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Abstract

Much recent progress in Vision-to-Language (V2L) prob-

lems has been achieved through a combination of Convolu-

tional Neural Networks (CNNs) and Recurrent Neural Net-

works (RNNs). This approach does not explicitly represent

high-level semantic concepts, but rather seeks to progress

directly from image features to text. In this paper we in-

vestigate whether this direct approach succeeds due to, or

despite, the fact that it avoids the explicit representation of

high-level information. We propose a method of incorporat-

ing high-level concepts into the successful CNN-RNN ap-

proach, and show that it achieves a significant improvement

on the state-of-the-art in both image captioning and visual

question answering. We also show that the same mechanism

can be used to introduce external semantic information and

that doing so further improves performance. We achieve the

best reported results on both image captioning and VQA on

several benchmark datasets, and provide an analysis of the

value of explicit high-level concepts in V2L problems.

1. Introduction

Vision-to-Language problems present a particular chal-

lenge in Computer Vision because they require translation

between two different forms of information. In this sense

the problem is similar to that of machine translation be-

tween languages. In machine language translation there

have been a series of results showing that good performance

can be achieved without developing a higher-level model of

the state of the world. In [3, 7, 47], for instance, a source

sentence is transformed into a fixed-length vector represen-

tation by an ‘encoder’ RNN, which in turn is used as the

initial hidden state of a ‘decoder’ RNN that generates the

target sentence.

Despite the supposed equivalence between an image and

1000 words, the manner in which information is represented

in each data form could hardly be more different. Human

language is designed specifically so as to communicate in-

formation between humans, whereas even the most care-
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Figure 1. Our attribute based V2L framework. The image analy-

sis module learns a mapping between an image and the semantic

attributes through a CNN. The language module learns a mapping

from the attributes vector to a sequence of words using an LSTM.

fully composed image is the culmination of a complex set

of physical processes over which humans have little con-

trol. Given the differences between these two forms of in-

formation, it seems surprising that methods inspired by ma-

chine language translation have been so successful. These

RNN-based methods which translate directly from image

features to text, without developing a high-level model of

the state of the world, represent the current state of the art

for key Vision-to-Language (V2L) problems, such as image

captioning and visual question answering.

This approach is reflected in many recent successful

works on image captioning, such as [6, 10, 23, 36, 50, 55].

Current state-of-the-art captioning methods use a CNN as

an image ‘encoder’ to produce a fixed-length vector repre-

sentation [25, 29, 45, 48], which is then fed into the ‘de-

coder’ RNN to generate a caption.

Visual Question Answering (VQA) is a more recent chal-

lenge than image captioning. In this V2L problem an image

and a free-form, open-ended question about the image are
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presented to the method which is required to produce a suit-

able answer [2]. Same as image captioning, the current state

of the art in VQA [13, 35, 43] relies on passing CNN fea-

tures to an RNN language model.

Our main contribution is to consider the question: what

value do explicit high level concepts have in V2L problems?

That is, given that significant performance improvements

have been achieved by moving to models which directly

pass from image features to text, should we give up on high-

level concepts in V2L altogether? We investigate particu-

larly the impact that adding high-level information to the

CNN-RNN framework has upon performance. We do this

by inserting an explicit representation of attributes of the

scene which are meaningful to humans. Each semantic at-

tribute corresponds to a word mined from the training image

descriptions, and represents higher-level knowledge about

the content of the image. A CNN-based classifier is trained

for each attribute, and the set of attribute likelihoods for an

image forms a high-level representation of image content.

An RNN is then trained to generate captions, or answer

questions, on the basis of the likelihoods.

Our second contribution is a fully trainable attribute

based neural network that can be applied to multiple V2L

problems which yields significantly better performance than

current state-of-the-art approaches. For example, in the Mi-

crosoft COCO Captioning Challenge, we produce a BLEU-

1 score of 0.73, which is the state of the art on the leader-

board at the time of writing. Our final model also pro-

vides the state-of-the-art performance on several recently

released VQA datasets. For instance, our system yields a

WUPS@0.9 score of 71.15, compared with the current state

of the art of 66.78, on the Toronto COCO-QA single word

question answering dataset. On the VQA (test-standard),

an open-answer task dataset, our method achieves 55.84%

accuracy, while the baseline is 54.06%. Moreover, with

an expansion from image-sourced attributes to knowledge-

sourced through WordNet (see Section 5.3), we further im-

prove the accuracy to 57.62%.

2. Related Work

Image Captioning The problem of annotating images

with natural language at the scene level has long been stud-

ied in both computer vision and natural language process-

ing. Hodosh et al. [17] proposed to frame sentence-based

image annotation as the task of ranking a given pool of

captions. Similarly, [15, 19, 40] posed the task as a re-

trieval problem, but based on co-embedding of images and

text in the same space. Recently, Socher et al. [46] used

neural networks to co-embed image and sentences together

and Karpathy et al. [23] co-embedded image crops and sub-

sentences. Neither attempted to generate novel captions.

