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Abstract

Feature learning with deep models has achieved impres-

sive results for both data representation and classification

for various vision tasks. Deep feature learning, however,

typically requires a large amount of training data, which

may not be feasible for some application domains. Transfer

learning can be one of the approaches to alleviate this prob-

lem by transferring data from data-rich source domain to

data-scarce target domain. Existing transfer learning meth-

ods typically perform one-shot transfer learning and often

ignore the specific properties that the transferred data must

satisfy. To address these issues, we introduce a constrained

deep transfer feature learning method to perform simulta-

neous transfer learning and feature learning by performing

transfer learning in a progressively improving feature space

iteratively in order to better narrow the gap between the tar-

get domain and the source domain for effective transfer of

the data from source domain to target domain. Further-

more, we propose to exploit the target domain knowledge

and incorporate such prior knowledge as constraint during

transfer learning to ensure that the transferred data satisfies

certain properties of the target domain.

To demonstrate the effectiveness of the proposed con-

strained deep transfer feature learning method, we apply

it to thermal feature learning for eye detection by transfer-

ring from the visible domain. We also applied the proposed

method for cross-view facial expression recognition as a

second application. The experimental results demonstrate

the effectiveness of the proposed method for both applica-

tions.

1. Introduction

Feature learning with deep models is an active research

area. Recent research has demonstrated that with feature

learning methods, effective features can be learnt for both

representation and classification of the input data for many

computer vision tasks including face recognition [20], ob-

ject detection [5], and scene classification [24]. Feature
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Figure 1. The framework of the proposed constrained deep transfer

feature learning method. The algorithm iteratively performs trans-

fer learning and feature learning in more and more deeper feature

spaces.

learning with deep model, however, typically requires a

large amount of training data. Hence, feature learning for

domains with scarce data is not feasible.

Transfer learning can be one of the approaches to address

this problem and help feature learning in the data-scarce tar-

get domain by transferring data or knowledge from data-

rich source domain. Transfer learning not only can com-

pensate for the lack of data in the target domain but can

also benefit the tasks in the target domain from the experi-

ence gained from the source domain. The transfer learning

techniques usually involve instance transfer, feature trans-

fer, model parameter transfer, or relational knowledge trans-

fer [12]. Those transfer learning techniques have been

used in natural language processing [1], document classi-

fication [23], etc. However, typical transfer learning tech-

niques usually perform one-shot transfer in a fixed or shal-

low feature space, while a fixed feature space may not ef-

fectively fill the semantic gap between the target and source

domains. Another issue with transfer learning is that it is

purely data driven, without adequately considering certain

inherent properties of the target data.

To tackle these issues, we propose a constrained deep

transfer feature learning method to perform simultaneous

transfer learning and feature learning by exploiting the

knowledge in both target and source domains. The general

framework is shown in Figure 1. Specifically, we propose
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to iteratively perform constrained transfer learning and fea-

ture learning in several increasingly deeper feature spaces to

gradually transfer the knowledge from source domain to tar-

get domain and learn the features in the target domain. Fur-

thermore, we propose to exploit the target domain knowl-

edge and incorporate such prior knowledge as constraint

during transfer learning to ensure that the transferred data

satisfies certain properties of the target domain principles.

The proposed framework has the following merits. First,

the progressive transfer allows the creation of several in-

termediate pseudo domains to bridge the gap between the

source and target domains. As the knowledge transfer con-

tinues, the intermediate domains gradually approach the tar-

get domain. Second, feature learning is performed at each

level as knowledge transfer happens, and it is also per-

formed progressively at a higher level as knowledge transfer

continues. Hence, knowledge transfer and feature learning

intertwine at each step, improving both feature learning and

knowledge transfer. Finally, by imposing constraints on the

transferred data, we can ensure the transferred data not only

possess certain desired characteristics but also to be seman-

tically meaningful.

The remaining part of this paper is organized as follows.

Section 2 reviews the related work. Section 3 discusses the

Restricted Boltzmann Machine and Deep Boltzmann Ma-

chine models. Section 4 introduces the proposed method.

Section 5 shows the experimental results. Section 6 con-

cludes the paper.

