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Abstract

Multispectral images (MSI) can help deliver more faith-

ful representation for real scenes than the traditional im-

age system, and enhance the performance of many com-

puter vision tasks. In real cases, however, an MSI is al-

ways corrupted by various noises. In this paper, we pro-

pose a new tensor-based denoising approach by fully con-

sidering two intrinsic characteristics underlying an MSI,

i.e., the global correlation along spectrum (GCS) and non-

local self-similarity across space (NSS). In specific, we con-

struct a new tensor sparsity measure, called intrinsic ten-

sor sparsity (ITS) measure, which encodes both sparsity in-

sights delivered by the most typical Tucker and CANDE-

COMP/PARAFAC (CP) low-rank decomposition for a gen-

eral tensor. Then we build a new MSI denoising model by

applying the proposed ITS measure on tensors formed by

non-local similar patches within the MSI. The intrinsic GC-

S and NSS knowledge can then be efficiently explored under

the regularization of this tensor sparsity measure to finely

rectify the recovery of a MSI from its corruption. A series

of experiments on simulated and real MSI denoising prob-

lems show that our method outperforms all state-of-the-arts

under comprehensive quantitative performance measures.

1. Introduction

A multispectral image (MSI) consists of multiple im-

ages of a real scene captured by sensors over various dis-

crete bands. As compared with traditional image collect-

ing systems which integrate the product of the intensity at

only a few typical band intervals, MSI facilitates a fine de-

livery of more faithful knowledge under real scenes. Such

full knowledge representation capability of MSI has been

substantiated to greatly enhance the performance of various

computer vision tasks, such as superresolution [13], inpaint-

ing [7], and tracking [22].

In real cases, however, due to the acquisition errors con-

ducted by sensor, an MSI generally contains certain extent

of noises, which inclines to negatively influence the subse-
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Figure 1. Flowchart of the proposed MSI denoising algorithm.

quent MSI processing tasks. Therefore, MSI denoising has

become a critical and inevitable issue for MSI analysis.

The most significant issue of recovering a clean MSI

from its corruption is to rationally extract prior structure

knowledge under a to-be-reconstructed MSI, and fully uti-

lize such prior information to rectify the configuration of

the recovered MSI in a sound manner. The most com-

monly utilized prior structures for MSI recovery include its

global correlation along spectrum (GCS) and nonlocal self-

similarity across space (NSS). Specifically, the GCS prior

indicates that an MSI contains a large amount of spectral

redundancy and the images obtained across the spectrum of

an MSI are generally highly correlated. And the NSS prior

refers to the fact that for a given local fullband patch (FBP)

of an MSI (which is stacked by patches at the same loca-

tion of MSI over all bands), there are many FBPs similar

to it. It has been extensively shown that such two kinds of

prior knowledge are very helpful for various MSI recovery

problems [13, 7, 35, 23].

Albeit demonstrated to be effective to certain MSI de-

noising cases, most of the current methods to this task on-

ly consider one such prior knowledge in their model, like

BM3D [8] only considering the NSS and PARAFAC [16])

only considering the GCS. Their potential capacity thus still

has room to be further enhanced. The TDL [23] method was

recently proposed by taking both priors into account and

achieved the state-of-the-art MSI denoising performance.

The method, however, coarsely encodes the NSS prior un-

der relatively small amount of FBP clusters while does not
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fully consider the entire NSS knowledge across all FBPs.

Besides, its realization is relatively heuristic and short of a

concise formulation to abstract such latent priors underlying

an MSI, which makes the methodology hard to be extended

to other MSI recovery problems.

To alleviate this problem, this paper proposes a new MSI

denoising technique which not only fully takes both GCS

and NSS knowledge into account, but also is with a concise

formulation to regularize such priors which can be easily

transferred to general MSI restoration problems. Specifical-

ly, we regard each FBP as a matrix with a spatial mode and a

spectral mode, and build a 3-order tensor by stacking all its

non-local similar FBPs (see the upper part of Fig. 1). Such

a tensor naturally forms a faithful representation to deliv-

er both the latent GCS and NSS knowledge underlying the

MSI. Since GCS and NSS imply the correlation along the

spectral and FBP-number modes of this tensor, respective-

ly, the key problem is then transferred to how to construct a

rational sparsity measure to reflect such correlation and use

it to regularize the MSI recovery from corrupted one.