Attributes have been used in many image captioning

methods to fill the gaps in predetermined caption templates.

Farhadi et al. [12], for instance, used detections to infer a

triplet of scene elements which is converted to text using a

template. Li et al. [30] composed image descriptions given

computer vision based inputs such as detected objects, mod-

ifiers and locations using web-scale n-grams. A more so-

phisticated CRF-based method that uses attribute detections

beyond triplets was proposed by Kulkarni et al. [26]. The

advantage of template-based methods is that the resulting

captions are more likely to be grammatically correct. The

drawback is that they still rely on hard-coded visual con-

cepts and suffer the implied limits on the variety of the out-

put. Instead of using fixed templates, more powerful lan-

guage models based on language parsing have been devel-

oped, such as [1, 27, 28, 39].

Fang et al. [11] won the 2015 COCO Captioning Chal-

lenge with an approach that is similar to ours in as much

as it applies a visual concept (i.e., attribute) detection pro-

cess before generating sentences. They first learned 1000
independent detectors for visual words based on a multi-

instance learning framework and then used a maximum en-

tropy language model conditioned on the set of visually de-

tected words directly to generate captions. Differently, our

visual attributes act as a high-level semantic representation

for image content which is fed into an LSTM which gen-

erates target sentences based on a much larger word vocab-

ulary. More importantly, the success of their model relies

on a re-scoring process from a joint image-text embedding

space. To what extent the high-level concepts help in image

captioning (and other V2L tasks) is not discussed in their

work. Instead, this is the main focus of this paper.

In contrast to the aforementioned two-stage methods, the

recent dominant trend in V2L is to use an architecture which

connects a CNN to an RNN to learn the mapping from im-

ages to sentences directly. Mao et al. [36], for instance, pro-

posed a multimodal RNN (m-RNN) to estimate the proba-

bility distribution of the next word given previous words

and the deep CNN feature of an image at each time step.

Similarly, Kiros et al. [24] constructed a joint multimodal

embedding space using a powerful deep CNN model and an

LSTM that encodes text. Karpathy et al. [22] also proposed

a multimodal RNN generative model, but in contrast to [36],

their RNN is conditioned on the image information only at

the first time step. Vinyals et al. [50] combined deep CNNs

for image classification with an LSTM for sequence mod-

eling, to create a single network that generates descriptions

of images. Chen et al. [6] learned a bi-directional mapping

between images and their sentence-based descriptions us-

ing RNN. Xu et al. [53] proposed a model based on visual

attention, as well as You et al. [56]. Jia et al. [18] applied

additional retrieved sentences to guide the LSTM in gener-

ating captions. Devlin et al. [9] combined both maximum

entropy (ME) language model and RNN to generate cap-

tions.
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Interestingly, this end-to-end CNN-RNN approach ig-

nores the image-to-word mapping which was an essential

step in many of the previous image captioning systems de-

tailed above [12, 26, 30, 54]. The CNN-RNN approach has

the advantage that it is able to generate a wider variety of

captions, can be trained end-to-end, and outperforms the

previous approach on the benchmarks. It is not clear, how-

ever, what the impact of bypassing the intermediate high-

level representation is, and particularly to what extent the

RNN language model might be compensating. Donahue et

al. [10] described an experiment, for example, using tags

and CRF models as a mid-layer representation for video

to generate descriptions, but it was designed to prove that

LSTM outperforms an SMT-based approach [44]. It re-

mains unclear whether the mid-layer representation or the

LSTM leads to the success. Our paper provides several

well-designed experiments to answer this question.

We thus here show not only a method for introducing

a high-level representation into the CNN-RNN framework,

and that doing so improves performance, but we also inves-

tigate the value of high-level information more broadly in

V2L tasks. This is of critical importance at this time because

V2L has a long way to go, particularly in the generality of

the images and text it is applicable to.

Visual Question Answering Visual question answering

is one of the more challenging, and interesting, V2L tasks

as it requires answering previously unseen questions about

image content [2, 13, 32, 33, 34, 35, 43, 59]. This is as

opposed to the vast majority of challenges in Computer Vi-

sion in which the question is specified long before the pro-

gram is written. Both Gao et al. [13] and Malinowski et

al. [35] used RNNs to encode the question and output the

answer. Ren et al. [43] focused on questions with a single-

word answer and formulated the task as a classification

problem using an LSTM, and released a single-word answer

dataset (Toronto COCO-QA). Ma et al. [32] used CNNs to

both extract image features and sentence features, and fuse

the features together with a multi-modal CNN. Antol et al.

[2] proposed a large-scale open-ended VQA dataset based

on COCO, which is called VQA. They also provided sev-

eral baseline methods which combined both image features

(CNN extracted) and question features (LSTM extracted) to

obtain a single embedding and further built a MLP (Multi-

Layer Perceptron) to obtain a distribution over answers.

