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Abstract

Actor-action semantic segmentation made an important

step toward advanced video understanding: what action is

happening; who is performing the action; and where is the

action happening in space-time. Current methods based on

layered CRFs for this problem are local and unable to cap-

ture the long-ranging interactions of video parts. We pro-

pose a new model that combines the labeling CRF with a

supervoxel hierarchy, where supervoxels at various scales

provide cues for possible groupings of nodes in the CRF

to encourage adaptive and long-ranging interactions. The

new model defines a dynamic and continuous process of

information exchange: the CRF influences what supervox-

els in the hierarchy are active, and these active supervox-

els, in turn, affect the connectivities in the CRF; we hence

call it a grouping process model. By further incorporating

the video-level recognition, the proposed method achieves a

large margin of 60% relative improvement over the state of

the art on the recent A2D large-scale video labeling dataset,

which demonstrates the effectiveness of our modeling.

1. Introduction

Advances in modern high-level computer vision have

helped usher in a new era of capable, perceptive physical

platforms, such as automated vehicles. As the performance

of these systems improves, the expectations of their capa-

bilities and tasks will also increase, commensurately, with

platforms moving from the highways into our homes, for

example. The need for these platforms to understand not

only what action is happening, but also who is doing the ac-

tion and where is the action happening in space-time, will

be increasingly critical to extracting semantics from videos

and, ultimately, to interacting with humans in our complex

world. For example, a home kitchen robot must distinguish

and locate adult-eating, dog-eating and baby-crying in or-

der to decide how to prepare and when to serve food.

Despite the recent successes in many aspects of this

problem, such as action recognition [8, 15, 19, 30, 33, 37,

38], action segmentation [11, 22] and video object segmen-

tation [7, 20, 21, 26, 28, 46], the collective problem had not

been codified until [40], which posed a new actor-action se-

mantic segmentation task on a large-scale YouTube video

dataset called A2D. This dataset contains seven classes of

actors including both articulated (e.g. baby, cat and dog)

and rigid (e.g. car and ball) ones, and eight classes of ac-

tions (e.g. flying, walking and running). The task is to label

each pixel in a video with a pair of actor and action labels

or a null actor/action; one third of the A2D videos contain

multiple actors and actions.

This task is challenging—the benchmarked leading

method, the trilayer model, only achieves a 26.46% per-

class accuracy for the joint actor-action video labeling [40].

The method builds a large three-layer CRF on video super-

voxels, where random variables are defined for sets of actor,

actor-action, and action labels, respectively. It connects lay-

ers with potential functions that capture conditional proba-

bilities (e.g. conditional distribution of actions given a spe-

cific actor class). Although the model accounts for the in-

terplay of actors and actions, the interactions are restricted

to the local CRF neighborhoods, which, based on the low

absolute performance, is insufficient to solve this unique

actor-action problem for three reasons.

First, we believe the pixel-level model must be mar-

ried to a secondary process that captures instance-level or

video-level global information in order to properly model

the actors performing actions. Lessons learned from im-

ages strongly supports this argument—the performance of

semantic image segmentation on the MSRC dataset seems

to hit a plateau [31] until information from secondary pro-

cesses, such as context [16, 25], object detectors [17] and

a holistic scene model [43], are added. However, to the

best of our knowledge, there is no method in video seman-

tic segmentation that directly leverages the recent successes

in action recognition.

Second, the two sets of labels, actors and actions, exist

at different granularities. For example, we want to label

adult-clapping in a video. The actor, adult, can probably be

recognized by looking only at the lower human body, e.g.
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Figure 1. An overview of the grouping process model. The left side shows an input video and its segment-level segmentation. The right

side shows the same video being segmented into a supervoxel hierarchy. During inference, the CRF defined on the segment-level starts with

a coarse video labeling. It influences what supervoxels are active in the hierarchy. The active supervoxels, in turn, affect the connectivities

in the CRF. This process is dynamic and continuous, where the video labeling is being iteratively refined.

legs. However, in order to recognize the clapping action,

we have to either locate the acting parts of the human body

or simply look at the whole actor body.

Third, actors and actions have different emphases on

space and time in a video. Actors are more space-

oriented—they can be fairly well labeled using only still im-

ages, as in semantic image segmentation [32, 43], whereas

actions are space- and time-oriented. Although one can pos-

sibly identify actions by still images alone [42], there are

strong distinctions between actions in time. For example

running is faster and thus may results more repeated mo-

tion patterns than walking for a common time duration; and

walking performed by a baby is very different compared to

an adult, despite the two actor classes may easily confuse a

spatially trained detector.