2. Related Work

Recently, an increasing number of works concentrate

on learning good representations for data with deep mod-

els. In [18], Salakhutdinov et al. build a hierarchical deep

model to learn features for object recognition and handwrit-

ten character recognition. Similar to the proposed method,

some works perform feature learning based on multimodal

data in different domains. For example, in [11], Ngiam et

al. use deep autoencoder to learn common features from

audio and video data. In [19], a deep multimodal DBM is

constructed to learn shared features for images and texts.

However, in contrast to the existing works that learn shared

representations across domains [11][19], our work focuses

on transferring knowledge from one domain to help feature

learning for another domain. Multimodal feature learning

methods usually require a lot of paired training data, while

we specifically handle the case where there is limited data

in the target domain and rich data in the source domain.

Transfer learning refers to the learning methods that

leverage the knowledge from the source domain to help

learning in the target domain. The transferred knowledge

includes training instances, features, model parameters and

relational knowledge [12]. For example, in [3], Triadaboost

is proposed to transfer the instances within the framework
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Figure 2. (a) RBM for data in one domain. (b) RBM for transfer

learning. (c) DBM model.

of adaboost. In [15], feature spaces are found that minimize

the inter-domain differences.

There is also work that combines transfer learning with

feature learning. In [23], deep features learned with the

DBM model using data in the source domain are selected

for document classification in the target domain. Different

from the work [23] that first learns deep features and then

transfers the learned features among multimodal data, our

work preforms transfer feature learning at multiple levels of

the deep architecture. More importantly, we add target do-

main knowledge to constrain the transfer learning and fea-

ture learning procedure.

3. Background

Before we introduce the proposed method, we first re-

view the Restricted Boltzmann Machine (RBM) and the

Deep Boltzmann Machine (DBM) models. RBM is a undi-

rected probabilistic graphical model (Figure 2 (a)) that cap-

tures the joint probability of the binary input data t (e.g. data

in the target domain) with multiple binary hidden nodes h.

p(t; ξ) =

∑
h exp(−E(t, h; ξ))

Z(ξ)
, (1)

− E(t, h; ξ) = t
T
Wh + c

T
t + b

T
h, (2)

where E(.) is the energy function, Z(ξ) =∑
t,h exp(−E(t, h; ξ)) is the partition function, and

ξ = {W, c, b} are the parameters. The conditional

probabilities are as follows:

p(ti = 1|h; ξ) = σ(
∑

j

Wi,jhj + ci), (3)

p(hj = 1|t; ξ) = σ(
∑

i

tiWi,j + bj), (4)

where σ(.) denotes the sigmoid function. Given the training

data, the parameters are learned by maximizing the log like-

lihood with stochastic gradient ascend algorithm approxi-

mated by the Contrastive Divergence (CD) algorithm [7].

DBM model [16] shown in Figure 2 (c) (assume two

layer model thereafter) consists of one layer of visible nodes

and multiple layers of binary hidden nodes. It represents the

probability of visible nodes (similar as Equation 1) with the

new energy function (ignoring the bias terms):

− E(t, h
1
, h

2; ξ1
, ξ

2) = t
T
W

1
h

1 + (h
1)T

W
2
h

2
, (5)
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Table 1. Notations. t, s and t̃ represent target data, source data, and

the pseudo target data transferred from the source domain. If nec-

essary, we use the superscript to indicate the pairwise (P)/unpaired

(U) data (corresponding data in both domains, and data in one do-

main).

Data Notations

Pairwise target and source data DataP = {tk, sk}
NP

k=1

Unpaired target data DataU
t = {ti}

NU
t

i=1

Unpaired source data DataU
s = {sj}

NU
v

j=1

Unpaired pseudo target data DataU

t̃
= {̃tn}

NU

t̃
n=1

where ξ = {ξ1, ξ2} are the parameters for different layers.

DBM is learned in a layer-wise manner and then jointly fine

tuned [16].

For feature learning using RBM or DBM, the hidden

nodes in the top layer are inferred for each input data us-

ing Equation 4 or the mean-field techniques [16], and they

are considered as the new feature representations. For trans-

fer learning, the input data is the concatenated data from the

source s and target domains t, and the RBM (Figure 2 (b))

will learn their joint probability distribution. Transfer learn-

ing can then be performed using the joint probability.