To handle the aforementioned issues, this paper makes

the following three-fold contributions. Firstly, a new mea-

sure for tensor sparsity is proposed. Beyond traditional ten-

sor sparsity measures without an evident physical meaning,

this new measure can be easily interpreted as a regulariza-

tion for the number of rank-1 Kronecker bases for repre-

senting this tensor. Such measure not only unifies the tradi-

tional understanding of sparsity from vector (1-order tensor)

to matrix (2-order tensor), but also encodes both sparsity in-

sights delivered by the most typical Tucker and CP low-rank

decomposition for a general tensor. We thus call it intrinsic

tensor sparsity (ITS) for convenience.

Secondly, we propose a new tensor-based denoising

model by performing tensor recovery with the proposed ITS

measure to encode the inherent spatial and spectral correla-

tion of the nonlocal similar FBP groups. The model is with

a concise formulation and can be easily extended to solving

other MSI recovery problems.

Thirdly, we design an effective alternating direction

method of multipliers (ADMM)[2, 15] based algorithm for

solving the model, and deduce the closed-form equations

for updating each involved parameter, which makes it able

to be efficiently implemented. Experiments on benchmark

and real MSI data show that the proposed method achieves

the state-of-the-art performance on MSI denoising among

various quality assessments.

Throughout the paper, we denote scalar, vector, matrix

and tensor as non-bold lower case, bold lower case, upper

case and calligraphic upper case letters, respectively.

2. Notions and preliminaries

A tensor, shown as a multi-dimensional data array, is

a multilineal mapping over a set of vector spaces. A ten-

sor of order N is denoted as A ∈ R
I1×I2×···IN . Ele-

ments of A are denoted as ai1···in···iN where 1 ≤ in ≤
In. The mode-n vectors of an N -order tensor A are the

In dimensional vectors obtained from A by varying index

in while keeping the others fixed. The unfolding matrix

A(n) = unfoldn(A) ∈ R
In×(I1···In−1,In+1···IN ) is com-

posed by taking the mode-n vectors of A as its columns.

This matrix can also be naturally seen as the mode-n flat-

tening of the tensor A. Conversely, the unfolding matrices

along the nth mode can be transformed back to the tensor

by A = foldn
(

A(n)

)

, 1 ≤ n ≤ N . The n-rank A, denoted

as rn, is the dimension of the vector space spanned by the

mode-n vectors of A.

The product between matrices can be generalized to the

product of a tensor and a matrix. The mode-n product of a

tensor A ∈ R
I1×I2×···In by a matrix B ∈ R

Jn×In , denoted

by A ×n B, is an N -order tensor C ∈ R
I1×···×Jn×···IN ,

whose entries are computed by

ci1×···in−1×jn×in+1...iN =
∑

in
ai1···in···iN bjnin .

The mode-n product C = A ×n B can also be calcu-

lated by the matrix multiplication C(n) = BA(n), fol-

lowed by the re-tensorization of undoing the mode-n flat-

tening. The Frobenius norm of an tensor A is ‖A‖F =
(

∑

i1,···in |ai1,···iN |2
)1/2

.

We call a tensor A ∈ R
I1×I2×...IN is rank-1 if it can be

written as the outer product of N vectors, i.e.,

A = a
(1) ◦ a(2) ◦ · · · ◦ a(N),

where ◦ represents the vector outer product. This means

that each element of the tensor is the product of the corre-

sponding vector elements:

ai1,i2,··· ,iN = a
(1)
i1

a
(2)
i2

...a
(N)
iN

∀ 1 ≤ in ≤ In. (1)

such a simple rank-1 tensor is also called a Kronecker basis

in the tensor space. For example, in a 2D case, a Kronecker

basis is a rank-1 matrix expressed as the outer product uvT

of two vectors u and v.

3. Related work

Approaches for MSI denoising can be generally grouped

into two categories: the 2D extended approach and the

tensor-based approach.

2D extended approach. As a classical problem in com-

puter vision, 2D image denoising has been studied for more

than 50 years and a large amount of methods have been pro-

posed on this problem, such as NLM [3], K-SVD [10] and

BM3D [8]. These methods can be directly applied to MSI

denoising by treating the images located at different bands

separately. This extension, however, neglects the intrinsic

properties of MSIs and generally cannot attain good perfor-
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mance in real applications. Another more reasonable ex-

tension is specifically designed for the patch-based image

denoising methods, which takes the small local patches of

the image into consideration. By building small 3D cubes

of an MSI instead of 2D patches of a traditional image,

the corresponding 3D-cube-based MSI denoising algorithm

can then be constructed [24]. The state-of-the-art of 3D-

cube-based approach is represented by the BM4D method

[18, 19], which exploits the 3D NSS of MSI to remove

noise in similar MSI 3D cubes collaboratively. The defi-

ciency of these methods is that they neglect the useful GCS

knowledge underlying an MSI, and still have not essentially

reached the full potential for handling this task.