Our method overcomes the above limitations in two

ways: (1) we propose a novel grouping process model

(GPM) that adaptively adds long-ranging interactions to the

labeling CRF; and (2) we incorporate the video-level recog-

nition into segment-level labeling by the means of global la-

beling cost and the GPM. The GPM models a dynamic and

continuous process of information exchange of a labeling

CRF and a supervoxel hierarchy. The supervoxel hierarchy

provides a rich multi-scale decomposition of video content,

where object parts, identities, deformations and actions are

retained in space-time supervoxels across various levels in

the hierarchy [11, 27, 41]. Rather than using object and ac-

tion proposals as separate processes, we directly locate the

actor and action groupings in the supervoxel hierarchy by

the labeling CRF. During inference, the labeling CRF influ-

ences what supervoxels in a hierarchy are active, and these

active supervoxels, in turn, influence the connectivities in

the CRF, thus refining the labeling.

Directly solving the joint energy function of GPM is

hard. However, it can be efficiently solved by decompos-

ing it into two subproblems, a video labeling problem and a

tree slice problem [41], where the former one can be solved

by graph cuts and the latter one can be rewritten into a bi-

nary linear program. Therefore, the inference of GPM is dy-

namic and iterative as shown in Fig. 1. Throughout the en-

tire process, information is being exchanged at various lev-

els in the supervoxel hierarchy, thus the multi-scale space-

time representation is explicitly explored in our model.

We conduct thorough experiments on the large-scale

actor-action video dataset (A2D) [40]. We compare the pro-

posed method to the previous benchmarked leading method,

the trilayer model, as well as two leading semantic seg-

mentation methods [14, 16] that we have extended to the

actor-action problem. The experimental results show that

our proposed method outperforms the second best method

by a large margin of 17% per-class accuracy (60% relative

improvement) and over 10% global pixel accuracy, which

demonstrates the effectiveness of our modeling.

2. Related Work

The actor-action semantic segmentation problem is first

proposed in [40], where the paper demonstrates that infer-

ence jointly over actors and actions outperforms inference

independently over them. The best performance in [40] is

due to the trilayer model; although it does consider the in-

terplay of actor and action variables, it only models inter-

actions in local CRF pairwise neighborhoods. In contrary,

the method in this paper considers the interplays at various

granularities in space and time introduced by a supervoxel

hierarchy.

Supervoxels are shown to capture object boundaries and

follow object motions [39], and have the ability to locate

objects and actions [11, 27]. They have been used as higher-

order potentials for human action segmentation [22] and

video object segmentation [12]. Here, we use supervoxel

hierarchies for video labeling of actors and actions. We use

the tree slice constraint to select supervoxels in a hierarchy

as in [41], but the difference is that the tree slices here are

drawn in an iterative fashion, where each time the slice also

modifies the underlying labeling graph.
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Our work also differs from the emerging works in ac-

tion localization, action detection, and video object seg-

mentation for two reasons. First, our segmentation contains

clear semantic meanings of actors and actions, whereas

most existing works in action localization and detection do

not [11, 18, 24, 36]. Second, we consider multiple actors

performing actions in a video and explicitly model the types

of actors, whereas existing works assume one human ac-

tor [10, 23, 34, 44, 45] or do not model the types of actors

at all [7, 20, 46, 47]. Although there have been some works

on action detection [34], this remains an open challenge.

We relate our work to AHRF [16] and FCRF [14] in Sec-

tion 4 after presenting the new model.

3. Grouping Process Model

In this section, we give the general form of GPM, and

Fig. 1 shows an overview. We define the detailed potentials

adapted to the actor-action problem in Sec. 5.

Segment-Level. Without loss of generality, we define V =
{q1, q2, . . . , qN} as a video with N voxels or a video seg-

mentation with N segments. A graph G = (V, E) is defined

over the entire video, where the neighborhood structure E(·)
is induced by the connectivities in the voxel lattice Λ3 or

the segmentation graph over space-time in a video. We de-

fine a set of random variables L = {l1, l2, . . . , lN} where

the subscript corresponds to a certain node in V and each li
takes some label from a label set L. The GPM is inherently

a labeling CRF, but it leverages a supervoxel hierarchy to

dynamically adjust its non-local grouping structure.

Supervoxel Hierarchy. Given a supervoxel hierarchy gen-

erated by a hierarchical video segmentation method, such

as GBH [9], we extract a supervoxel tree1, denoted as

T = {T1, T2, . . . , TS} with S total supervoxels in the tree,

by ensuring that each supervoxel at a finer level segmenta-

tion has one and only one parent at its coarser level (Sec. 6

details the tree extraction process in the general case). We

define a set of random variables s = {s1, s2, . . . , sS} on the

tree supervoxels, where st ∈ {0, 1} takes a binary label to

indicate whether the tth supervoxel is active or not. Each

supervoxel in the hierarchy connects to a set of nodes in

the segment-level according to their overlap in voxel lattice

Λ3. Thus we have st, which is connected to a set of random

variables at the segment-level CRF, denoted as Lt ⊂ L. In-

tuitively, when st is active, the fully-connected clique con-

taining all nodes in Lt is considered in the labeling CRF;

otherwise, when st is inactive, that fully-connected clique

is not evaluated.

Supervoxel hierarchies, such as [5, 9], are built by it-

eratively recomputing and merging finer supervoxels into

coarser ones based on appearance and motion features,

1We add one virtual node as root to make it a tree if the segmentation

at the coarsest level contains more than one supervoxel.

where the body parts of an actor and its local motion are

contained at the finer levels and the identity of the actor and

its long-ranging action are contained at the coarser levels.

