corresponds to a feature map

with mixture type ti for the ith part in the message passing

layer. After convergence, the optimum pose estimation is

obtained by selecting the location and type with maximum

belief for each part, as in Eq. (7).

Although message passing may need several iterations to

converge, we observe that a cascade of three message pass-

ing layers is enough to produce satisfactory results in prac-

tice. Examples of estimated poses from different message

passing layers are visualized in Figure 3. Intuitively, more

message passing layers (i.e., more iterations in the max-sum

algorithm) lead to better results. We take the tree-structured

model shown in Figure 2 (a) as an example: In the first

round, neck only receives messages from its neighbors head

and shoulders. In the second round, however, neck could re-

ceive messages from parts a step further such as elbows and

hips.

Computation: The computational complexity of message

passing is O(L2T 2) for L possible part locations and T
mixture types. Since our pairwise terms are quadratic func-

tions of location li and lj , we can accelerate the maximiza-

tion over li by employing the generalized distance trans-

forms [11], and the computational complexity of updating

one message is reduced to O(LT 2).

5. Learning

Several recent works produced heat-maps of body parts

by using fully convolutional networks [41, 40, 4, 3]. Some

approaches train the fully convolutional networks with full

images [41, 40]. Others first train a DCNN from local image

patches, then the learned DCNNs are fixed [4, 3]. We ini-

tialize the DCNN by pretraining from local image patches

with mixture type labels, and then jointly learn the DCNN

and the deformable model by finetuning from full images.

Pretraining with Part Mixture Types: Pretraining uti-

lizes part mixture types as supervision to train the front-end

DCNN that serves as part detectors. Existing human pose

datasets are annotated with body part locations l, but with-

out part mixture type labels t. We define the part types as

the different relative locations clusters of a part with respect

to its neighboring parts. Let rij be the relative position from

part i to its neighboring part j, we cluster the relative posi-

tion rij over the training set into Ti clusters. Each cluster

corresponds to a set of part instances that share with sim-

ilar relative locations. The type label for each part can be

derived by cluster membership, and serves as an extra su-

pervision for pretraining the front-end DCNN. The mixture

types obtained from locations are strongly correlated to ap-

pearance of parts. For example, horizontal arm is one part

type and vertical arm is another type – they are different in

pose configuration and appearance. We tried to remove pre-

training, but the net failed to converge to satisfactory train-

ing loss.

Finetuning of the Full Model: We finetune the unified
model by the hinge loss function. Suppose there are N
message passing layers, the final heat-map for each part is
obtained as follows:

si(li) = max
ti

(uN
i (li, ti) + bi), (8)

where bi is the bias. Denote the ground-truth location of
part i by l̃i. The ground-truth heat-map for part i is

s̃i(li) =

{

+1, if ||li − l̃i||∞ ≤ δ;
−1, otherwise.

(9)

where δ is a constant threshold. This produces the ground-

truth heat-map with a box centered at location l̃i: the

ground-truth heat-map has value 1 inside the box, and value

−1 outside the box.

Ideally, we not only hope the predicted part locations to

be close to ground-truth locations, but also hope the max-

imum response of each part in Eq.(8) to be higher than a

threshold. This motivates us to train our model in a max-

margin manner.
Given the ground-truth heat-map s̃i(li) and the predicted

heat-map si(li) of part i, the loss function is

J(l, t) =
1

KL

K
∑

i=1

L
∑

li=1

max(0, 1− s̃i(li) · si(li)), (10)

where max(0, 1− s̃i(li) · si(li)) is the hinge loss at location

li and J is the overall loss for all parts.
We apply stochastic gradient descent to learn the param-

eters. First, we compute the subgradients w.r.t. the final
heat-map for each part as,

∂J

∂si(li)
=

{

−s̃i(li), if s̃i(li) · si(li) < 1;

0, otherwise.
(11)
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Then the partial derivatives w.r.t. each layer can be com-
puted by using the standard backpropagation algorithm. For
example, the partial derivative of the deformation weights
w are computed as,

∂J

∂w
tk,ti
k,i

∝

N
∑

n=1

∑

li,ti

∂J

∂un
i (li, ti)

d(lk − li), (12)

where k ∈ N(i). Recall that d(lk − li) is the standard

quadratic deformation features defined in Eq.(3).

6. Experiments

In this section, we present experimental settings, experi-

mental results, and diagnostic analysis.

6.1. Experimental Settings

Datasets: We evaluate the proposed methods on three

well known public pose estimation benchmarks: The Leeds

Sports Poses (LSP) [18] dataset, the Frames Labeled in Cin-

ema (FLIC) [35] dataset, and the Image Parse (PARSE) [33]

dataset. (i) LSP contains 1000 training and 1000 testing im-

ages from sports activities with challenging articulations.