3. An Attribute-based V2L Model

Our approach is summarized in Figure 1. The model

includes an image analysis part and a language generation

part. In the image analysis part, we first use supervised

learning to predict a set of attributes, based on words com-

monly found in image captions. We solve this as a multi-

label classification problem and train a corresponding deep

CNN by minimizing an element-wise logistic loss function.

Secondly, a fixed length vector Vatt(I) is created for each

image I , whose length is the size of the attribute set. Each

dimension of the vector contains the prediction probability

for a particular attribute. In the language generation part,

we apply an LSTM-based sentence generator. Our attribute

vector Vatt(I) is used as an input to this LSTM. For dif-

ferent tasks, we have different language models. For image

captioning, we follow [50] to generate sentences from an

LSTM; for single-word question answering, as in [43], we

use the LSTM as a classifier providing a likelihood for each

potential answer; for open-ended question answering, we

use an encoder LSTM to encode questions while the second

LSTM decoder uses the attribute vector Vatt(I) to generate

a sentence based answer. A baseline model is also imple-

mented for each of the three tasks. In the baseline model,

as in [13, 43, 50] we use a pre-trained CNN to extract im-

age features CNN(I) which are fed into the LSTM directly.

For the sake of completeness a fine-tuned version of this ap-

proach is also implemented. The baseline method is used as

a counterpart to verify the effectiveness of the intermediate

attribute prediction layer for each task.

3.1. The Attribute Predictor

We first build an attributes vocabulary regardless of the

final tasks (i.e. image captioning, VQA). Unlike [26, 54],

that use a vocabulary from separate hand-labeled training

data, our semantic attributes are extracted from training cap-

tions and can be any part of speech, including object names

(nouns), motions (verbs) or properties (adjectives). The

direct use of captions guarantees that the most salient at-

tributes for an image set are extracted. We use the c most

common words in the training captions to determine the at-

tribute vocabulary. In contrast to [11], our vocabulary is not

tense or plurality sensitive (done manually), for instance,

‘ride’ and ‘riding’ are classified as the same seman-

tic attribute, similarly ‘bag’ and ‘bags’. This signifi-

cantly decreases the size of our attribute vocabulary. We fi-

nally obtain a vocabulary with 256 attributes. Our attributes

represent a set of high-level semantic constructs, the totality

of which the LSTM then attempts to represent in sentence

form. Generating a sentence from a vector of attribute like-

lihoods exploits a much larger set of candidate words which

are learned separately (see Section 3.2 for more details).

Given this attribute vocabulary, we can associate each

image with a set of attributes according to its captions. We

then wish to predict the attributes given a test image. Be-

cause we do not have ground truth bounding boxes for at-

tributes, we cannot train a detector for each using the stan-

dard approach. Fang et al. [11] solved a similar problem

using a Multiple Instance Learning framework [58] to de-

tect visual words from images. Motivated by the relatively

small number of times that each word appears in a caption,

we instead treat this as a multi-label classification problem.
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Figure 2. Attribute prediction CNN: the model is initialized from

VggNet [45] pre-trained on ImageNet. The model is then fine-

tuned on the target multi-label dataset. Given a test image, a set

of proposal regions are selected and passed to the shared CNN,

and finally the CNN outputs from different proposals are aggre-

gated with max pooling to produce the final multi-label prediction,

which gives us the high-level image representation, Vatt(I)

To address the concern that some attributes may only apply

to image sub-regions, we follow Wei et al. [51] in designing

a region-based multi-label classification framework.

Figure 2 summarizes the attribute prediction network.

In contrast to [51], which uses AlexNet [25] as the ini-

tialization of the shared CNN, we use the more powerful

VggNet [45] pre-trained on ImageNet [8]. This model has

been widely used in image captioning tasks [6, 11, 22, 36].

The shared CNN is then fine-tuned on the target multi-label

dataset (our image-attribute training data). In this step, the

output of the last fully-connected layer is fed into a c-way

softmax. The c = 256 here represents the attribute vocab-

ulary size. In contrast to [51] who employs the squared

loss, we find that element-wise logistic loss function per-

forms better. Suppose that there are N training examples

and yi = [yi1, yi2, ..., yic] is the label vector of the ith im-

age, where yij = 1 if the image is annotated with attribute

j, and yij = 0 otherwise. If the predictive probability vec-

tor is pi = [pi1, pi2, ..., pic], then the cost function to be

minimized is

J =
1

N

N∑

i=1

c∑

j=1

log(1 + exp(−yijpij)) (1)

During the fine-tuning process, the parameters of the last

fully connected layer (i.e. the attribute prediction layer) are

initialized with a Xavier initialization [14]. The learning

rates of ‘fc6’ and ‘fc7’ of the VggNet are initialized as

0.001 and the last fully connected layer is initialized as 0.01.