However, choosing an arbitrary level in a hierarchy can be

risky—going too coarse will cause overmerging and going

too fine will lose the meaningful actions. It is challenging

to locate the supervoxels in a hierarchy that best describe

the actor and its action. Here, the GPM uses the evidence

directly from the segment-level CRF to locate supervoxels

across various scales that are best supported by the label-

ing L. Once the supervoxels s are selected, they provide

strong labeling cues to the segment-level CRF—the CRF

nodes connected to the same supervoxel are encouraged to

have the same label.

The objective of GPM is to find the best labeling L
∗ and

the best selection s
∗ that minimize the following energy:

(L∗, s∗) = argmin
L,s

E(L, s|V, T )

E(L, s|V, T ) = Ev(L|V) + Eh(s|T ) (1)

+
∑

t∈T

(Eh(Lt|st) + Eh(st|Lt)) ,

where Ev(L|V) and Eh(s|T ) encode the energies at the

segment-level and in the supervoxel hierarchy, respectively;

Eh(Lt|st) and Eh(st|Lt) are conditional energy functions

defined as directional edges in Fig. 1. To keep the discus-

sion general, we do not define the specific form ofEv(L|V)
here—it can be any labeling CRF, such as [14, 16, 31]. We

define the other terms next.

3.1. Labeling Cues from Supervoxel Hierarchy

Given an active node st in the supervoxel hierarchy, we

use it as a cue to refine the segment-level labeling Lt and

we define the energy of this process as:

Eh(Lt|st) =

{ ∑

i∈Lt

∑

j 6=i,j∈Lt
ψh
ij(li, lj) if st = 1

0 otherwise.

(2)

Here, ψh
ij(·) has the form:

ψh
ij(li, lj) =

{

θt if li 6= lj
0 otherwise,

(3)

where θt is a parameter to be tuned. ψh
ij(li, lj) penalizes

any two nodes in the field Lt that contain different labels.

Eq. 2 changes the graph structure in Lt by fully connecting

the nodes inside, and has clear semantic meaning—-this set

of nodes in Lt at the segment-level are linked to the same

supervoxel node st and hence expected to be from the same

object, taking evidences from the appearance and motion

features used in a typical supervoxel segmentation method.
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3.2. Grouping Cues from Segment Labeling

If the selected supervoxels are too fine, they are subject

to losing object identity and long-ranging actions; if they are

too coarse, they are subject to overmerging with the back-

ground. Therefore, we set the selected supervoxels to best

reflect the segment-level labeling while also respecting a se-

lection prior. Given a video labeling L at the segment-level,

we select the nodes in the supervoxel hierarchy that best

correspond to the current labeling:

Eh(st|Lt) = (H(Lt)|Lt|+ θh)st , (4)

where | · | denotes the number of video voxels and

θh is a parameter to be tuned that encodes a prior

of the node selection in the hierarchy. H(·) is de-

fined as the entropy of the labeling field connected to

st: H(Lt) = −
∑

γ∈L P (γ;Lt) logP (γ;Lt) , where

P (γ;Lt) =
∑

i∈Lt
δ(li=γ)

|Lt|
and δ(·) is an indicator function.

Intuitively, the first term in Eq. 4 pushes down the selec-

tion of nodes in the hierarchy such that they only include

the labeling field that has the most consistent labels, and the

second term pulls up the node selection, giving penalties for

going down the hierarchy.

3.3. Tree Slice Constraint

The active nodes in s define what groups of segments the

GPM will enforce during labeling; hence the name group-

ing process model. However, not all instances of s are per-

missible: since we seek a single labeling over the video, we

enforce that each segment in V is associated with one and

only one active node in s. This notion was introduced in

[41] by a way of tree slice: for every root-to-leaf path in T ,

there is one and only one node being active.

We follow [41] to define a matrix P that encodes all root-

to-leaf paths in T . Pp is one row in P , and it encodes the

path from the root to pth leaf with 1s for nodes on the path

and 0s otherwise. We define the energy to regulate s as:

Eh(s|T ) =

P
∑

p=1

δ(PT

ps 6= 1)θτ , (5)

where P is the total number of leaves (also the number of

such root-to-leaf paths) and θτ is a large constant to penalize

an invalid tree slice. The tree slice selects supervoxel nodes

to form a new video representation that has a one-to-one

mapping to the 3D video lattice Λ3.

4. Iterative Inference for GPM

Directly solving the objective function defined in Eq. 1

is hard. Here, we show that we can use an iterative infer-

ence schema to efficiently solve it—given the segment-level

labeling, we find the best supervoxels in the hierarchy; and

given the selected supervoxels in the hierarchy, we refine

the segment-level labeling.

The Video Labeling Problem. Given a tree slice s, we

would like to find the best L∗ such that:

L
∗ = argmin

L

E(L|s,V, T ) (6)

= argmin
L

Ev(L|V) +
∑

t∈T

Eh(Lt|st) .