Tensor-based approach. An MSI is composed by a s-

tack of 2D images, which can be naturally regarded as a

3-order tensor. The tensor-based approach implements the

MSI denoising by applying the tensor factorization tech-

niques to the MSI tensor. Along this research line, Renard

et al. [21] presented a low-rank tensor approximation (LR-

TA) method by employing the Tucker decomposition [27]

to obtain the low-rank approximation of the input MSI. Liu

et al. [16] designed the PARAFAC method by utilizing the

parallel factor analysis [6]. The advantage of both methods

is that they take the correlation between MSI images over

different bands into consideration, and try to eliminate the

spectral redundancy of MSIs. However, they have not u-

tilized the NSS prior of MSI. The state-of-the-art method

of this category is represented by tensor dictionary learning

(TDL) [23] which takes both GCS and NSS under MSI into

account. This method, however, only consider NSS among

several FBP clusters while not fully utilize the fine-grained

NSS structures across all FBPs over the tensor space. There

is thus still much room for further improvement.

4. MSI denoising by intrinsic tensor sparsity

regularization

4.1. GCS and NSS modeling for MSI denoising

We first briefly introduce a general NSS-based frame-

work for image denoising, which has been adopted by mul-

tiple literatures in image cases [12], aiming to reconstruct

the original image Z from its noisy observation Y . Separat-

ing Y into a set of image patches Ω = {yi ∈ R
d}Ni=1 (where

d is the pixel number of each patch) with overlap, and by

performing block matching [8], a set of patches which is

most similar to each patch yi can be extracted. By stacking

all these patches to form a matrix Yi ∈ R
d×n, where n is

the number of these nonlocal similar patches, we can then

recover the corresponding original nonlocal-similar-patch-

matrix Xi through

Xi = argmin
X

S(X) +
γ

2
‖Yi −X‖2F , (2)

where S(X) denotes the 2-order sparsity measure on the

true matrix X and γ is the compromise parameter. The ma-

trix rank is generally recognized as a rational sparsity mea-

sure for matrix [31], and it as well as its relaxations can

thus be readily adopted into the model for implementation.

When all Xis are obtained, the recovered image Z can then

be estimated by aggregating Xi at each pixels.

The similar denoising model can be easily extended to

MSI cases. Denote dH , dW and dS as the spatial height,

spatial width and spectral band number of an MSI, and we

can express it as a 3-order tensor Y ∈ R
dH×dW×dS with

two spatial modes and one spectral mode. By sweeping

all across the MSI with overlaps, we can build a group

of 2D FBPs {Pij}1≤i≤dH−dh,1≤j≤dW−dw
⊂ R

dhdw×dS

(dh < dH , dw < dW ) to represent the MSI, where each

band of a FBP is ordered lexicographically as a column

vector. We can now reformulate all FBPs as a group of

2D patches ΩY = {Yi ∈ R
dhdw×dS}Ni=1, where N =

(dH − dh + 1)× (dW − dw + 1) is the number of patches

over the whole MSI. According to the NSS of MSI, for a

given local FBP Yi, we can find a collection of FBPs simi-

lar to it from ΩY in a non-local neighboring area of it. De-

note Yi ∈ R
dhdw×dS×dn (where dn is the number of non-

local similar FBPs of Yi) as the 3-order tensor stacked by

Yi and its non-local similar FBPs in ΩY , and then both GC-

S and NSS knowledge are well preserved and reflected by

such representation, along its spectral and nonlocal-similar-

patch-number modes, respectively.

Then, similar to the image cases, we can estimate the cor-

responding true nonlocal similarity FBPs Xi from its cor-

ruption Yi by solving the following optimization problem:

Xi = argmin
X

S(X ) +
γ

2
‖Yi −X‖2F , (3)

where S(X ) is the sparsity measure imposed on X . By ag-

gregating all reconstructed Xis we can reconstruct the es-

timated MSI. The whole denoising progress can be easily

understood by seeing Fig. 1. Obviously, the key issue now

is to design an appropriate tensor sparsity measure on X .