All the other layers are fixed during training. We executed

40 epochs in total and decreased the learning rate to one

tenth of the current rate for each layer after 10 epochs. The

momentum is set to 0.9. The dropout rate is set to 0.5.

To predict attributes based on regions, we first extract

hundreds of proposal windows from an image. However,

considering the computational inefficiency of deep CNNs,

the number of proposals processed needs to be small. Sim-

ilar to [51], we first apply the normalized cut algorithm to

group the proposal bounding boxes into m clusters based

on the IoU scores matrix. The top k hypotheses in terms

of the predictive scores reported by the proposal generation

algorithm are kept and fed into the shared CNN. In con-

trast to [51], we also include the whole image in the hy-

pothesis group. As a result, there are mk + 1 hypotheses

for each image. We set m = 10, k = 5 in all experiments.

We use Multiscale Combinatorial Grouping (MCG) [42] for

the proposal generation. Finally, a cross hypothesis max-

pooling is applied to integrate the outputs into a single pre-

diction vector Vatt(I).

3.2. Language Generator

Similar to [22, 36, 50], we propose to train a language

generation model by maximizing the probability of the cor-

rect description given the image. However, rather than us-

ing image features directly as in typically the case, we use

the semantic attribute prediction probability Vatt(I) from

the previous section as the input. Suppose that {S1, ..., SL}
is a sequence of words. The log-likelihood of the words

given their context words and the corresponding image can

be written as:

log p(S|Vatt(I)) =

L∑

t=1

log p(St|S1:t−1, Vatt(I)) (2)

where p(St|S1:t−1, Vatt(I)) is the probability of generat-

ing the word St given attribute vector Vatt(I) and previous

words S1:t−1. We employ the LSTM [16], a particular form

of RNN, to model this. See Figure 3 for different language

generators designed for multiple V2L tasks.

Image Captioning Model The LSTM model for image

captioning is trained in an unrolled form. More formally,

the LSTM takes the attributes vector Vatt(I) and a sequence

of words S = (S0, ..., SL, SL+1), where S0 is a special start

word and SL+1 is a special END token. Each word has

been represented as a one-hot vector St of dimension equal

to the size of words dictionary. The words dictionaries are

built based on words that occur at least 5 times in the train-

ing set, which lead to 8791 words on MS COCO datasets.

Note it is different from the semantic attributes vocabulary

Vatt. The training procedure is as following (see Figure 3

(a)) : At time step t = −1, we set x−1 = WeaVatt(I)
and hinitial = ~0, where Wea is the learnable attributes em-

bedding weights. The LSTM memory state is initialized

to the range (−0.1, 0.1) with a uniform distribution. This

gives us an initial LSTM hidden state h−1 which can be

used in the next time step. From t = 0 to t = L, we

set xt = WesSt and the hidden state ht−1 is given by the

previous step, where Wes is the learnable word embedding
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Figure 3. Language generators for different types of tasks: (a) Im-

age Captioning, (b) VQA-single word, (c) VQA-sentence. red ar-

row indicates our attributes input Vatt(I) while blue dash arrow

shows the baseline method input CNN(I).

weights. The probability distribution pt+1 over all words

is then computed by the LSTM feed-forward process. Fi-

nally, on the last step when SL+1 represents the last word,

the target label is set to the END token.

Our training objective is to learn parameters Wea, Wes

and all parameters in LSTM by minimizing the following

cost function:

C = −
1

N

N∑

i=1

log p(S(i)|Vatt(I
(i))) + λθ · ||θ||22 (3)

= −
1

N

N∑

i=1

L(i)+1∑

t=1

log pt(S
(i)
t ) + λθ · ||θ||22 (4)

where N is the number of training examples and L(i) is the

length of the sentence for the i-th training example. pt(S
(i)
t )

corresponds to the activation of the Softmax layer in the

LSTM model for the i-th input and θ represents model pa-

rameters, λθ · ||θ||22 is a regularization term. We use SGD

with mini-batches of 100 image-sentence pairs. The at-

tributes embedding size, word embedding size and hidden

state size are all set to 256 in all the experiments. The learn-

ing rate is set to 0.001 and clip gradients is 5. The dropout

rate is set to 0.5.

Question Answering Model For question answering,

a triplet {Vatt(I), {Q1, ..., QL}, {A1, ..., AT }} is given,

whereas L and T is the length of the question and answer,

separately. We define it to be a single-word answering prob-

lem when T = 1 and a sentence-based problem if T > 1.

For the single-word answering problem, the LSTM takes

the attributes score vector Vatt(I) and a sequence of input

words of the question Q = (Q1, ..., QL). The feed-forward

process is the same as image captioning, except that an

END token is not required anymore. Instead, we use the

word generated by the last word of the question as the pre-

dicted answer (see Figure 3 (b)). Hence, the cost function is

C = − 1
N

∑N

i=1 log p(A
(i))+λθ·||θ||

2
2, where N is the num-

ber of training examples. log p(A(i)) is the log-probability

distribution over all candidate answers that is computed by

the last LSTM cell, given the previous hidden state and the

last word of question QL.

