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Abstract

We present an approach for detecting and matching

building facades between aerial view and street-view im-

ages. We exploit the regularity of urban scene facades

as captured by their lattice structures and deduced from

median-tiles’ shape context, color, texture and spatial sim-

ilarities. Our experimental results demonstrate effective

matching of oblique and partially-occluded facades be-

tween aerial and ground views. Quantitative comparisons

for automated urban scene facade matching from three

cities show superior performance of our method over base-

line SIFT, Root-SIFT and the more sophisticated Scale-

Selective Self-Similarity and Binary Coherent Edge descrip-

tors. We also illustrate regularity-based applications of

occlusion removal from street views and higher-resolution

texture-replacement in aerial views.

1. Introduction

With the increasing availability of Google maps and

other online mapping tools, geolocating consumer images

has become a popular yet challenging task. As a step in

this direction, we are interested in matching aerial view fa-

cades, such as those automatically detected by the method

in [19], with a set of street-view facades to identify the same

buildings. This is a challenging problem due to large differ-

ences in viewpoint and lighting (Figure 1), temporal dispar-

ities between aerial and street-level image collection, and

perspective deformations at the street-view level due to the

camera’s close proximity to each building. Occlusions also

complicate the problem – lower levels of a building may

be blocked by other buildings in aerial views, and street-

view images can be occluded by trees, street-lights, cars,

and pedestrians, as well as by other buildings.

Urban facade feature-level matching is inherently am-

biguous due to pattern regularities. Even though many ex-

isting works in computer vision and computer graphics have

exploited such regularities computationally (see Section 2),

Figure 1. Aerial-view (top-left) and street-view (top-right) images

from the same facade of an NYC building (image data provided

by Google). Our facade matching pipeline finds corresponding fa-

cades in spite of drastic variations in viewpoint and lighting. Our

method is regularity-driven, using features induced from the auto-

matically detected lattices. Bottom row shows additional matched

street-views of this facade. Note that a facade can be matched cor-

rectly even when the detected street-view lattice does not overlap

with the aerial view lattice.

matching between aerial and street views of the same fa-

cade poses technical challenges beyond generic image patch

matching and even beyond ground-level-only wide-baseline

facade matching. Furthermore, very little work (e.g. [4, 30])

has explored a regularity-driven approach for urban scene

segmentation and matching at the facade level.

We propose to use a lattice and its associated median tiles

(motifs) as the basis for matching widely differing aerial
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and street-level facade views. Using a lattice tile/motif as

a novel, regularity-based descriptor for facades immedi-

ately distinguishes this work from all local descriptor-based

methods, since regularity is not a local property [21, 22].

We formulate the facade matching problem as a joint reg-

ularity optimization problem, seeking well-defined features

that reoccur across both facades to serve as match indica-

tors. Match costs based on edge shape contexts, L*a*b

color features, and Gabor filter responses are used to find

the best one-to-one matching of sampled patches between

two roughly aligned motifs, yielding an effective cost func-

tion for matching widely disparate facade views (Figure 1).

2. Related Work

It is well known that generic local features such as

HOG [8] or SIFT [23] are difficult to match across extreme

changes in illumination, viewing angle and image resolu-

tion. More robust patch matching features have been pro-

posed, based on feature descriptor normalization to reduce

descriptor variance, e.g. Root-SIFT [2] and edge contrast

normalization [36], or by methodically trying combinations

of feature transforms and binning layouts while learning pa-

rameters to maximize matching performance [33]. How-

ever, even with the use of robust generic patch descrip-

tors, matching architectural facades is inherently difficult

due to an ambiguity in finding the correct correspondence

among self-similar patches [28]. These correspondence am-

biguities lead in turn to difficulties in estimating planar ho-

mographies, fundamental matrices, camera locations, and

other quantities computed in a typical structure from mo-

tion pipeline [13, 17].

Approaches to wide-baseline facade matching in the lit-

erature can be broken roughly into three strategies. The first

strategy is to correct for the differences in viewing angle,

allowing view-dependent matching using traditional local

features to proceed. This is commonly achieved by ap-

plying an orthorectification preprocessing step that trans-

forms an arbitrary perspective view of a planar facade into

a frontal view where repetition of pattern elements occurs

along the horizontal and vertical image axes [4, 17, 34].

This can be done by discovering vertical and horizontal van-

ishing points and solving for the camera rotation that un-

warps the view [34]. The vanishing line of a planar surface

can also be estimated from change of scale of repeated pat-

tern elements in the image [7], allowing affine rectification,

while rotation and reflection among the elements introduces

further constraints that allow solving for a true frontal view

(up to similarity transform) [26].