Different from the vector/matrix cases, where the sparsi-

ty measure can be easily constructed as nonzero-element-

number/matrix-rank based on very direct intuitions, con-

structing a rational tensor sparsity is a relatively more diffi-

cult task. Most of the current work directly extended the 2-

order sparsity measure to higher-order cases by easily ame-

liorating it as the weighted sum of ranks (or its relaxations)

along all tensor modes [16, 25, 29, 5], i.e.,

S(X ) =
∑d

i=1
wirank(X(i)). (4)

Such formulation, however, on one hand is short of a clear

physical meaning for general tensors, and on the other hand

lacks a consistent relationship with previous defined spar-

sity measures for vector/matrix. To ameliorate this issue,
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Figure 2. (a) An MSI X0 ∈ R
80×80×26 (upper) and a nearly

perfect reconstruction X0 (PSNR=61.25). (b) Core tensor S ∈
R

69×71×17 of X . Note that 78.4% of its elements are zeroes and

more than half of them are very small. (c) Typical Slices of S,

where deeper color of the element represents a larger value of it.

we attempt to propose a new measure for more rationally

assessing tensor sparsity.

4.2. Intrinsic tensor sparsity measure

We first briefly review two particular forms of tensor

decomposition, both containing insightful understanding of

tensor sparsity: Tucker decomposition [27] and CP decom-

position [14].

In Tucker decomposition, an N -order tensor X ∈
R

I1×I2×...×IN is written as the following form:

X = S ×1 U1 ×2 U2 ×3 ...×N UN , (5)

where S ∈ R
r1×r2×3...×NrN is called the core tensor, and

Ui ∈ R
Ii×ri(1 ≤ i ≤ N) is composed by the ri orthogonal

bases along the ith mode of X . Tucker decomposition con-

siders the low-rank property of the vector subspace unfold-

ed along each of its modes. Such a sparsity understanding

naturally conducts a block shape for the coefficients affili-

ated from all combinations of tensor subspace bases, repre-

sented by the core tensor term. It, however, has not consid-

ered the fine-grained sparsity configurations inside this co-

efficient tensor. Specifically, if we assume that the subspace

bases along each mode have been sorted based on their im-

portance for tensor representation, then the value of ele-

ments of the core tensor will show an approximate descend-

ing order along each of tensor modes. Along some modes,

the corresponding tensor factor might have strong correla-

tions across data, and then the coefficients in the core tensor

along this mode tends to be decreasing very fast to zeroes.

While for those modes with comparatively weaker correla-

tion, albeit still approximately decreasing along the mode,

the core tensor elements might be all non-zeroes. Fig. 2 de-

picts a visualization for facilitating the understanding of the

above analysis. Tucker decomposition cannot well describe

such an elaborate information, and thus is still hard to con-

duct a rational measure for comprehensively delivering the

sparsity knowledge underlying a tensor.

CP decomposition attempts to decompose an N -order

tensor X ∈ R
I1×I2×...×IN into the linear combination of

a series of Kroneker bases, written as:

X =
∑r

i=1
ciVi =

∑r

i=1
civi1 ◦ vi2 ◦ ... ◦ viN , (6)

where ci denotes the coefficient imposed on the Kroneker

basis Vi. By arranging each Kroneker coefficients ci into its

corresponding i1, i2, · · · , iN position of a core tensor, CP

decomposition can be equivalently formulated as a Tuck-

er decomposition form. Yet the core tensor will always be

highly sparse since generally only a small amount of affil-

iated combinations of tensor bases are involved. Opposite

to Tucker cases, such a tensor reformulation, however, ig-

nores the low-rank property of the tensor subspaces along

its modes. An extreme example is that when the core ten-

sor obtained from a CP transformation on a tensor is ap-

proximately diagonal, the subspace along each tensor mode

induced from this decomposition will not be low-rank, al-

though the core tensor is very sparse. This deviates most

real scenarios that the data representation along a meaning-

ful factor should always has an evident correlation and thus

a low-rank structure. Such a useful knowledge, however,

cannot be well expressed by CP decomposition. By inte-

grating rational sparsity understanding elements from both

decomposition forms, we attempt to construct the following

quantity, which we call intrinsic tensor sparsity (ITS) for

convenience, for measuring the sparsity of a tensor X :

S(X ) = t ‖S‖0 + (1− t)
∏N

i=1
rank

(

X(i)

)

, (7)

where S is the core tensor of X obtained from the Tucker

decomposition, 0 < t < 1 is a tradeoff parameter to com-

promising the role of two terms.

Note that the new ITS measure takes both sparsity in-

sights of Tucker and CP decompositions into consideration.

Its first term constrains the number of Kronecker bases for

representing the objective tensor, complying with intrinsic

mechanism of the CP decomposition. The second term is

physically interpreted as the size of the core tensor in Tuck-

er decomposition. It inclines to regularize the low-rank

property of the subspace spanned upon each tensor mode.

Such integrative consideration in the new measure facili-

tates a tensor with both inner sparsity configurations in the

core tensor and low-rank property of the tensor subspace a-

long each tensor mode, and thus is hopeful to alleviate the

limitations in both Tucker and CP decompositions as afore-

mentioned.