For the sentence-based question answering, we have a

question encoding LSTM and an answer decoding LSTM.

However, different from Gao et al. [13] using two sepa-

rates LSTMs for question and answer, weights between our

encoding and decoding LSTMs are shared. The informa-

tion stored in the LSTM memory cells of the last word in

the question is treated as the representation of the sentence.

And its hidden state will be used as the initial state of the an-

swering LSTM part. Moreover, different from [13, 35, 43]

who use CNN features directly, we use our attributes repre-

sentations Vatt(I) as the input for decoding LSTM (see Fig-

ure 3 (c)). The cost function of sentence-based question an-

swering is C = − 1
N

∑N

i=1

∑T (i)+1
t=1 log pt(A

(i)
t )+λθ ·||θ||

2
2,

where T (i) + 1 is the length of the answer plus one END

token for the i-th training example. According to training

configuration, the learning rate is set to 0.0005 and other

parameters are same as image captioning configuration.

4. Image Captioning

4.1. Dataset

There are several datasets which consist of images and

sentences describing them in English. We mainly report re-

sults on the popular Microsoft COCO [31] dataset. Results

on Flickr8k [17] and Flickr30k [57] can be found in the sup-

plementary material. MS COCO contains 123,287 images,

and each image is annotated with 5 sentences. Because

most previous work in image captioning [10, 11, 22, 36, 50,

53] is not evaluated on the official test split of MS COCO,

for fair comparison, we report results with the widely used

publicly available splits in the work of [22], which use 5000

images for validation, and 5000 for testing. We further

tested on the actual MS COCO test set consisting of 40775

images (human captions for this split are not available pub-

licly), and evaluated them on the COCO evaluation server.

4.2. Evaluation

Metrics We report results with the frequently used BLEU

metric and sentence perplexity (PPL). BLEU [41] scores

are originally designed for automatic machine translation

where they measure the fraction of n-grams (up to 4-gram)

that are in common between a hypothesis and a reference or

set of references. Here we compare against 5 references.

Perplexity is a standard measure for evaluating language
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models which measures how many bits on average would be

needed to encode each word given the language model, so a

low PPL means a better language model. Additionally, we

evaluate our model based on the metrics METEOR [4], and

CIDEr [49]. All scores (except PPL) are computed with

the coco-evaluation code [5].

Baselines To verify the effectiveness of our attribute rep-

resentation, we provide a baseline method. The baseline

framework is the same as that proposed in section 3.2, ex-

cept that the attributes vector Vatt(I) is replaced by the last

hidden layer of CNN directly (see the blue arrow in Fig-

ure 3). Various CNN architectures are applied in the base-

line method to extract image features, such as VggNet[45]

and GoogLeNet[48]. For the VNet+LSTM, we use the

second fully connected layer (fc7), which has 4096 di-

mensions. In VNet-PCA+LSTM, PCA is applied to de-

crease the feature dimension from 4096 to 1000. For the

GNet+LSTM, we use the GoogleNet model provided in the

Caffe Model Zoo [20] and the last average pooling layer is

employed, which is a 1024-d vector. VNet+ft+LSTM ap-

plies a VggNet that has been fine-tuned on the target dataset,

based on the task of image-attributes classification.

Our Approaches We evaluate several variants of our ap-

proach: Att-GT+LSTM models use ground-truth attributes

as the input while Att-CNN+LSTM uses the attributes

vector Vatt(I) predicted by the attributes prediction net-

work in section 3.1. We also evaluate an approach Att-

SVM+LSTM with linear SVM (C = 1) predicted attributes

vector. SVM classifiers are trained to divide positive at-

tributes from those negatives given an image-attributes cor-

respondence. We use the second fully connected layer of

the fine-tuned VggNet to feed the SVM. To infer the sen-

tence given an input image, we use Beam Search, which

iteratively considers the set of b best sentences up to time t

as candidates to generate sentences at time t + 1, and only

keeps the best b results. We set the b as 5.

Results Table 1 reports image captioning results on the

COCO. It is not surprising that Att-GT+LSTM model per-

forms best, since ground truth attributes labels are used.