4. Constrained deep transfer feature learning

4.1. The general framework

The proposed constrained deep transfer feature learn-

ing method is motivated by the following intuitions. First,

it’s straightforward to think of directly applying the DBM

model illustrated in section 3 to learn the deep features for

the target domain. However, DBM learning usually requires

a lot of training data with variations, while there is limited

data in the target domain. But, if we can capture the joint

distribution of target and source data as a bridge between

the source and target domains, we could transfer additional

large amount of source data to the target domain as pseudo

data for further target domain feature learning. Second, be-

cause of the significant domain differences, one time trans-

fer may not be effective as stated above. Therefore, we pro-

pose to perform the transfer feature learning progressively

at different levels of feature spaces to generate intermediate

pseudo target spaces to gradually approach the final target

space. Third, because of the underlying mechanism that

produces the data, target data must follow certain properties

that we want to preserve in the transferred data. We hence

constrain the transfer learning to ensure the satisfaction of

these properties. Therefore, we propose the constrained

deep transfer feature learning method. Table 1 shows the

notations.

The general framework is shown in Figure 1 and Algo-

rithm 1. First, in the pre-training stage, we perform the

transfer learning and feature learning iteratively. In the

transfer learning step, we capture the joint distribution of

Algorithm 1: Constrained deep transfer feature learn-

ing

Data: Pairwise source and target data (DataP ); Unpaired

target data (DataU
t ); Unpaired source data (DataU

s ).

Result: Learned features: ξ1, ξ2,...

/* Pre-training stage */

for Layer l=1 to L do

/* Constrained transfer learning */
• Learn the joint probability of target and source data

p(tl, sl; θl) with constraint C(.; θl).

• Transfer the unpaired source data sl
i by sampling the pseudo

target data t̃
l

through p(tl|sl
i; θ

l).

/* Feature learning */

• Learn the features ξl with target and pseudo target data.

• Project the data to the learned feature space for further

constrained transfer feature learning.

end

/* Joint fine-tuning stage */

• Jointly fine-tune the features ξ1, ξ2, ... based on the deeply

transferred pseudo target data and the real target data.

target and source data p(t, s; θ) using RBM (Figure 2 (b))

as a bridge and transfer additional large amount of source

data as pseudo target data t̃ by sampling through the con-

ditional distribution p(t|s; θ). In addition, we impose con-

straint C(.; θ) in the learning. Third, in the feature learning

step, the transferred pseudo target data are combined with

the original target data (shaded area in Figure 1) for feature

learning using RBM (Figure 2 (a)). Then, the pseudo target

data and real target data are projected to the learned feature

space. In the new feature space of the next level, the trans-

ferred pseudo target data are considered as “source data” for

further constrained transfer feature learning in the next iter-

ation. Finally, similar as the DBM model (Figure 2 (c)), the

layer-wisely learned features with parameters ξ1, ξ2,... are

fine-tuned jointly based on the deeply transferred pseudo

target data and the real target data. The iterative trans-

fer learning and feature learning should converge, because

deep feature learning has been shown converging [8] and

the transfer learning also converges due to the gradually

reduced gaps between target domain and source domain

through the iterations. In the following subsections, we dis-

cuss each step in details.

4.2. Constrained semi­supervised transfer learning
in one layer

In this section, we first discuss how to learn the joint

probability of target and source data p(t, s; θ) in a semi-

supervised manner with constraints. Then, we discuss how

to generate the pseudo target data by sampling through

p(t|s; θ).
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4.2.1 Semi-supervised learning of the joint probability

In this work, we use RBM model illustrated in section 3 to

learn the joint probability of target and source data p(t, s; θ).
As shown in Figure 2 (b), the model defines the joint prob-

ability:

p(t, s; θ) =

∑
h exp(−E(t, s, h; θ))

Z(θ)
, (6)

where the energy function E(.) has similar format as that in

Equation 2.

Recall that RBM is usually learned with the Contrastive

Divergence (CD) algorithm [7]. However, standard CD

learning for the RBM model requires a large amount of

pairwise source and target data, which are limited in our

application. To tackle this problem, we propose the semi-

supervised learning method. Specifically, we learn the

model parameters by maximizing the log likelihood w.r.t the

pairwise source and target data DataP , the unpaired target

data DataU
t , and the unpaired source data DataU

s .