It should be noted that very recently, Zhao et al. [34]

also proposed a tensor sparsity measure by only consider-

ing the second (rank-product) term of (7). Such a measure

can only provide a coarse regularization for rectifying the

tensor sparsity (i.e., the block size of the core tensor) while
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cannot finely rectify the fine-grained tensor sparsity inside

the coefficient tensor. The neglection of the important CP

sparsity element tends to evidently degenerate its MSI de-

noising performance, as verified by our experiments.

Apart from the above insight of the proposed ITS mea-

sure, its superiority also lies on the following two aspects as

compared with the conventional tensor sparsity measures.

On one hand, it has a natural physical interpretation. As

shown in Fig. 2, when the rank of a d-order tensor along its

ith mode is ri, the second term of the proposed tensor spar-

sity (7) not only corresponds to the low-rank sparsity of the

subspace spanned upon each tensor mode, but also corre-

sponds to a upper bound of the number of Kronecker bases

for representing this tensor, and the first term further more

accurately describes the intrinsic Kronecker basis number

utilized for this tensor representation. This means that the

new tensor sparsity quantity represents a reasonable prox-

y for measuring the capacity of tensor space, in which the

entire tensor located, by taking Kronecker basis as the fun-

damental representation component.

On the other hand, it unifies the sparsity measures

throughout vector to matrix. The sparsity of a vector is con-

ventionally measured by the number of the bases (from a

predefined codebook/dictionary) that can represent the vec-

tor as the linear combination of them. Since in vector case, a

Kronecker basis is just a common vector, this measurement

is just the number of Kronecker bases required to represent

the vector, which fully complies with our proposed sparsity

measure and its physical meaning. The sparsity of a matrix

is conventionally assessed by its rank. Actually there are the

following results: (1) if the ranks of a matrix along its two

dimensions are r1 and r2, respectively, then r1 = r2 = r,

implying the second term in (7) is r2; (2) if the matrix is

with rank r, then it can be represented as r Kronecker bases

(each with form uv
T ), implying the first term in (7) is r.

This means that the ITS measure is also proportional to the

conventional one in matrix cases.

4.3. Relaxation

Note that the l0 and rank terms in (7) can only take dis-

crete values, and lead to combinatorial optimization prob-

lem in applications which is hard to solve. We thus relax

the ITS as a log-sum form to ease computation. Such relax-

ation has been substantiated as an effective strategy to solve

l0 [4, 26] or rank minimization [17, 12] problems.

Instead of solving (3), our aim is then changed to solving

the following optimization problem:

min
X

Pls (S) + λ
∏3

j=1
P ∗
ls

(

X(j)

)

+
β

2
‖Yi −X‖F , (8)

where λ = 1−t
t ,β = γ

t , and

Pls (A) =
∑

i1,i2,i3
log(|ai1,i2,i3 |+ ε),

P ∗
ls (A) =

∑

j
log (σj(A) + ε),

which are the log-sum forms of the vector and matrix spar-

sities, respectively. ε is a small positive number, and σj(A)
defines the jth singular of A ∈ R

m×n. An efficient algo-

rithm is then proposed in the following section to solve the

problem.

4.4. ADMM algorithm

We apply the alternating direction method of multipliers
(ADMM) [2, 15], an effective strategy for solving large s-
cale optimization problems, to solving (8). Firstly, we need
to introduce 3 auxiliary tensors Mj (j = 1, 2, 3) and equiv-
alently reformulate (8) as follows:

min
S,Mj,Uj

Pls(S)+λ
3
∏

j=1

P ∗
ls

(

Mj(j)

)

+
β

2
‖Yi−S×1U1×2U2×3U3‖

2
F

s.t. S ×1 U1 ×2 U2 ×3 U3−Mj = 0, UT
j Uj =I, j=1, 2, 3,

where Mj(j) = unfoldj(Mj). Then its augmented La-

grangian function is with the form:

Lµ(S,M1,M2,M3, U1, U2, U3) = Pls (S) + λ
∏3

j=1
P ∗
ls

(

Mj(j)

)

+
β

2
‖Yi − S ×1 U1 ×2 U2 ×3 U3‖

2
F

+
∑3

j=1
〈S ×1 U1 ×2 U2 ×3 U3 −Mj ,Pj〉

+
∑3

j=1

µ

2
‖S ×1 U1 ×2 U2 ×3 U3 −Mj‖

2
F
,

where Pjs are the Lagrange multipliers, µ is a positive s-

calar and Uj must satisfy UT
j Uj = I , ∀j = 1, 2, 3. Now we

can solve the problem within the ADMM framework.