We report the results just to show the advances of adding

an intermediate image-to-word mapping stage. Ideally, if

we are able to train a strong attributes predictor which

gives us a good enough estimation of attributes, we could

obtain an outstanding improvement comparing with both

baselines and state-of-the-arts. Indeed, apart from using

ground truth attributes, our Attributes-CNN+LSTM mod-

els generate the best results over all evaluation metrics. Es-

pecially comparing with baselines, which do not contain

an attributes prediction layer, our final models bring sig-

nificant improvements, nearly 15% for B-1 and 30% for

CIDEr on average. VNet+ft+LSTM model performs bet-

State-of-art B-1 B-2 B-3 B-4 M C P

NeuralTalk [22] 0.63 0.45 0.32 0.23 0.20 0.66 -

Mind’s Eye [6] - - - 0.19 0.20 - 11.60

NIC [50] - - - 0.28 0.24 0.86 -

LRCN [10] 0.67 0.49 0.35 0.25 - - -

Mao et al.[36] 0.67 0.49 0.34 0.24 - - 13.60

Jia et al.[18] 0.67 0.49 0.36 0.26 0.23 0.81 -

MSR [11] - - - 0.26 0.24 - 18.10

Xu et al.[53] 0.72 0.50 0.36 0.25 0.23 - -

Jin et al.[21] 0.70 0.52 0.38 0.28 0.24 0.84 -

Baseline-CNN(I)

VNet+LSTM 0.61 0.42 0.28 0.19 0.19 0.56 13.58

VNet-PCA+LSTM 0.62 0.43 0.29 0.19 0.20 0.60 13.02

GNet+LSTM 0.60 0.40 0.26 0.17 0.19 0.55 14.01

VNet+ft+LSTM 0.68 0.50 0.37 0.25 0.22 0.73 13.29

Ours-Vatt(I)

Att-GT+LSTM‡ 0.80 0.64 0.50 0.40 0.28 1.07 9.60

Att-SVM+LSTM 0.69 0.52 0.38 0.28 0.23 0.82 12.62

Att-CNN+LSTM 0.74 0.56 0.42 0.31 0.26 0.94 10.49

Table 1. BLEU-1,2,3,4, METEOR, CIDEr and PPL metrics com-

pared with other state-of-the-art methods and our baseline on MS

COCO dataset. ‡ indicates ground truth attributes labels are used,

which (in gray ) will not participate in rankings.

COCO-TEST B-1 B-2 B-3 B-4 M R CIDEr

5-Refs

Ours 0.73 0.56 0.41 0.31 0.25 0.53 0.92

Human 0.66 0.47 0.32 0.22 0.25 0.48 0.85

MSR [11] 0.70 0.53 0.39 0.29 0.25 0.52 0.91

m-RNN [36] 0.68 0.51 0.37 0.27 0.23 0.50 0.79

LRCN [10] 0.70 0.53 0.38 0.28 0.24 0.52 0.87

40-Refs

Ours 0.89 0.80 0.69 0.58 0.33 0.67 0.93

Human 0.88 0.74 0.63 0.47 0.34 0.63 0.91

MSR [11] 0.88 0.79 0.68 0.57 0.33 0.66 0.93

m-RNN [36] 0.87 0.76 0.64 0.53 0.30 0.64 0.79

LRCN [10] 0.87 0.77 0.65 0.53 0.32 0.66 0.89

Table 2. COCO evaluation server results. M and R stands for ME-

TEOR and ROUGE-L. Results using 5 references and 40 refer-

ences captions are both shown. We only list the comparison results

that have been officially published in the corresponding references.

ter than other baselines because of the fine-tuning on the

target dataset. However, they do not perform as good as our

attributes-based models. Att-SVM+LSTM under-performs

Att-CNN+LSTM means our region-based attributes pre-

diction network performs better than the SVM classifier.

Our final model also outperforms current state of the arts

listed in tables. We also evaluate an approach that com-

bines CNN features and attributes vector together as the in-

put of the LSTM, but we find this approach (B-1=0.71) is

not as good as using attributes vector alone in the same set-

ting. In any case, above experiments show that an interme-

diate image-to-words stage (i.e. attributes prediction layer)

brings us significant improvements. Results on Flickr8k and

Flickr30k can be found in the supplementary material, as

well as some qualitative results.

We further generated captions for the images in the

COCO test set containing 40,775 images and evaluated

them on the COCO evaluation server. These results are

shown in Table 2. We achieve 0.73 on B-1, and surpass

human performances on 13 of the 14 metrics reported. We

are the best results on 3 evaluations metrics (B-1,2,3) on the
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Ours NIC[50] LRCN[10] m-RNN[36] NeuralTalk[22]

VIS Input Dim 256 1000 1000 4096 4096

RNN Dim 256 512 1000×4 256 300-600

Table 3. Visual feature input dimension and properties of RNN.

Our visual features has been encoded as a 256-d attributes score

vector while other models need higher dimensional features to

feed to RNN. According to the unit size of RNN, we achieve state-

of-the-art using a relatively small dimensional recurrent layer.

server leaderboard at the time of writing this paper. We also

achieve the top-5 ranking on the other evaluation metrics.

Table 3 summarizes some properties of recurrent layers

employed in some recent RNN-based methods. We achieve

state-of-the-art using a relatively small dimensional visual

input feature and recurrent layer. Lower dimension of visual

input and RNN normally means less parameters in the RNN

training stage, as well as lower computation cost.