Each person is roughly 150 pixels in height with 14 joints

full-body annotations. (ii) FLIC consists of 3987 training

and 1016 testing images collected from popular Hollywood

movies with diverse appearances and poses. Each person

has 10 upper-body joints annotated. (iii) PARSE contains

305 images of highly articulated human poses with full

body annotations. The PARSE dataset is only used for the

evaluation of cross-dataset generalization: we directly ap-

ply the model trained on the LSP dataset to the 205 test

images of the PARSE dataset. To compare with previous

methods, we use Observer-Centric annotations on both the

LSP dataset and the FLIC dataset, and Person-Centric an-

notations on the PARSE dataset.

Data Augmentation: To reduce overfitting, we augment

the training data by rotating through 360 degrees for every

9 degrees. Then we mirror the images horizontally. Note

that this also increases the training patches of body parts

with different mixture types. The negative samples are ran-

domly cropped from the negative images of the INRIA Per-

son dataset [8]. We randomly select 5% of the training data

as validation set when we pretrain the front-end DCNN, and

these data are further used to finetune the full model.

Previous works [52, 4] observed that adding midway

parts between neighboring annotated parts helps to reduce

foreshortening and improves overall performance. Hence

we interpolate midway parts on both the LSP and the FLIC

datasets, which results in K = 26 and 18 parts respectively.

Evaluation Measure: Two widely used evaluation metrics,

i.e., Percentage of Correct Parts (PCP) and Percentage of

Detected Joints (PDJ), are used for comparison. PCP mea-

sures the rate of correctly detected limbs: a limb is consid-

ered as correctly detected if the distances between detected

Figure 4. The double-counting problem in tree-structured models (the 1st

row), could be reduced by introducing additional pairwise constraints (in-

dicated by white dashed lines in the 2nd row).

limb endpoints and groundtruth limb endpoints are within

half of the limb length. However, different interpretations

of PCP lead to different results. Hence we adopt the strict

PCP as discussed in [52, 4] for fair comparison1.

PDJ is introduced in [35] as a complementary evaluation

metric of PCP, as PCP penalizes short limbs. PDJ measures

the detection rate of joints, where a joint is considered as

detected if the distance between the predicted joint and the

ground-truth joint is less than a fraction of torso diameter.

The torso diameter is defined as the distance between the

left shoulder and the right hip of each ground-truth pose.

Front-End DCNN Architecture: We investigate two

DCNN architectures in this paper. The first one (ChenNet)

is based on [4], which consists of five convolution layers,

two max-pooling layers and three fully-connected layers,

and is trained from random initialization. The second one is

the 16-layer VGG architecture pretrained on the ImageNet

dataset [37]. To reduce computation, we resize the original

input of VGG from 224×224 to 112×112, and remove the

last pooling layer. This also improves the spatial localiza-

tion accuracy with fewer pooling operations. The number of

mixture types is set as Ti = 13 for all parts i ∈ {1, · · · ,K}.

Both architectures produce
∑K

i=1
Ti+1 heat-maps as the in-

put of the message passing layers, which include one back-

ground heat-map. If the mixture number Ti is reduced to

11, PCP drops by 1%. The stride size is 4 for ChenNet and

is 16 for VGG, hence the heat-maps size is 1/4 of the input

image size for ChenNet and 1/16 for VGG.

Connections Among parts: The tree-structured models are

visualized in Figure 7. Based on the tree structure, the

loopy structured models add edges between knees on the

LSP dataset, the structure of which is visualized in the sec-

ond row of Figure 4. On the FLIC dataset, we only conduct

experiments with tree-structured model. We perform exact

inference with tree-structured models. If not specified, three

message passing layers are used for loopy models.

1We use a widely used implementation of strict PCP available at

http://human-pose.mpi-inf.mpg.de/ to evaluate our results.
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Parameter Settings: During the pretraining stage, each im-

age is normalized to 150 pixels in body height. Patch size

is set to 36 × 36, which is able to cover sufficient context.

By changing the patch size to 0.8 and 1.2 times of the orig-

inal scale, PCP is reduced by 6.2% and 0.5% on the LSP

dataset with VGG architecture. We keep the batch size as

512, and the learning rates are initialized as 0.005 and 0.001

for ChenNet and VGG, respectively. The dropout rate is set

as 0.5. We drop the learning rate by a factor of 10 for every

5 epochs, and the front-end DCNN is trained for 15 epochs.

δ in Eq. (9) is set as 1/5 of the patch size. The change of δ
from 1/5 to 1/3 results in less than 1% strict PCP variation.

During the joint finetuning stage, the batch size is 5, and

the learning rate is relatively low at 0.0001 for both Chen-

Net and VGG. The dropout rate is increased to 0.6 to avoid

overfitting. Since the parameters of the DCNN are well ini-

tialized during pretrianing, and the deformation weights are

shared across different message passing layers and are rel-

atively few, finetuning the model for 1 epoch already pro-

vides satisfactory results.