With other parameters fixed, S can be updated by solving

minS Lµ(S,M1,M2,M3, U1, U2, U3), which is equiva-

lent to the following sub-problem:

min
S

bPls (S) +
1

2
‖S ×1 U1 ×2 U2 ×3 U3 −O‖2F , (9)

where b = 1
β+3µ and O =

βYi+
∑

j (µMj−Pj)

β+3µ . Since

‖D × V ‖2F = ‖D‖2F , ∀ V TV = I, (10)

by mode-j producting UT
j on each mode, Eq. (9) turns to

the following problem:

min
S

bPls (S) +
1

2
‖S − Q‖2F , (11)

where Q = O×1U
T
1 ×2U

T
2 ×3U

T
3 , which has been proved

to have a closed-form solution [11]:

S+ = Db,ε(Q). (12)

Here, Db,ε(·) is the thresholding operator defined as:

Db,ε(x) =

{

0 if c2 ≤ 0

sign(x)
(

c1+
√
c2

2

)

if c2 > 0
(13)

with that c1 = |x| − ε, c2 = (c1)
2 − 4(b− ε|x|).
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When updating Uj (1 ≤ j ≤ 3) with other pa-

rameters fixed, we can also deduce its closed-form so-

lution. Let’s take U1 as an example. With U2, U3

and other parameters fixed, we update U1 by solving

minU1
Lµ(S,M1,M2,M3, U1, U2, U3), which is equiva-

lent to the following problem:

min
U1

‖S ×1 U1 ×2 U2 ×3 U3 −O‖2F . (14)

By employing (10) and the following equation

B = D ×n V ⇐⇒ B(n) = V D(n), (15)

we can obtain that (14) is equivalent to

max
UT

1 U1=I
〈A1, U1〉, (16)

where A1 =
(

O(1)unfold1(S ×2 U2 ×3 U3)
)

. It can be eas-

ily seen that U2 and U3 can be updated by solving

max
UT

k
Uk=I

〈Ak, Uk〉. (17)

We can use the following theorem to obtain the closed-from

solution of (17).

Theorem 1. ∀ A ∈ R
m×n, the following problem:

max
UTU=I

〈A,U〉, (18)

has the closed-form solution Û = BCT , where A =
BDCT is the SVD decomposition of A.

The proof of Theorem 1 can be found in supplementary

material. We can now update Uk by the following formula:

U+
k = BkCk

T . (19)

where Ak = BkDCT
k is the SVD decomposition of Ak.

With Mj(j 6= k) and other parameters fixed, Mk can

be updated by solving the following problem:

min
Mk

akP
∗
ls

(

Mk(k)

)

+
1

2
‖L+

1

µ
Pk −Mk‖2F , (20)

where ak =
(

λ
µ

∏

j 6=k P
∗
ls

(

Mj(j)

)

)

and L = S ×1 U1 ×2

U2 ×3 U3. This sub-problem can be easily solved by virtue

of the following theorem:

Theorem 2. Given Y ∈ R
m×n, m ≥ n, let Y =

Udiag(σ1, σ2, ..., σn)V
T be the SVD of Y . Let 0 < λ,

0 < ε < min
(√

λ, λ
σ1

)

, and define di as the i-th singu-

lar value of X , the solution to the following problem:

min
X∈Rm×n

λ
∑n

i=1
log(di + ε) +

1

2
‖X − Y ‖2F (21)

can be expressed as X̂ = Udiag(d̂1, d̂2, ..., d̂n)V
T , where

d̂i = Dλ,ε(σi), i = 1, 2, ..., n.

The proof of Theorem 2 can be found in the supplemen-

tary material. We can now update Mk by following equa-

tion:

M+
k = foldk

(

V1Σak
V T
2

)

, (22)

where Σak
=diag (Dak,ε(σ1),Dak,ε(σ2), · · ·,Dak,ε(σn)) and

V1diag(σ1, σ2, ..., σn)V
T
2 is the SVD of unfoldk

(

L+ 1
µ
Pk

)

.

The proposed algorithm for MSI denoising can be sum-

marized in Algorithm 1, and we denote the proposed

method as ITSReg (Intrinsic Tensor Sparsity Regulariza-

tion) for convenience.