5. Visual Question Answering

5.1. Dataset

We report VQA results on two recently publicly avail-

able visual question answering datasets, both are created

based on MS COCO. Toronto COCO-QA dataset [43] con-

tains four types of questions, specifically the object, num-

ber, color and location. The answers are all single-word.

We use this dataset to examine our single-word question

answering model. VQA [2] is a much larger dataset which

contains 614,163 questions. These questions and answers

are sentence-based and open-ended. The training and test-

ing split follows COCO official split, which contains 82,783

training images, 40,504 validation images and 81,434 test

images, each has 3 questions and 10 answers. We use the

official test split for our testing.

5.2. Evaluation

Our experiments in question answering are designed to

verify the effectiveness of introducing the intermediate at-

tribute layer. Hence, apart from listing several state of art

methods, we focus on comparing with a baseline method,

which only uses the second fully connected layer (fc7) of

the VggNet (and a fine-tuned VggNet) as the input.

Table 4 reports results on the Toronto COCO-QA

dataset, within which all answers are a single-word. Besides

the accuracy value (the proportion of correct answered test-

ing questions to the total testing questions), the Wu-Palmer

similarity (WUPS) [52] is also used to measure the per-

formance of different models. The WUPS calculates the

similarity between two words based on the similarity be-

tween their common subsequence in the taxonomy tree. If

the similarity between two words is greater than a threshold

then the candidate answer is assumed to be right. We fol-

low [32, 43] in setting the threshold as 0.9 and 0.0. GUESS

is a simple baseline to predict the most common answer

Toronto COCO-QA Acc WUPS@0.9 WUPS@0.0

GUESS[43] 6.65 17.42 73.44

VIS+BOW[43] 55.92 66.78 88.99

VIS+LSTM[43] 53.31 63.91 88.25

2-VIS+BLSTM[43] 55.09 65.34 88.64

Ma et al.[32] 54.94 65.36 88.58

BaseLine

VggNet-LSTM 50.73 60.37 87.48

VggNet+ft-LSTM 58.34 67.32 89.13

Our-Proposal

Att-GT+LSTM‡ 67.66 75.76 93.63

Att-CNN+LSTM 61.38 71.15 91.58

Table 4. Accuracy, WUPS@0.9 and WUPS@0.0 metrics com-

pared with other state-of-the-art methods and our baseline on the

Toronto COCO-QA dataset. Each image has one question and

only a single word answer is given for each. ‡ indicates that ground

truth attributes labels were used, and thus that the method does not

participate in rankings.

from the training set based on the question type. The modes

are ‘cat’, ‘two’, ‘white’, and ‘room’ for the four types of

questions. VIS+BOW [43] performs multinomial logistic

regression based on image features and a BOW vector ob-

tained by summing all the word vectors of the question.

VIS+LSTM [43] has one LSTM to encode the image and

question, while 2-VIS+BLSTM has two image feature in-

put points, at the start and the end of the sentences. Ma et

al. [32] encoded both images and questions by CNN. From

the Table 4, we clearly see that our attribute-based model

outperforms the baselines and all state-of-the-art methods

by a significant degree, which proves the effectiveness of

our attribute-based representation for V2L tasks.

Table 5 summarizes the results on the test split of VQA

dataset. In contrast to the above single-word question an-

swering task, here we follow [2], and measure performance

by recording the percentage of answers in agreement with

ground truth from human subjects. Antol et al. [2] pro-

vided a baseline for this dataset using a Q+I method, which

encodes the image with CNN features and questions with

LSTM representation. Then they train a softmax neural

network classifier with a single hidden layer and the out-

put space is the 1000 most frequent answers in the train-

ing set. Human performance is also given in [2] for refer-

ence. VNet+ft+LSTM is the model with fine-tuned Vg-

gNet features. It is slightly less accurate than our ex-

plicit attributes based model Att-CNN+LSTM, but the gap

is small. LSTM Q+I [2] can be treated as our baseline

Test-dev Test-standard

All Y/N Num Others All Y/N Num Others

Q+I [2] 52.64 75.55 33.67 37.37 - - - -

LSTM Q [2] 48.76 78.20 35.68 26.59 48.89 78.12 34.94 26.99

LSTM Q+I [2] 53.74 78.94 35.24 36.42 54.06 79.01 35.55 36.80

Human [2] - - - - 83.30 95.77 83.39 72.67

VNet+ft+LSTM 55.03 78.19 35.47 39.68 55.34 78.10 35.30 40.27

Att-CNN+LSTM 55.57 78.90 36.11 40.07 55.84 78.73 36.08 40.60

Att-KB+LSTM 57.46 79.77 36.79 43.10 57.62 79.72 36.04 43.44

Table 5. Results on test-dev and test-standard split of VQA dataset

compared with [2].
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as it uses CNN features as the input to the LSTM, while

LSTM Q only provides questions as the input. Our at-

tributes based model outperforms LSTM Q+I nearly in all

cases, especially when the answer types are ‘others’. Our

hypothesis is that this performance increase occurs because

the separately-trained attribute layer discards irrelevant im-

age information. This ensures that the LSTM does not in-

terpret irrelevant variations in the expression of the text as

relating to irrelevant image details, and try to learn a map-

ping between them.