6.2. Experimental Results

Method Torso Head U. L. U. L. Mean

arms arms legs legs

Yang&Ramanan [51] 84.1 77.1 52.5 35.9 69.5 65.6 60.8

Pishchulin et al. [29] 87.4 77.4 54.4 33.7 75.7 68.0 62.8

Eichner&Ferrari [9] 86.2 80.1 56.5 37.4 74.3 69.3 64.3

Kiefel&Gehler [21] 84.3 78.3 54.1 28.3 74.5 67.6 61.2

Pose Machines [32] 88.1 80.4 62.8 39.5 79.0 73.6 67.8

Ouyang et al. [26] 88.6 84.3 61.9 45.4 77.8 71.9 68.7

Pishchulin et al. [30] 88.7 85.1 61.8 45.0 78.9 73.2 69.2

DeepPose [42] - - 56 38 77 71 -

Chen&Yuille [4] 92.7 87.8 69.2 55.4 82.9 77.0 75.0

Ours-ChenNet-Unary 62.1 62.3 35.8 18.2 48.5 38.2 40.6

Ours-ChenNet-T 94.8 82.4 75.0 62.4 85.3 79.2 78.1

Ours-ChenNet-LG-Ind 93.0 82.1 70.6 55.4 82.1 75.3 74.2

Ours-ChenNet-LG 95.0 83.5 75.0 61.9 86.9 79.8 78.6

Ours-VGG-Unary 83.4 69.0 53.5 34.9 72.2 63.5 60.1

Ours-VGG-T 96.2 83.4 78.7 65.8 87.9 81.1 80.7

Ours-VGG-LG-MP1 96.3 84.3 78.4 66.3 87.9 80.7 80.7

Ours-VGG-LG-MP2 96.7 83.6 78.2 66.3 88.3 81.2 80.9

Ours-VGG-LG 96.5 83.1 78.8 66.7 88.7 81.7 81.1

Table 1. Comparison of strict PCP on the LSP dataset. We investigate our

method with different network architectures (ChenNet and VGG), as well

as different graph structures (tree-structured model (T) and loopy graph

(LG)). We also investigate the performance of invividual part detectors

(Unary), joint training vs. independent training (Ind), and different number

of message passing layers (MP1, MP2). Note that DeepPose [42] uses

Person-Centric annotations.

Method U.arms L.arms Mean

MODEC [35] 84.4 52.1 68.3

Tompson et al. [41] 93.7 80.9 87.3

Chen&Yuille [4] 97.0 86.8 91.9

Ours-ChenNet-T 97.9 88.3 93.1

Ours-VGG-T 98.1 89.5 93.8

Table 2. Strict PCP results on the FLIC dataset. We investigate our

method with different network architectures (ChenNet and VGG) with

tree-structured model (T).

Method Torso Head U. L. U. L. Mean

arms arms legs legs

Yang&Ramanan [51] 82.9 77.6 55.1 35.4 69.0 63.9 60.7

Johnson&Everingham [19] 87.6 76.8 67.3 45.8 74.7 67.1 67.4

Pishchulin et al. [31] 88.8 73.7 53.7 36.1 77.3 67.1 63.1

Pishchulin et al. [29] 92.2 70.7 54.9 39.8 74.6 63.7 62.9

Pishchulin et al. [30] 93.2 86.3 63.4 48.8 77.1 68.0 69.4

Yang&Ramanan [52] 85.9 86.8 63.4 42.7 74.9 68.3 67.1

Ouyang et al. [26] 89.3 89.3 67.8 47.8 78.0 72.0 71.0

Ours-ChenNet-LG 96.6 87.3 80.0 65.9 83.7 74.1 79.1

Ours-VGG-LG 97.1 86.8 80.2 69.3 84.9 78.5 81.0

Table 3. Strict PCP results on PARSE dataset. Note that our model is

trained on the LSP dataset to demonstrate its generalization ability.
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Figure 5. PDJ results for elbows, wrists, knees and ankles on the LSP

dataset. We compare our method (VGG using loopy model) with Chen

and Yuille [4], Ouyang et al. [26], Ramakrishna et al. [32], Pishchulin et

al. [30], and Kiefel and Gehler [21]. We report the PDJ rate at the threshold

of 0.2 in the legend.

Table 1 and Table 2 report strict PCP results on the LSP

dataset and the FLIC dataset respectively. Our best perfor-

mance on the LSP is achieved by using VGG together with

loopy model (Ours-VGG-LG), which improves the mean

strict PCP by 6.1% when compared with [4]. The best per-

formance on FLIC is achieved by using VGG with tree-

structured model (Ours-VGG-T), and improves the mean

strict PCP by 1.9% when compared with [4]. On the LSP

dataset with many challenging articulations, our method

has significant improvements on limbs, i.e. arms and legs,

which are the most difficult body parts to locate.