Algorithm 1 Algorithm for MSI Denoising

Input: Noisy MSI Y

1: Initialize X (0) = Y
2: for l = 1 : L do

3: Calculate Y(l) = X (l−1) + δ
(

Y − X (l−1)
)

4: Construct the entire FBP set Ω
Y(l)

5: Construct the set of similar FBP group set {Yi}
K
i=1

6: for each FBP groups Yi do

7: //Solve the problem (8) by ADMM

8: while not convergence do

9: Update S by (12)

10: Update Uk by (19), ∀k = 1, 2, 3
11: Update Mk by (22), ∀k = 1, 2, 3
12: Update the multipliers and let µ := ρµ
13: end while

14: Calculate Xi = S ×1 U1 ×2 U2 ×3 U3

15: end for

16: Aggregate {Xi}
K
i=1 to form the clean image X (l)

17: end for

Output: Denoised MSI X (L)

5. Experimental results

To validate the effectiveness of the proposed method for

MSI denoising, we perform both simulated and real data ex-

periments and compare the experimental results both quan-

titatively and visually.

5.1. Simulated MSI denoising

Columbia Datasets. The Columbia MSI Database [32]1

is utilized in our simulated experiment. This MSI data set

contains 32 real-world scenes of a wide variety of real-

world materials and objects, each with spatial resolution

512 × 512 and spectral resolution 31, which includes full

spectral resolution reflectance data collected from 400nm

to 700nm in 10nm steps. In our experiments, each of these

MSIs is scaled into the interval [0, 1].
Implementation details. Additive Gaussian noises with

variance v are added to these testing MSIs to generate the

noisy observations with v ranging from 0.1 to 0.3. There

are two parameters λ and β in our model. The former λ is

used to balance two parts in the same order of magnitude,

and we just simply set λ = 10 in all our experiments, β

is dependent on v, and we let β = cv, where c is set as

the constant 10−3. More clarifications on such parameter

settings are provided in the supplementary material.

1http://www1.cs.columbia.edu/CAVE/databases/

multispectral
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(b)  Noisy image (a) Clean  image

(g) PARARAFAC (h) ANLM3D (i) TDL

(d) BwBM3D

(j) BM4D

 (c) BwK-SVD (e) 3DK-SVD (f) LRTA

(k) ITSReg

Figure 3. (a) The image at two bands (400nm and 700nm) of chart and staffed toy; (b) The corresponding images corrupted by Gaussian

noise with variance v = 0.2, (c)-(k) The restored image obtained by the 9 utilized MSI denoising methods. Two demarcated areas in each

image are amplified at a 4 times larger scale and the same degree of contrast for easy observation of details.

Table 1. Average performance of 9 competing methods with re-

spect to 4 PQIs. For both settings, the results are obtained by av-

eraging through the 32 scenes and the varied parameters.

PSNR SSIM FSIM ERGAS

v = 0.1, 0.15, 0.2, 0.25, 0.3
Nosiy image 14.59±3.38 0.06±0.05 0.47±0.15 1151.54±534.17

BwK-SVD 27.77±2.01 0.47±0.10 0.81±0.06 234.58±66.73

BwBM3D 34.00±3.39 0.86±0.06 0.92±0.03 116.91±42.76

3DK-SVD 30.31±2.23 0.69±0.06 0.89±0.03 176.58±43.78

LRTA 33.78±3.37 0.82±0.09 0.92±0.03 120.79±46.06

PARAFAC 31.35±3.42 0.72±0.12 0.89±0.04 160.66±66.95

ANLM3D 34.12±3.19 0.86±0.07 0.93±0.03 117.01±35.79

TDL 35.71±3.09 0.87±0.07 0.93±0.04 96.21±34.36

BM4D 36.18±3.03 0.86±0.07 0.94±0.03 91.20±29.70

ITSReg 37.78±3.32 0.90±0.07 0.96±0.02 77.35±30.16

Comparison methods. The comparison methods in-

clude: band-wise K-SVD [1]2 and band-wise BM3D [8]3,

representing state-of-the-arts for the 2D extended band-

wise approach; 3D-cube K-SVD [10]4, ANLM3D [20]5

and BM4D [18, 19]6, representing state-of-the-arts for

the 2D extended 3D-cube-based approach; LRTA [21],

PARAFAC[16]7 and TDL[23]8 representing state-of-the-

arts for the tensor-based approach. All parameters involved

2http://www.cs.technion.ac.il/˜elad/software
3http://www.cs.tut.fi/˜foi/GCF-BM3D/
4http://www.cs.technion.ac.il/˜elad/software
5http://personales.upv.es/jmanjon/denoising/

arnlm.html
6http://www.cs.tut.fi/˜foi/GCF-BM3D/
7http://www.sandia.gov/tgkolda/TensorToolbox/

index-2.5.html
8http://gr.xjtu.edu.cn/web/dymeng/2

in the competing algorithms were optimally assigned or au-

tomatically chosen as described in the reference papers.