θ
∗ = arg max

θ
L(θ; Data) (7)

L(θ; Data) = L(θ; Data
P ) + αL(θ; Data

U
t ) + βL(θ; Data

U
s )
(8)

L(θ; Data
P ) =

1

NP

NP∑

k=1

log(p(tk, sk; θ)) (9)

L(θ; Data
U
t ) =

1

NU
t

NU
t∑

i=1

log(p(ti; θ)) (10)

L(θ; Data
U
s ) =

1

NU
s

NU
s∑

j=1

log(p(sj ; θ)) (11)

Here, α and β are two parameters that balance different

terms. p(t; θ) and p(s; θ) in Equation 10 and Equation 11

are the marginal distributions of data in one domain by sum-

ming out the missing data in the other domain.

Following the CD algorithm, we solve the optimization

problem in Equation 7 using gradient ascent algorithm. The

gradient of model parameters for each log likelihood term

is calculated as:

∂L(θ; Data)

∂θ
= −〈

∂E

∂θ
〉Pdata

+ 〈
∂E

∂θ
〉Pmodel

, (12)

where 〈.〉Pdata
and 〈.〉Pmodel

represent the data dependent

and model dependent expectations.

In the CD algorithm [7], to approximately calculate the

data dependent expectation 〈.〉Pdata
, we need to sample

the unknown variables from the data dependent probabili-

ties Pdata. Note that, in the semi-supervised learning set-

ting, the data dependent probabilities Pdata differ for each

data type. Specifically, PdataP = p(h|tk, sk; θ), PdataU
t

=
p(h, s|ti; θ) and PdataU

s
= p(h, t|sj ; θ). For the pairwise

data, we could directly sample h from p(h|tk, sk; θ) using

Equation 4. However, for the unpaired data, p(h, s|ti; θ)
and p(h, t|sj ; θ) are intractable. Thus, we use Gibbs sam-

pling to generate h, s from p(h, s|ti; θ). Similarly, we can

Knowledge transfer from visible to thermal

(a) Visible (b) Thermal (c) Thermal mean eye

Figure 3. Constrained deep transfer feature learning for thermal

eye detection. (a)(b) Pairwise visible and thermal facial im-

ages [13]. (c) Thermal mean eye.

generate samples h, t from p(h, t|sj ; θ). Following the CD

algorithm, we estimate the model dependent expectations

with k-step (k=5) Gibbs update through the model, starting

from the samples calculated using the data dependent prob-

abilities.

4.2.2 Transfer learning with constraints

In every domain, its data only represent the observations

of the underlying latent objects. It is often through either

a physical or biological process that the latent objects pro-

duce the observed data in the target domain. For example,

as shown in Figure 3, in the case of eye detection on thermal

images by transferring the knowledge from visible domain,

the intensities of the eyes measure the temperature near the

eye skin surface and the eye temperature is determined by

the the blood flow to the eye skin surface. Hence, the inten-

sity distribution near the eye on an thermal image is mainly

determined by the underlying latent vascular structure dis-

tribution. For example, the tear dust area usually has the

high temperature due to the blood flow in the artery beneath

(Figure 3 (c)). On the other hand, in the pupil area and the

hair-insulated eye lash region, the temperature is expected

to be low because of lack of blood flow. These unique facial

anatomy structures in the eye regions lead to the unique and

distinct target data pattern that is universal across subjects.

As a result, to ensure a physically and semantically mean-

ingful transfer, we propose to impose certain constraints

during the transfer learning in order to preserve such tar-

get data properties, such as the certain unique shape and

appearance characteristics.

Based on the intuitions illustrated above, we modify the

parameter learning problem in Equation 7 by adding the

constraint C(.; θ):

θ
∗ = arg max

θ
L(θ; Data) − λC(.; θ) (13)

Here, the first term is the log likelihood function defined in

Equation 8. The second term C(.; θ) is a cost function to

ensure that the transferred data satisfies certain properties.
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To solve this optimization problem in Equation 13, de-

pending on the type of C(.; θ), we could still use the gra-

dient ascent algorithm and we have derived the gradient of

the first term w.r.t the parameters in section 4.2.1. Then,

we only need to calculate the gradient of the second term

C(.; θ) w.r.t the parameters, i.e.,
dC(.;θ)

dθ
. It’s detailed calcu-

lated will be discussed in section 5.2.