Figure 5 shows PDJ results on the LSP dataset. By com-

paring the PDJ value at the threshold 0.2, our method out-

performs state-of-the-art methods by a significant margin

on all body parts except ankles.

PDJ results on the FLIC dataset is reported in Figure 6.

Our method achieves the best performance on both elbows

and wrists compared with state-of-the-art methods.

Generalization Evaluation: To investigate the generaliza-

tion ability of our method, we apply the model trained on

the LSP dataset directly to the official test set of the PARSE
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Figure 6. PDJ comparison of elbows and wrists on the FLIC dataset.

We compare our method (VGG with tree-structured models) with Chen

and Yuille [4], Fan et al. [10], Tompson et al. [40], DeepPose [42], and

MODEC [35]. We report the PDJ rate at the threhold of 0.2 in the legend.

Figure 7. Qualitative results on the LSP dataset (the 1st row), the FLIC

dataset (the 2nd row), and the PARSE dataset (the 3rd row). We visual-

ize the joint locations together with the connections among parts used in

this paper (for simplicity, we only show tree-structure), and the same limb

across different images has the same color. Some failure cases are showed

in the last row. Our method may lead to wrong estimations due to signifi-

cant occlusions, ambiguous background, or heavily overlapping persons.

dataset. As shown in Table 3, our method outperforms the

state-of-the-art methods with a large margin, which implies

that our method has good generalization ability.

Joint Training vs. Independent Training: To investi-

gate the efficiency of joint training of part detectors and

deformable mixture of parts, we train a model whose ar-

chitecture is the same as Ours-ChenNet-LG on the LSP

dataset. However, we first train the part detectors, then we

fix the part detectors to train the message passing layers.

In this scenario, the mean PCP is 74.2%, as reported in

Table 1 (Ours-ChenNet-LG-Ind). In comparison, our pro-

posed joint learning (Ours-ChenNet-LG) has 4.4% gain.

Number of the Message Passing Layers: The mean

PCPs obtained by the first, the second and the third message

passing layer of Ours-VGG-LT are 80.7% (Ours-VGG-

LT-MP1), 80.9% (Ours-VGG-LT-MP2), and 81.1% (Ours-

VGG-LT), respectively. As discussed in Section 4.2, we

observe that a cascade of three message passing layers is

enough to produce satisfactory results in practice, as shown

in Figure 3.

Components Investigation: We first evaluate the perfor-

mance of individual part detectors. Without spatial con-

straints, our method obtains 40.6% and 60.1% strict PCPs

on the LSP dataset with ChenNet (Ours-ChenNet-Unary)

and VGG (Ours-VGG-Unary) respectively, as reported in

Table 1.

We conduct four experiments to analyze the influence of

different components on the LSP dataset, and report the re-

sults in Table 1. First, we use ChenNet with tree-structured

model (Ours-ChenNet-T), which outperforms the best pre-

viously published result [4] by 3.1% on average. This

proves the effectiveness of jointly training DCNNs and de-

formable mixture of parts. Part detector and message pass-

ing are jointly learned in Ours-ChenNet-T but separately

learned in [4]. Second, we build a loopy model based on

tree-structured model by adding an edge between knees

(Ours-ChenNet-LG), and get 0.5% improvement. We ob-

serve that this improvement is mainly due to the reduction

of double-counting problem, as shown in Figure 4. Next, we

evaluate the ImageNet pretrained VGG with tree-structured

model (Ours-VGG-T). This gives an improvement over the

ChenNet (Ours-ChenNet-T in Table 1 ) by 2.6%, which

shows the expressive power of deeper DCNN and the ro-

bustness of the ImageNet pretrained feature representation.

Finally, by combining VGG with loopy model, the Ours-

ChenNet-LG in Table 1 achieve the best result on the LSP

dataset.

Qualitative Evaluation: Figure 7 shows some pose es-

timation results on all the three datasets. Our method is

robust to highly articulated poses with variant orientation,

foreshortening, cluttered background, occlusion, and over-

lapping people. Some failure cases are also showed in the

last row of Figure 7. Our method may lead to wrong estima-

tions due to significant occlusions, ambiguous background,

or heavily overlapping persons. Please refer to the captions

for detailed discussion.

7. Conclusion

This paper has proposed to incorporate the DCNN and

the deformable mixture of parts model into an end-to-end

framework. Our framework is able to mine hard nega-

tives by considering the spatial and appearance consistency

among body parts. Therefore, the DCNN can be trained

more effectively. The joint learning of DCNN and de-

formable mixture of parts improves the performance on sev-

eral widely used benchmarks, which demonstrates the ef-

fectiveness of our method. In the future work, we plan to

investigate learning graph structures with deep models.
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