The above can have a standard CRF form depending on how

Ev(L|V) is defined. The second energy termEh(Lt|st) can

be decomposed to a locally fully connected CRF, and its

range is constrained by st such that the inference is feasible

even without Gaussian kernels [14].

The Tree Slice Problem. Given the current labeling L, we

would like to find the best s∗ such that:

s
∗ = argmin

s

E(s|L,V, T ) (7)

= argmin
s

Eh(s|T ) +
∑

t∈T

Eh(st|Lt) .

The above equation can be rewritten as a binary linear pro-

gram of the following form:

min
∑

t∈T

αtst s.t. Ps = 1P and s ∈ {0, 1}S , (8)

where αt = H(Lt)|Lt|+ θh. Note that this optimization is

different than that proposed by the original tree slice pa-

per [41], which incorporated quadratic terms in a binary

quadratic program. We use a standard solver (IBM CPLEX)

to solve the binary linear programming problem.

Iterative Inference. The inference of the above two sub-

problems is iteratively carried out, as depicted in Fig. 1.

To be specific, we initialize a coarse labeling L by solv-

ing Eq. 6 without the second term, then we solve Eq. 8 and

6 in an iterative fashion. Each round of the tree slice prob-

lem enacts an updated set of grouped segments, which are

then encouraged to be assigned the same label during the

subsequent labeling process. Although we do not include a

proof of convergence in this paper, we notice that the solu-

tion converges after a few rounds.

Relation to AHRF. The associative hierarchical random

field (AHRF) [16] performs inference exhaustively from

finer levels to coarser levels in the segmentation tree T ,

whereas the GPM explicitly models the best set of active

supervoxels by the means of a tree slice. AHRF defines a

full multi-label random field on the hierarchy; our model

leverages the hierarchy to adaptively modify the labeling

field. Our model is hence more scalable to videos. Further-

more, the GPM assumes that the best representations of the

video content exist in a tree slice rather than enforcing the

agreement across different levels as in AHRF. For example,
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a video of long jumping often contains running in the begin-

ning. The running action exists and has a strong classifier

signal at a fine-level in a supervoxel hierarchy, but it quickly

diminishes when one goes to higher levels in the hierarchy

where supervoxels capture longer range in the video and

would then favor the jumping action.

Relation to FCRF. The fully-connected CRF (FCRF)

in [14] imposes Gaussian mixture kernels to regularize the

pairwise interactions. Although our model fully connects

the nodes in each Lt for a given iteration of inference, we

explicitly take the evidence from the supervoxel groupings.

Equation 4 restricts the selected supervoxels to avoid over-

merging. Although a more complex process, in practice,

our inference is efficient (see Sec. 6 for running time).

5. The Actor-Action Problem Modeling

Following semantic segmentation systems [35, 40], we

train segment-level classifiers to capture the local appear-

ance and motion of the actors’ body parts. They have

some ability to localize the actor-action, but the predic-

tions are noisy; they use no context, for example. In con-

trary, video-level recognition, as a secondary process, cap-

tures the global information of actors performing actions

and have good prediction performance at the video-level.

However, it is not able to tell where the action is happen-

ing. These two streams of information are captured at the

segment-level and at the video-level, and hence are comple-

mentary to each other. In this section, we fuse them together

in a single model, leveraging the grouping process model as

a means of marrying the two.

Let us first define notation, extending that from Sec. 3

where possible. We use X to denote the set of actor labels

(e.g. adult, baby and dog) and Y to denote the set of action

labels (e.g. eating, walking and running). The segment-

level random field L now takes two sets of labels—for the

ith segment, lXi ∈ X takes a label from the actors and

lYi ∈ Y from the actions. We denote Z = X × Y as the

joint product space of the actor-action labels. We define a

set of binary random variables v = {v1, v2, . . . , v|Z|} on

the video-level, where vz = 1 denotes the zth actor-action

label is active at the video-level. They represent the video-

level multi-label recognition problem. Again, we have the

set of binary random variables s defined on the supervoxel

hierarchy as in Sec. 3.

Therefore, we have the total energy function of the actor-

action semantic segmentation defined as:

(L∗, s∗,v∗) = argmin
L,s,v

E(L, s,v|V, T )

E(L, s,v|V, T ) = Ev(L|V) +
∑

z∈Z

EV(vz|V) + EV(L,v)

+ Eh(s|T ) +
∑

t∈T

(Eh(Lt,v|st) + Eh(st|Lt)) , (9)

where the term Eh(Lt,v|st) now models the joint poten-

tials of the segment-level labeling field Lt and the video-

level label v, which is slightly different from its form in

Eq. 2. We have two new terms, EV(vz|V) and EV(L,v),
from the video-level, where vz is the zth coordinate in v.

We explain these new terms next.