4.2.3 Pseudo target data generation by sampling

Given the learned joint probability p(t, s; θ), we could trans-

fer the large amount of additional source data sj ∈ DataU
s

to the target domain to generate the pseudo target data

t̃. This can be done by sampling through p(t|sj ; θ), sj ∈
DataU

s using Gibbs Sampling method that iteratively calls

Equation 3 and 4.

4.3. Feature learning in one layer

In each iteration, combining the transferred pseudo tar-

get data and the real target data, the goal of feature learn-

ing is to learn the RBM model (Figure 2 (a)) that captures

the variations of target and pseudo target data and uses the

hidden nodes as new features. More formally, the RBM is

defined in Equation 1 and parameter learning is formulated

as:
ξ
∗ = arg max

ξ
L(ξ; Datat) + γL(ξ; Data

U

t̃ ) (14)

The first term and second term represent the log likelihood

w.r.t the real target data Datat = DataP
t

⋃
DataU

t , and the

pseudo target data DataU

t̃
. γ is the parameter that balances

the two terms. To learn the features, we apply the stan-

dard Contrastive Divergence (CD) algorithm [7]. The only

difference is that the gradient is calculated based on both

terms in Equation 14. Given the learned model, for each

target and pseudo target data, its new representation can be

calculated using Equation 4. Then, for the next iteration in

the learned feature space, constrained transfer learning and

feature learning continue and interact until convergence.

4.4. Joint feature fine­tuning

After multi-layer constrained transfer feature learning in

the pre-training stage, we have the initially learned fea-

tures ξ1, ξ2, .... In addition, we have the deeply transferred

pseudo target data in the top feature layer denoted as t̃
L

.

Then, for joint feature fine-tuning, we need to project the

pseudo data back to the original space by repeatedly call-

ing Equation 3 with parameters ξL,..., ξ1 and get the deeply

transferred pseudo data in the original space t̂
1
. Then, based

on the pseudo target data t̂
1

and the real target data t1,

we apply standard fine-tuning algorithm [16] for the Deep

Boltzmann Machine model, where the mean-field fix point

equation is used to estimate the data-dependent expecta-

tion and the Persistent Markov Chain is used to estimate

the model dependent expectation.

5. Experimental Results

5.1. Eye detection on thermal images by transfer­
ring from visible domain

To demonstrate the proposed framework for constrained

deep transfer feature learning, we applied it to eye detection

on thermal images. Comparing to facial analysis in the vis-

ible domain, thermal facial analysis is more sensitive to eye

localizations [2]. However, there are limited works about

eye detection on thermal images. Furthermore, the exist-

ing thermal eye detection techniques typically use the visi-

ble image features, which are suboptimal, since thermal and

visible images are formed based on different principles [4].

For example, thermal images contain limited texture and

gradient information due to the heat diffusion phenomenon,

while the visible image features usually focus on encoding

these detailed information.

While feature learning on thermal images can alleviate

this problem, limited thermal training images make it very

difficult to leverage on the existing deep learning models.

To address this challenge, we propose to apply the pro-

posed constrained transfer feature learning method to per-

form thermal feature learning by transferring the eye data

in the visible domain to the thermal domain to compensate

for the lack of thermal data. The target domain refers to the

thermal patches, including the eye patches and the back-

ground patches. The source domain refers to the visible eye

patches. Note that, we only need to transfer the eye patches

as positive data, since we can generate many negative data

by sampling from the background. For thermal eye detec-

tion, with the learned thermal features using the proposed

method, we train SVM classifier to search the eye with a

scanning window manner.

5.2. Implementation details

Databases: We use four databases including the visi-

ble and thermal facial behavior database(VTFB), the MAH-

NOB laughter database [13], the Natural visible and ther-

mal facial expression database (NVIE) [21], and the Facial

Recognition Technology (FERET) database [14]. VTFB

has synchronized visible and thermal videos (FLIR SC6800

thermal camera) for 7 subjects and additional thermal

videos for 13 subjects with spontaneous facial expres-

sions and arbitrary head poses. The MAHNOB Laugh-

ter database provides thermal facial sequences of 22 sub-

jects with moderate head poses, neutral and happy facial

expressions. The NVIE database contains thermal facial se-

quences of 215 subjects with spontaneous and posed ex-

pressions. FERET database provides visible facial images

with different head poses and moderate expressions.