Evaluation measures. Four quantitative picture qual-

ity indices (PQI) are employed for performance evalua-

tion, including peak signal-to-noise ratio (PSNR), structure

similarity (SSIM [30]), feature similarity (FSIM [33]), er-

reur relative globale adimensionnelle de synthèse (ERGAS

[28]). PSNR and SSIM are two conventional PQIs in image

processing and computer vision. They evaluate the similar-

ity between the target image and the reference image based

on MSE and structural consistency, respectively. FSIM em-

phasizes the perceptual consistency with the reference im-

age. The larger these three measures are, the closer the tar-

get MSI is to the reference one. ERGAS measures fidelity

of the restored image based on the weighted sum of MSE

in each band. Different from the former three measures, the

smaller ERGAS is, the better does the target MSI estimate

the reference one.

Performance evaluation. For each noise setting, all

of the four PQI values for each competing MSI denoising

methods on all 32 scenes have been calculated and recorded.

Table 1 lists the average performance (over different scenes

and noise settings) of all methods. From these quantita-

tive comparison, the advantage of the proposed method can

be evidently observed. Specifically, our method can signifi-

cantly outperform other competing methods with respective

to all evaluation measures, e.g., the PSNR obtained by our
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(a) Original image

(f) PARARAFAC (g) ANLM3D (h) TDL

(c) BwBM3D

(i) BM4D

 (b) BwK-SVD (d) 3DK-SVD (e) LRTA

(j) ITSReg

Figure 4. (a) The Original image located at the 1st band in HYDICE urban data set; (b)-(j) The restored image obtained by the 9 utilized

MSI denoising methods. The demarcated areas in each image are amplified at a 2.5 times larger scale and the same degree of contrast.

method are more than 1.5 larger and ERGAS is around 10 s-

maller than the second best methods. More details are listed

in our supplementary material.

To further depict the denoising performance of our

method, we show in Fig. 3 two bands in chart and stuffed

toy that centered at 400nm (the darker one) and 700nm (the

brighter one), respectively. From the figure, it is easy to

observe that the proposed method evidently performs better

than other competing ones, both in the recovery of finer-

grained textures and coarser-grained structures. Especially,

when the band energy is low, most competing methods be-

gin to fail, while our method still performs consistently well

in such harder cases.

5.2. Real MSI denoising

In this section, urban area HYDICE MSI of natural

scenes9 is used in our experiments. The original MSI is of

the size 304 × 304 × 210. As the bands 76, 100-115, 130-

155 and 201-210 are seriously polluted by the atmosphere

and water absorption and can provide little useful informa-

tion, we remove them and leave the remaining test data with

a size of 304× 304× 157.

We scale the MSI into the interval [0, 1], and employed

the similar implementation strategies and parameter settings

for all competing methods as previous simulated experi-

ments. Since the noise level is unknown for real noisy im-

ages, we use an off-the-shelf noise estimation method [9] to

estimate it.

We illustrate the experimental results at the first band of

the test MSI in Fig. 4. It can be easily observed that the im-

age restored by our method is capable of properly remov-

ing the stripes and Gaussian noise while finely preserving

the structure underlying the MSI. BM3D and BM4D can

perform comparatively better in stripes noise removing, but

their results contain evident blurry area , where our method

finely recovers the details hiding under the corrupted MSI.

9http://www.tec.army.mil/Hypercube
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Figure 5. PSNR (a) and SSIM (b) of resorted MSI obtained by the

3 sparsity measures over different noise levels.

5.3. Analysis of the new tensor sparsity measure

Since our the proposed ITS measure is composed of t-

wo terms, we give some experimental analysis to verify if

both terms could contribute to the denoising performance.

To this aim, we perform MSI denoising within the proposed

framework, while using sparsity measure S(X ) containing

only its first term, second term (the work of Zhao et al. [34]

corresponds to only considering the second term) and both

terms. Fig. 5 shows the denoising results on face MSI from

Columbia Dataset, in terms of PSNR and SSIM, with dif-

ferent noise levels (similar tendency can also be observed

on other MSIs and with other evaluation measures). It is

easy to see that the proposed ITS benefits from both of its

terms. Only considering either one tends to degenerate the

performance of MSI denoising.

6. Conclusion

In this paper, we have provided a new MSI denoising

model under a newly designed sparsity measure which fine-

ly encodes the correlation insights under the known Tucker

and CP decomponstion for tensors. We have also designed

an efficient ADMM algorithm to solve the model. The ex-

periments on simulated and real MSI denoising have sub-

stantiated the superiority of the proposed method beyond

state-of-the-arts.
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