5.1. SegmentLevel CRF Ev

At the segment-level, we use the same bilayer actor-

action CRF model from [40] to capture the local pairwise

interactions of the two sets of labels:

Ev(L|V) =
∑

i∈V

ψv
i (l

X
i ) +

∑

i∈V

∑

j∈E(i)

ψv
ij(l

X
i , l

X
j ) (10)

+
∑

i∈V

φvi (l
Y
i ) +

∑

i∈V

∑

j∈E(i)

φvij(l
Y
i , l

Y
j ) +

∑

i∈V

ϕv
i (l

X
i , l

Y
i ) ,

where ψv
i and φvi encode separate potentials for random

variables lXi and lYi to take the actor and action labels, re-

spectively. ϕv
i is a potential to measure the compatibility of

the actor-action tuples on segment i, andψv
ij and φvij capture

the pairwise interactions between segments, which have the

form of a contrast sensitive Potts model [3, 31]. We use the

code from [40] to capture the local pairwise interactions of

the two sets of labels.

5.2. VideoLevel Potentials EV

Rather than a uniform penalty over all labels [6], we use

the video-level recognition signals as global multi-label la-

beling costs to impact the segment-level labeling. We define

the unary energy at the video-level as:

EV(vz|V) = −(ξV(z)− θT )θBvz , (11)

where ξV(·) is the video-level classification response for a

particular actor-action label, and Sec. 6 describes its train-

ing process. Here, θT is a parameter to control response

threshold, and θB is a large constant parameter. In other

words, to minimize Eq. 11, the label vz = 1 only when the

classifier response ξV(z) > θT .

We define the interactions between the video-level and

the segment-level:

EV(L,v) =
∑

x∈X

δx(L)hx(v)θV +
∑

y∈Y

δy(L)hy(v)θV ,

(12)

where δx(·) is an indicator function to determine whether

the current labeling L at the segment-level contains a par-

ticular label x ∈ X or not:

δx(L) =

{

1 if ∃i ∈ V : lXi = x

0 otherwise.
(13)
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Ground-Truth

Coarse-To-Fine Supervoxel Hierarchy

Tree Slice Selection

Ev + EV Ev + EV + Eh

Figure 2. The video labeling of actor-action is refined by GPM.

First row shows a test video car-jumping with its labelings. The

second row shows a supervoxel hierarchy and the third row shows

the active nodes in the hierarchy with their dominant labels.

Similarly, hx(·) is another indicator function to determine

whether a particular label x is supported at the video-level

or not:

hx(v) =

{

0 if ∃z ∈ Z : vz = 1 ∧ g(z) = x

1 otherwise,
(14)

where g(·) maps a label in the joint actor-action space to the

actor space. θV is a constant cost for any label that exists in

L but not supported at the video-level. We define δy(·) and

hy(·) similarly. To make the cost meaningful, we set θB >

2θV . In practice, we observe that these labeling costs from

video-level recognition help the segment-level labeling to

achieve a more parsimonious-in-labels result that enforces

more global information than using local segments alone

(see results in Table 1).

5.3. The GPM Potentials Eh

The energy terms Eh(s|T ) and Eh(st|Lt) involved in

the tree slice problem are defined the same as in Sec. 3.

Now, we define the new labeling term:

Eh(Lt,v|st) = (15)






∑

i∈Lt

∑

j 6=i,j∈Lt
ψh
ij(l

X
i , l

X
j ,v)

+
∑

i∈Lt

∑

j 6=i,j∈Lt
φhij(l

Y
i , l

Y
j ,v) if st = 1

0 otherwise.

Here, ψh
ij(·) has the form:

ψh
ij(l

X
i , l

X
j ,v) = (16)

{

θt if lXi 6= lXj , ∃z ∈ Z : vz = 1 ∧ g(z) = f(st)
0 otherwise,

where f(·) denotes the dominant actor label in the segment-

level labeling field Lt that connected to st, and we define

ψh
ij(l

Y
i , l

Y
j ,v) similarly. This new term selectively refines

the segmentation where the majority of the segment-level

labelings agree with the video-level multi-label labeling.

lXi

lYi

lXj

lYj
ljli

ϕv
i ϕv

j

ψv
ij

φv
ij

ξvij

Figure 3. Visualization of two nodes of the bilayer model in our

efficient inference.

We show in Fig. 2 how this GPM process helps to re-

fine the actor’s shape (the car) in the labeling process. The

initial labelings from Ev + EV propose a rough region of

interest, but they do not capture the accurate boundaries or

shape. After two iterations of inference, the tree slice se-

lects the best set of supervoxels in the GBH hierarchy that

represents the actor (the car), and they regroup the segment-

level labelings such that the labelings can better capture the

actor shape. Notice that the car body in the third column

merges with the background, but our full model (fourth col-

umn) overcomes the limitation by selecting different parts

from the hierarchy to yield the final labeling.

5.4. Inference

The inference of the actor-action problem defined in

Eq. 9 follows the iterative inference described in Sec. 4.