During training, we use the synchronized thermal and

visible images of the first 7 subjects from VTFB (1295 im-

ages) as pairwise data. We use the thermal images of ad-
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ditional 3 subjects from the VTFB (573 images), and vis-

ible images from FERET (3830 images) as unpaired data.

We test the method on the thermal images of remaining 10

subjects from VTFB (542 images), the MAHNOB database

(114 images) and the NVIE database (35550 images).

The method: We use two layer DBM with 800 and 600

hidden nodes to learn features. The RBM models used

to learn the joint distributions p(t, s; θl) have 400 hidden

nodes. The hyper-parameters α, β, λ and γ are 0.4, 0.3,

0.002, and 0.3, respectively. In our experiments, the height

and width of the image patches are about 1/2 the inter-ocular

distance and the patches are normalized to 40×40. The

background patches are at least 1/4 inter-ocular distance

away from the eyes. We augment the training data by ro-

tating and resizing the images. Following [16], we learn

the Gaussian-binary RBMs [9] with 1000 hidden nodes for

the raw visible and thermal image patches, respectively, and

then treat the values of the hidden layers as the preprocessed

data to speed up the learning procedure. With Matlab im-

plementation, it takes about 30 hours to train the full model

with two layers and the constraint on a single core machine.

To impose the target domain constraint as discussed in

section 4.2.2, we propose to impose the constraint that the

transferred thermal eyes must satisfy the general appearance

pattern as shown in Fig. 3(c) for the thermal eye. To achieve

this goal, we propose to capture such a target data pattern

by using a thermal mean eye, which can be obtained by av-

eraging the existing target data. The basic idea is that while

individual thermal eye may vary because of each person’s

unique eye structure, through averaging, the thermal mean

eye can capture their commonality while canceling out their

differences. The commonality is resulted from the shared

underlying eye structure. Figure 3(c) shows the mean eye

as an example. It apparently can capture the unique pat-

tern of a thermal eye, i.e., brighter in the inner eye corner

and darker in the eye center that are true across subjects at

different conditions.

For transferring the visible eyes to thermal domain to

help the thermal feature learning, the transfer learning step

in Equation 13 becomes:

θ
∗ = arg max

θ
L(θ; Data

+) − λ‖
1

NU+
s

∑

j

〈t+〉Qj
− m

+‖2
2.

(15)
Here, “+” denotes the positive eye data. The second term

enforces the mean of the transferred pseudo thermal eye
1

N
U+
s

∑
j〈t

+〉Qj
is close to the given mean eye m+. Specif-

ically, for each source data s+j ∈ DataU+
s , 〈t〉Qj

rep-

resents the expected transferred pseudo thermal eye and

Qj = p(t+|s+j ; θ). Then, 1
N

U+
s

∑
j〈t

+〉Qj
will be the mean

of the transferred pseudo thermal eyes and it should be close

to the given mean eye m+. Assume the gradient of the sec-

ond constraint term of the objective function in Equation 15

w.r.t θ is denoted as δ. Then, it is calculated as follows:

δ =2 ∗ [
1

NU+
s

∑

j

〈t+〉Qj
− m

+]T

∗
1

NU+
s

∑

j

[−〈t+
∂E

∂θ
〉Rj

+ 〈
∂E

∂θ
〉Rj

〈t+〉Qj
],

(16)

where Rj = p(t+, h|s+j ; θ), s+j ∈ DataU+
s .

Evaluation criterion: The eye detection error is de-

fined as error = max(||Dl−Gl||2,||Dr−Gr||2)
||Gl−Gr||2

, where D and

G represent the detected and ground truth eye locations,

and the subscript denotes left and right eyes. We regard

error < 0.15 as the successful detection. The evaluation

criteria follows the methods [10] [22] for fair comparison.