However, there is still a big gap between our proposed

models and the human performance. After looking into de-

tails, we notice that accuracies on some question types such

as ‘why’ are very low. These kinds of questions are hard to

answer because commonsense knowledge and reasoning is

normally required. Zhu et al. [59] cast a MRF model into

a Knowledge Base representation to answer commonsense-

related visual questions. Our semantic attribute representa-

tion offers hope of a solution, however, as it can be used

as a key by which to source other, external information.

In the following experiment, we propose to expand our

image-based attributes set to a knowledge-based attributes

set through a large lexical ontology - the WordNet.

5.3. Attribute Expansion using WordNet

WordNet [38] records a variety of relationships between

words, some of which we hope to use to address the many

ways of expressing the same idea in natural language. The

most frequently encoded relation is the hyponymy (such as

bed and bunkbed). Meronymy represents the part-whole

relation. Verb synsets are arranged into hierarchies (tro-

ponyms) (such as buy-pay). All these relationships are

defined based on commonsense knowledge.

To expand our image-sourced attributes to knowledge-

sourced information, we first select candidate words from

WordNet. Candidate words must fulfill two selection crite-

ria. The first is that the word must directly linked with an

arbitrary word in our attribute vocabulary Vatt through the

WordNet. Secondly, the candidate word must appear in at

least 5 training question examples. In our experiment, given

M = 256 image-sourced attributes, we finally mined a

knowledge-sourced vocabulary Vkb with N = 9762 words,

and Vkb has covered all the words in Vatt. Then, a sim-

ilarity matrix S ∈ R
M×N is computed based on a pre-

trained word2vec model [37], where Sij gives both seman-

tic and syntactic similarity between word i in Vatt and word

j in Vkb. Given an image I and its image-sourced at-

tribute vector Vatt(I) = (v
(1)
att, ..., v

(i)
att, ..., v

(M)
att ) predicted

by the attribute prediction network, the jth component of

the knowledge-sourced attribute vector is obtained by a

max-pooling operator v
(j)
kb = max(v

(j)
1 , ..., v

(j)
i , ..., v

(j)
M ),

where v
(j)
i = v

(i)
att × Sij . The final knowledge-sourced at-

Question-Type Vgg+LSTM Att-CNN+LSTM Att-KB+LSTM

why 3.04 7.77 9.88

what kind 24.15 41.22 45.23

which 31.28 36.60 37.28

is the 71.49 73.22 74.59

is this 73.00 75.26 76.63

Table 6. Results on the open-answer task for some commonsense

reasoning question types on validation split of VQA.

tributes vector Vkb(I) = (v
(1)
kb , ..., v

(j)
kb , ..., v

(N)
kb ) will be fed

into the LSTM to generate answers.

Table 6 compares results using image-sourced attributes

vs. knowledge-sourced on the validation split of VQA

dataset. We gain a significant improvement in common-

sense reasoning related questions. For example, on the

‘why’ questions, we achieve 9.88%. Our hypothesis is that

this reflects the fact that indexing into WordNet in this man-

ner provides some independence as to the exact manner of

expression used in the text, but also adds extra information.

In answering questions about beds and hammocks, for ex-

ample, it is useful to know that both are related to sleep.

The overall performance of this Att-KB+LSTM model on

the test split of VQA can be found in the Table 5. Our over-

all result is 57.62% accuracy, which performs better than the

model of Att-CNN+LSTM (the model before attributes ex-

pansion) and achieves the state-of-the-art result on the VQA

dataset.

6. Conclusion

We have described an investigation into the value of high

level concepts in V2L problems, motivated by the belief that

without an explicit representation of the content of an image

it is very difficult to answer reason about it. In the process

we examined the effect of introducing an intermediate at-

tribute prediction layer into the predominant CNN-LSTM

framework. We implemented three attribute-based models

for the tasks of image captioning, single-word question an-

swering and sentence question answering.

We have shown that an explicit representation of im-

age content improves V2L performance, in all cases. In-

deed, at the time of writing this paper, our image captioning

model outperforms the state of the art on several captioning

datasets. Our question answering models perform best on

the Toronto COCO-QA datasets, producing an accuracy of

61.38%. It also achieves the state of the art on the VQA,

at 57.62%, which is a big improvement over the baseline.

Moreover, attribute representation enables access to high-

level commonsense knowledge, which is necessary for an-

swering commonsense reasoning related questions.
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