The tree slice problem is efficiently solved by binary linear

programming. Although we could solve the video labeling

problem with loopy belief propagation, it would be expen-

sive due to the two sets of labels over which the CRF is

defined. Here, we derive a way to solve it efficiently using

graph cuts inference with label costs [1, 2, 6]. We show this

conceptually in Fig. 3 and rewrite Eq. 10 as:

Ev(L|V) =
∑

i∈V

ξvi (li) +
∑

i∈V

∑

j∈E(i)

ξvij(li, lj) , (17)

where we define the new unary as:

ξvi (li) = ψv
i (l

X
i ) + φvi (l

Y
i ) + ϕv

i (l
X
i , l

Y
j ) , (18)

and the pairwise interactions as:

ξvij(li, lj) = (19)














ψv
ij(l

X
i , l

X
j ) if lXi 6= lXj ∧ lYi = lYj

φvij(l
Y
i , l

Y
j ) if lXi = lXj ∧ lYi 6= lYj

ψv
ij(l

X
i , l

X
j ) + φvij(l

Y
i , l

Y
j ) if lXi 6= lXj ∧ lYi 6= lYj

0 if lXi = lXj ∧ lYi = lYj .

We can rewrite Eq. 15 in a similar way, and they satisfy

the submodular property according to the triangle inequal-

ity [13]. The label costs can be solved as in [6].

Parameters. We manually explore the parameter space

based on the pixel-level accuracy in a heuristic fashion. We

first tune the parameters involved in the video-level recogni-

tion, then those involved in the segment-level labeling, and

finally, those involved in GPM by running the iterative in-

ference as in Sec. 4.
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6. Experiments

We evaluate our method on the recently released A2D

dataset [40] and use the same benchmark to evaluate the

performance; this is the only dataset we are aware of that

incorporates actors and actions together. We compare with

the top-performing trilayer model, and two strong semantic

image segmentation methods, AHRF [16] and FCRF [14].

For AHRF, we use the publicly available code from [16] as

it contains a complete pipeline from training classifiers to

learning and inference. For FCRF, we extend it to use the

same features as our method.

Data Processing. We experiment with two distinct super-

voxel trees: one is extracted from the hierarchical super-

voxel segmentations generated by GBH [9], where super-

voxels across multiple levels natively form a tree struc-

ture hierarchy, and the other one is extracted from multi-

ple runs of a generic non-hierarchical supervoxel segmen-

tation by TSP [4]. To extract a tree structure from the non-

hierarchical video segmentations, we first sort the segmen-

tations by the number of supervoxels they contain. Then

we enforce the supervoxels in the finer level segmentation

to have one and only one parent supervoxel in the coarser

level segmentation, such that the two supervoxels have the

maximal overlap of the video pixels. We use four levels

from a GBH hierarchy, where the number of supervoxels

varies from a few hundred to less than one hundred. We

also use four different runs of TSP to construct another seg-

mentation tree where the final number of nodes contained in

the tree varies from 500 to 1500 at the fine level, and from

50 to 150 at the coarse level.

We also use TSP to generate the segments for the base la-

beling CRF. We extract the same set of appearance and mo-

tion features as in [40] and train one-versus-all linear SVM

classifiers on the segments for three sets of labels: actor,

action, and actor-action pair, separately. At the video-level,

we extract improved dense trajectories [38], and use Fisher

vectors [29] to train linear SVM classifiers at the video-level

for the actor-action pair. We use the inference schema de-

scribed in Sec. 4 and Sec. 5.4, and follow the train/test splits

used in [40]. The output of our system is a full video pixel

labeling. We evaluate the performance on sampled frames

where the ground-truth is labeled.

Results and Comparisons. We follow the benchmark eval-

uation in [40] and evaluate performance for joint actor-

action and separate individual tasks. Table 1 shows the

overall results of all methods in three different calculations:

when all test videos are used; when only videos contain-

ing single-label actor-action are used; and when only videos

containing multiple actor-action labels are used. Roughly

one-third of the videos in the A2D dataset have multiple

actor-action labels. Overall, we observe that our methods

(both GPM-TSP and GPM-GBH) outperform the next best

one, the trilayer method, by a large margin of 17% average

Ground-Truth AHRF Trilayer GPM (GBH)GPM (TSP)FCRF

(a)

(b)

(c)

(d)

(e)

(f)

(g)

(h)

(i)

adult-eating

adult-eating

adult-eating
adult-eating adult-eating adult-eating

adult-none
adult-none

baby-crawling

car-running
car-running

car-running car-running car-runningcar-running

baby-rolling

baby-rolling

baby-rolling

baby-rolling

baby-rolling baby-rolling

dog-eating

dog-crawling dog-crawling dog-crawlingcar-rolling car-rolling

baby-crawling

adult-none

bird-eating
bird-eating bird-eating

adult-walking

adult-walking
adult-walking

cat-climbing

bird-walking bird-walking bird-walking

adult-walking adult-walking adult-walking

car-running

bird-flying

dog-walking

car-running car-running

dog-walking

ball-flying

adult-walking

car-jumping

car-running

adult-walking

adult-walking

car-running

adult-running

ball-rolling

adult-running adult-walking adult-walking

ball-rolling ball-rolling

adult-crawling adult-crawlingadult-crawling

adult-none

adult-none adult-walking

dog-walking dog-rolling

car-jumping

adult-crawlingadult-jumping car-flying

bird-walking

adult-none

Figure 4. Visual example of the actor-action video labelings for

all methods. (a) - (c) are videos where most methods get correct

labelings; (d) - (g) are videos where only GPM models get the

correct labelings; (h) - (g) are difficult videos in the dataset where

the GPM models get partially correct labelings. Colors used are

from the A2D benchmark.