5.3. Evaluation of the proposed method

In this section, we evaluate the proposed constrained

deep transfer feature learning method on the VTFB

database. Note that, in the constrained transfer learning

step (discussed in section 4.2), the joint probability of ther-

mal and visible eyes p(t+, s+; θ) can be learned with dif-

ferent approaches. They are (M1) learning with pairwise

data using standard CD algorithm [7], (M2) proposed semi-

supervised learning with paired and unpaired data as dis-

cussed in section 4.2.1, (M3) learning with pairwise data

and constraints (second term in Equation 13), and (M4)

learning with semi-supervised data and constraints (the full

model). In the experiments, we compare the four variations

and study the other properties of the proposed method.

5.3.1 Evaluation of the constrained transfer learning

method in layer one

First, we evaluate the constrained transfer learning method

in layer one. We evaluate the learned joint probabilities

p(t+, s+; θ) with different learning strategies (M1 to M4)

based on two criteria, including the reconstruction error and

the log likelihood on the hold-out pairwise data. The re-

construction error refers to the average pixel difference be-

tween the transferred pseudo thermal eyes sampled from

p(t+|s+j ; θ) and the ground truth thermal eyes. We calcu-

late the log-likelihood on the hold-out testing set using the

method in [17].

As can be seen in Table 2, while both the semi-

supervised learning and the constraint (M2&M3) improve

the performances over standard learning method M1, com-

bining them together (M4, the full model) achieves the best

performance.
Table 2. Evaluation of different constrained transfer learning meth-

ods in layer one.
Methods Reconstruction error Log likelihood

M1: Pairwise data 0.0627 -514.1

M2: Semi-supervised 0.0601 -484.8

M3: Pairwise + constraint 0.0588 -492.0

M4: Semi + constraint 0.0580 -476.9
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5.3.2 Evaluation of the thermal eye detector with the

constrained deep transfer features

In this subsection, we further evaluate the eye detection

performance based on the features learned using the pro-

posed method with two-layer DBM (two iterations in Al-

gorithm 1). For the constrained transfer learning step in

each layer of the deep model, we use four different learning

strategies (M1-M4).

(1) Different methods: We compare the proposed

method with different strategies (M1-M4) to the baseline

method (M0). The baseline method learns features using

the standard Deep Boltzmann Machine model based on the

thermal data without any knowledge transfer. As shown in

Table 3, even with only the pairwise data, the proposed

transfer feature learning method (M1) improves over the

baseline (M0). The semi-supervised learning (M2) and

constraint (M3) further boost the performances. By com-

bining them together (M4), the constrained deep transferred

features learned from multi-modality data increase the de-

tection rate by 6.09%, comparing to the baseline (M0).

We also implement two other baselines using DBM and

visible training data. (V0) refers to DBM feature learning

based on the visible data. (V1) fine-tune the visible features

learned with visible data on thermal data, so that the model

parameters for thermal feature learning are initialized as the

parameters of visible features. As can be seen in Table 3,

they are all inferior to the proposed method (M4).

Table 3. Eye detection rates using different methods

Methods Eye detection rate

M0: DBM (baseline) 87.45%

M1: Pairwise data 89.48%

M2: Semi-supervised 90.04%

M3: Pairwise + constraint 91.88%

M4: Semi + constraint 93.54%

V0: DBM visible (baseline) 73.25%

V1: DBM visible finetune (baseline) 86.72%

(2) Transfer in different layers: Figure 4 shows that

it’s important to perform the constrained transfer learning

in multiple layers, since it further boosts the performance

comparing to one layer transfer. In addition, transferring

in the deeper feature space (layer 2) is slightly better than

transferring in the shallow feature space (layer 1).

transfer in layer 1 transfer in layer 2 transfer in both layers
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Figure 4. Transfer in different layers.

(3) Learning with different amount of training data

We vary the training data to train the proposed method (fea-

tures and classifier) and the baseline method, and the eye

detection rates are shown in Figure 5. Specifically, we keep

reducing the number of training subjects from “P7+UP3” (7

subjects with pairwise data + 3 subjects with unpaired data)

to “P2+UP2”. Comparing M4 to M0, the proposed method

always learns better features than the baseline. Comparing

M4 to M2, the constraints are important and they improve

the performances with different sets of data.
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Figure 5. Learning with different amounts of training data.