More generally, the authors of [35] note that repeated

patterns form low-rank textures and present an algorithm

called TILT that performs automatic orthorectification of

intensity patterns in user-defined regions. Orthorectifica-

tion greatly simplifies subsequent translation and reflection

symmetry analysis [34], allows the use of more discrimina-

tive local features such as upright SIFT [3], and reduces the

degrees of freedom needed to align two facade views [17].

An alternative to orthorectification is to warp one view

into approximate alignment with another oblique view,

prior to matching. In [31], ground based multi-view stereo

is used to produce texture-mapped depth maps that are then

re-rendered based on known camera pose information to

synthesize the approximate appearance of the building as

seen in the target aerial view. The work of [1] aligns a dom-

inant plane between two oblique aerial views by introduc-

ing into the patch matching process an explicit search over

affine transformations that simulate the range of patch dis-

tortions expected due to viewpoint changes. A recent paper

by [18] uses range data and camera parameters from Google

street views to warp the dominant building surface plane to

appear approximately like a 45% aerial view in order to col-

lect a cross-view patch dataset for deep learning.

A second broad strategy for wide-baseline facade match-

ing is to form feature descriptors specialized for describ-

ing self-similar symmetric patterns. A Scale-Selective Self-

Similarity (S4) descriptor is developed in [4] to capture lo-

cal self-similarity of a patch to its surrounding region, com-

puted at an intrinsic scale proportional to the spatial wave-

length of repetition of the pattern. The similarity descriptor

for an image patch is formed as a binned log-polar repre-

sentation of its local autocorrelation surface, computed at

the intrinsic scale. Computed over a grid of patches, these

descriptors are clustered to detect and segment facades, and

to form a set of visual words for naive Bayes matching of fa-

cades. The work of [12] densely scores local horizontal and

vertical reflection symmetries and local 2n-fold rotational

symmetries at all locations and scales in an image. Being

based on local symmetry rather than photometry, the result-

ing descriptors can match facades across large changes of

image appearance (e.g. day vs night, drawing vs photo, and

modern vs historical view).

The third strategy for facade matching is to explicitly

treat the facade as a near-regular texture and to isolate and

match unique tiles representing the underlying translated

pattern element. One-dimensional frieze patterns and two-

dimensional wallpaper patterns are generated when a fun-

damental pattern element is shifted by integer multiples of

one (frieze) or two (wallpaper) generator vectors to form a

lattice. However, any translational offset of the lattice de-

fines an equally good partition of the facade pattern into

repeating elements, thus there is an inherent ambiguity in

determining a unique tile for matching.

Recent work by Ceylan et al. [6] requires a user to out-

line the fundamental repeating element of a pattern, while

our application requires an automated solution. In [9],

unique tiles are defined by finding the lattice offset such that

the Fourier transform of the repeated pattern has phase co-
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Figure 2. Flowchart showing the overall process of the proposed method on the NYC dataset. a) Lattices are extracted from a street-view

(bottom) database and the aerial facade (top) in question. Detected lattices are pruned based on their estimated world-coordinate normal

vector to keep only vertical facades. b) Each lattice is represented by the median tile of its translational symmetry. c) A cost matrix is

computed from all potential point correspondences for each street-to-aerial pair. Each motif pair will have a cost matrix for each of the

four feature costs (shape context, color information gain, texture, spatial smoothness). d) A match cost for each street to aerial facade pair

is computed as the sum of its optimal point correspondence set costs. Positive/negative matches are determined by a threshold, learned by

maximizing precision/recall on a separate training set.

efficients of zero at its fundamental frequencies in the hori-

zontal and vertical directions. Extracted mean tiles are then

matched based on similarity of their grayscale patterns and

of the largest two peaks in their RGB color histograms. The

work of [20] defines a motif of a repeated pattern as a tile

that locally exhibits the same rotation and reflection sym-

metries that characterize the entire periodic pattern. This

idea is used in [30] to match facades based on normalized

cross-correlation of their respective motifs.

Our proposed approach in this paper is also based on ex-

tracting the motif of a lattice to use as a descriptor for fa-

cade matching. However, unlike [9] and [30], our match-

ing is based on filtering out candidates using a progres-

sively more discriminative pipeline of features, starting with

coarse lattice-structure (geometric) filtering, followed by

filtering based on illumination/shadow insensitive color dis-

tributions, and finishing with filtering based on features that

capture the spatial layout of motif pattern edges.