per-class accuracy and more than 10% global pixel accuracy

over all test videos. The improvement of global pixel accu-

racy is consistent over the two sub-divisions of test videos,

and the improvement of average per-class accuracy is larger

on videos that only contain single-label actor-action. We

suspect that videos containing multiple-label actor-action

are more likely to confuse the video-level classifiers.

We also observe that the added grouping process in

GPM-TSP and GPM-GBH consistently improves the aver-

age per-class accuracy over the intermediate result (Ev +
EV ) on both single-label and multiple-label actor-action

videos. There is a slight decrease on the global pixel accu-

racy. We suspect the decrease mainly comes from the back-

ground class, which contributes a large portion of the total

pixels in evaluation. To verify that, we also show the indi-

vidual actor-action class performance in Tab. 2 when all test

videos are used. We observe that GPM-GBH has the best

performance on majority classes and improves Ev + EV

on all classes except dog-crawling, which further shows the

effectiveness of the grouping process. The performance of

our method using the GBH hierarchy is slightly better than

our method using the TSP hierarchy. We suspect that this

is due to the GBH method’s greedy merging process that

complements the Gaussian process in TSP, such that the re-

sulting segmentation complements the segment-level TSP

segmentation we used.

Figure 4 shows the visual comparison of video labelings

for all methods, where (a)-(c) show cases where methods

output correct labels and (d)-(g) show cases where our pro-

posed method outperforms other methods. We also show
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Ev + EV
Ev

Model Ave. Glo. Ave. Glo. Ave. Glo. Ave. Glo. Ave. Glo. Ave. Glo. Ave. Glo. Ave. Glo. Ave. Glo.

45.9 76.9 47.2 76.8 24.8 75.0 46.7 76.5 50.0 76.9 31.5 74.8 41.7 77.7 42.1 76.5 18.2 75.4

57.3 85.7 59.4 85.9 42.4 84.8 60.4 86.0 67.0 86.5 55.4 85.4 50.6 85.1 55.1 84.4 33.3 83.6

AHRF 38.0 64.9 29.0 63.9 13.9 63.0 38.1 66.6 29.7 65.8 16.6 64.8 37.0 60.6 28.3 59.3 11.3 58.5

FCRF 44.8 77.9 45.5 77.6 25.4 76.2 45.9 77.6 47.4 77.7 32.1 76.1 40.2 78.8 42.2 77.5 19.4 76.5

Trilayer 45.7 74.6 47.0 74.6 26.5 72.9 47.0 74.1 50.3 74.6 33.9 72.7 41.0 75.6 42.3 74.5 20.4 73.4

GPM (TSP) 58.3 85.2 60.5 85.3 43.3 84.2 61.5 85.4 68.2 86.0 56.5 84.8 51.7 84.5 56.2 83.8 33.9 83.0

GPM (GBH) 61.2 84.9 59.4 84.8 43.9 83.8 63.1 85.1 69.3 85.7 57.6 84.5 51.7 84.1 56.3 83.3 33.9 82.5

Actor Action <A, A>

All Test Videos Single Actor-Action Videos Multiple Actor-Action Videos

Actor Action <A, A> Actor Action <A, A>

Table 1. The overall performance on the A2D dataset. The top two rows are intermediate results of the full model. The middle three rows

are comparison methods. The bottom two rows are our full models with different supervoxel hierarchies for the grouping process.

Ev + EV
Ev

Ev + EV
Ev

Model BK climb crawl eat jump roll run walk none climb eat jump roll run walk none crawl eat jump roll run walk none

81.0 22.1 60.4 45.2 20.0 18.9 32.3 26.8 31.5 25.3 29.8 4.4 29.5 45.2 6.5 0.0 17.0 26.6 1.1 38.1 29.8 38.7 0.0

89.9 73.3 77.6 68.0 47.1 49.4 49.8 39.8 0.0 41.9 48.0 31.0 69.8 48.0 18.7 0.0 45.8 58.9 30.7 61.4 25.1 72.4 0.0

AHRF 69.2 0.0 56.0 6.1 1.1 0.0 0.0 15.3 10.9 18.3 38.8 0.0 8.8 0.0 9.3 0.0 13.2 16.4 0.0 0.0 0.0 0.0 0.0

FCRF 82.2 21.6 64.5 46.3 25.3 12.0 50.9 26.9 33.8 25.3 33.6 2.5 33.9 48.9 21.5 0.8 11.7 35.7 2.2 31.9 25.2 40.2 0.0

Trilayer 78.5 33.1 59.8 49.8 19.9 27.6 40.2 31.7 24.6 33.1 27.2 6.1 49.8 48.5 6.6 0.0 9.9 31.0 2.0 27.6 23.6 39.4 0.0