(4) Comparison with other features: We compare the

learned features with the proposed method (M4) to standard

image features, such as the Scale Invariant Feature Trans-

form (SIFT) feature, and the Histogram of Oriented Gra-

dients (HOG) feature. For fair comparison, we train the

linear SVM with same training data (P7+UP3), and the ex-

perimental results only differ due to the features. As shown

in Figure 6, the learned features with the proposed method

significantly outperforms the other designed features.
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Figure 6. Cumulative error distribution curves using eye detectors

with different features.

(5) Visualization: Figure 7 (a)(b) show the learned fil-

ters (parameters ξ1 and ξ2) with the proposed method (M4).

Filters in the lower level capture local dependencies. They

represent small dots, and some of them are similar to the

Gabor Filters. Filters in the higher level capture more global

variations.
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(a) learned filters in layer 1 (b) learned filters in layer 2

Figure 7. (a)(b): Learned filters in different layers.

5.4. Comparison with existing thermal eye detectors
on other databases

To the best of our knowledge, there are only two

works [10][22] that report eye detection results on publicly

available thermal face databases. In [10], image patches

are represented by Haar wavelet coefficients. Two succes-

sive classifiers (coarse and fine) are constructed based on

features in different levels of details in a cascade manner.

In [22], information from the whole face region is used to

support eye detection on thermal facial images. It identifies

15 sub-regions on the face. Haar-like features and SVM are

used to learn the eye detector.

Table 4 illustrates that our detector outperforms the

method [10] on the MAHNOB Laughter database [13]. On

the NVIE database [21], our detector is significantly better

than the method in [22].

Table 4. Comparison with existing thermal eye detectors on the

MAHNOB laughter database and the NVIE database.
MAHNOB Laughter Database:

Methods reported in [10] Proposed method (M4)

Detection rate 83.3% 87.72%

NVIE Database:

Methods reported in [22] Proposed method (M4)

Detection rate 68% 81.60%

5.5. Second Application

The proposed constrained deep transfer feature learning

method is not limited to visible and thermal domains. It can

be extended to other domains for simultaneous knowledge

transfer and deep feature learning. In this section, we ap-

ply the proposed framework to cross-view facial expression

recognition as the second application. The goal of this ap-

plication is to learn the effective feature representation to

classify neutral and non-neutral face in non-frontal view by

transferring the data in frontal view (source) to non-frontal

view (target). The unique facial structure in non-frontal

view is used to constrain the transferring learning. In the

experiments, we used the Multi-Pie database [6] (Figure 8),

which contains facial images with varying head poses, fa-

cial expressions, and illumination conditions (training: id

1-200, testing: id 201-337).

Figure 9 below shows the results. In the experiments, we

compared the classification accuracies (linear SVM) with

(a) Frontal image (source) (b) Non-frontal image (target)
Figure 8. Cross-view neutral (left) and non-neutral (right) facial

expression recognition.

different features, including the learned features using the

proposed constrained deep transfer feature learning method,

the learned features using the conventional DBM, the hand-

crafted HOG and LBP features. In addition, we vary the

number of training subjects in the target domain (100, 50,

20). There are a few observations. First, the learned fea-

tures are significantly better than the hand-crafted features.

Second, for all settings, by transferring the knowledge in

the source domain, the learned features using the proposed

method outperform the features learned with DBM.
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Figure 9. Facial expression classification accuracies with different

features and numbers of training subjects in the target domain.

6. Conclusion

In this paper, we propose a constrained deep transfer fea-

ture learning framework in order to perform feature learning

in a data-scarce target domain. Instead of performing trans-

fer learning in a fixed feature space, we propose to simulta-

neously perform transfer and feature learning iteratively in

increasingly higher level of feature spaces in order to min-

imize the semantic gap between the source and target do-

mains. Furthermore, to ensure the transferred data to be se-

mantically meaningful and to be consistent with the under-

lying properties of the target domain, we incorporate target

domain knowledge as constraints into the transfer learning.

We applied the proposed framework for thermal fea-

ture learning for thermal eye detection by transferring the

knowledge from visible domain. We also applied the it for

cross-view facial expression recognition. The experiments

demonstrate the effectiveness of the proposed framework

for both applications. In the future, we would apply the

framework to other vision applications.
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