GPM (TSP) 89.1 74.6 79.8 70.7 49.3 51.5 50.6 40.4 0.0 42.5 49.3 31.9 71.1 46.4 18.8 0.0 45.3 60.2 31.3 62.5 25.8 74.0 0.0

GPM (GBH) 88.4 74.8 81.0 76.4 49.3 52.4 50.4 41.0 0.0 42.8 52.3 33.7 71.7 48.0 19.1 0.0 44.1 61.5 31.4 62.6 25.7 74.2 0.0

Model climb crawl roll walk none fly jump roll none climb eat fly jump roll walk none fly jump roll run none Ave. Glo.

13.8 32.8 38.3 20.0 0.0 3.8 10.4 4.5 0.0 28.1 14.1 51.6 18.2 33.1 7.2 0.0 25.7 78.0 35.7 45.9 1.8 24.8 75.0

63.6 64.0 55.4 60.6 0.0 11.3 26.7 20.5 0.0 58.7 35.4 65.8 17.2 44.2 41.1 0.0 40.8 83.4 67.3 63.7 0.0 42.4 84.8

AHRF 21.3 5.5 39.8 13.5 0.0 3.2 2.3 13.6 1.5 14.6 11.4 19.9 5.0 29.6 7.5 0.0 18.1 68.0 13.6 47.9 12.2 13.9 63.0

FCRF 3.4 23.4 41.0 17.8 0.0 3.7 0.3 1.0 0.0 25.9 16.1 57.3 17.1 35.0 7.4 0.0 13.7 78.4 55.4 43.7 1.8 25.4 76.2

Trilayer 20.4 21.7 39.3 25.3 0.0 1.0 11.9 6.1 0.0 28.1 18.2 55.3 20.3 42.5 9.0 0.0 24.4 75.9 44.3 48.3 2.4 26.5 72.9

GPM (TSP) 65.3 64.7 57.2 60.5 0.0 11.3 27.0 20.8 0.0 62.2 37.1 66.6 17.4 45.4 42.2 0.0 42.9 84.5 69.2 64.8 0.0 43.3 84.2

GPM (GBH) 65.4 65.0 58.4 61.5 0.0 11.3 28.3 21.1 0.0 60.6 38.8 66.5 17.5 45.9 47.9 0.0 41.2 86.3 70.9 65.9 0.0 43.9 83.8

bird

cat dogadult

baby ball car

Table 2. The performance on individual actor-action labels using all test videos. The leading scores for each label are in bold font.

failure cases in (h) and (i) where videos contain complex

actors and actions. For example, our method correctly la-

bels the ball-rolling but confuses the label adult-running as

adult-walking in (h); we correctly label adult-crawling but

miss the label adult-none in (i).

Inference Speed. We empirically set the stopping criteria

by observing a balance between the performance gain and

the running time. We set two iterations for all experiments.

For all the test videos, GPM-GBH has an average inference

speed of 8.6 seconds-per-video (spv) faster than 26.7 spv

of GPM-TSP. Both of them are faster than 142 spv of the

trilayer model in [40]. The experiments are conducted with

a Linux server with AMD Opteron 6380 2.5GHz CPU.

7. Conclusion

Our thorough experiments on the A2D dataset show

that when the segment-level labeling is combined with sec-

ondary processes, such as our grouping process models and

video-level recognition signals, the semantic segmentation

performance increases dramatically. For example, GPM-

GBH improves almost every class of actor-action labels

compared to the intermediate result without the supervoxel

hierarchy, i.e., without the dynamic grouping of CRF label-

ing variables. This finding strongly supports our motivating

argument that the two sets of labels, actors and actions, are

best modeled at different levels of granularities and that they

have different emphases on space and time in a video.

In summary, our paper makes the following contribu-

tions to the actor-action semantic segmentation problem:

1. A novel model that dynamically combines segment-level

labeling with a hierarchical grouping process that influ-

ences connectivities of the labeling variables.

2. An efficient inference method that iteratively solves the

two conditional tasks by graph cuts for labeling and bi-

nary linear programming for grouping allowing for con-

tinuous exchange of information.

3. A new framework that uses video-level recognition sig-

nals as cues for segment-level labeling thru global label-

ing costs and the grouping process model.

4. Our proposed method significantly improves perfor-

mance (60% relative improvement over the next best

method) on the recently released large-scale actor-action

semantic video dataset [40].

Our implementations as well as the extended baselines are

available on authors’ website.

Future Work. We set two directions for our future work.

First, although our model is able to improve the labeling

performance dramatically, the opportunity of this joint mod-

eling to improve video-level recognition is yet to be ex-

plored. Second, our grouping process does not incorpo-

rate semantics in the supervoxel hierarchy; we believe this

would further improve results.
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