3. Regularity-based Matching Approach

We propose a regularity-based matching pipeline to iden-

tify corresponding facades across aerial and street-level

views (Figure 2). High resolution aerial views are first pro-

cessed by the method in [19] to extract a set of near-regular

building facades. Lattices are extracted for each aerial fa-

cade and for a set of candidate street-view images that are

potential matches, using the translational symmetry detec-

tion algorithm developed in [25]. To reduce computational

complexity when searching for corresponding street-view

images for a detected aerial facade, approximate camera

pose information available with both aerial and street-view

images is used. Specifically, by backprojecting viewing

rays into a UTM ground coordinate system to estimate the

approximate ground location for the aerial facade, we select

one hundred street-view camera locations that are in close

proximity to the estimated aerial facade location. Each

street view location yields eight camera shot directions, giv-

ing a total of 800 candidate images which are further pruned

by the orthogonality between the estimated normal vectors

of the corresponding lattice and that of the ground plane.

These lattices facilitate ortho-rectification of the aerial

and street-view facades and provide a basis for extracting

motifs summarizing their appearance. Each lattice parti-

tions an image region into tiles, which are brought into

alignment and then fused by computing the pixel-wise me-

dian [20]. This median tile or motif summarizes the scene

facade in terms of regularity and appearance. However, dif-

ferent views of the same facade will still result in orthorec-

tified tiles with slightly different appearances due to projec-

tive distortion and differences in scene illumination. One

way to look at our method is to consider each computed me-

dian tile to be a sample from the entire facade distribution

generated under different geometry and lighting conditions.

The median tile, as a representative of that distribution, al-

lows us to compare local distributions generated from aerial

and street-view samples to identify whether they belong to

the same whole-facade distribution.

The main technical contribution of our work is to define

a matching cost function to compare a street-view motif to

an aerial-view motif based on similarity of color, texture

and edge-based context features. The remainder of this sec-

tion describes in detail this cost function, the features that

comprise it, and the sample-based matching procedure that

produces a final motif-pair matching score.
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Figure 3. Each motif’s edge image is sampled, and patches around each sample are described by shape context, color and texture features.

The first two features are illustrated here. (a) Each sampled point is described by its own log-polar histogram and shape context scores.

For each attempted match, a cost matrix is formed from the SSD scores between all pairs of possible point correspondences between the

two motifs. (b) The color cost term is computed from the information gain score between the two equalized LAB color-spaces. A 32x32

patch at each of the sampled points is used to obtain each distribution. The motif shown is from the NYC dataset.

3.1. Motif Cost Function

We characterize a motif by randomly sampling at most

400 points from its high-gradient (edge) pixels. Given two

motifs extracted from two facades, we compute their simi-

larity in the form of a pairwise, point-to-point cost function

formed as a weighted combination of four terms: (1) lo-

cal shape context [5], (2) color, (3) texture, and (4) location

proximity:

Ci,j = WEÊi,j +WDD̂i,j +WT T̂i,j +WLL̂i,j (1)

where Êi,j is the edge-based shape context cost function

for matching sampled pixels i and j, and D̂, T̂ , and L̂ are

the corresponding color similarity, texture similarity, and

location proximity cost functions, respectively.

Since any offset in the translational lattice yields a valid

motif tile, we first roughly align each street-view facade

motif with the aerial motif before comparison by circularly

shifting it to the offset that yields the maximum normalized

cross correlation (NCC) score.

3.1.1 Shape Context

Spatial edge layout is a useful measure for discriminating

between different window shapes/sizes, as well as weakly

discriminating between buildings with different surface tex-

tures, e.g. uniform texture vs. brick texture. Each sam-

pled edge point is characterized by a local shape context

[5], using a normalized log-polar histogram, as shown in

Figure 3a. The normalized cost of matching two sampled

points, i and j, is given by

Êi,j =

K∑ (hi(k)− hj(k))
2

hi(k) + hj(k)
(2)

where k is a bin belonging to a log-polar histogram, h.

3.1.2 Color

We characterize the color appearance of a building by the

color distribution of the motif of the repeated facade pattern.

Color distribution of the motif is measured in CIELab color

space to account for potential differences in lighting or the

presence of shadows. Work done in [10, 11, 29] shows that

the CIELab color space is effective at detecting/segmenting

despite shadows, since the presence of a shadow will lin-

early shift each of the three CIELab color space dimensions

by a proportional amount depending on the strength of the

shadow. We describe the overall texture of a motif by its L,

a*, and b* distributions, fL(x), fa∗(x), and fb∗(x) respec-

tively.

When comparing two motifs, we first shift the L space

distribution of the street-view motif so that its mean value

matches the mean of the aerial-view motif. We then shift the

a* and b* distributions by the L space shift, ∆L, multiplied

by a corresponding proportionality constant, γ, effectively

obtaining a shadow-invariant color space. The shifting pro-

cess is described by the equation

∗

fd(x) = f(x− γd∆L) (3)

where d is the color dimension, either a* or b*. In our exper-

iments we set γa=.135 and γb=.435, learned from a training

set of street-to-aerial facade matches separate from the ones

used for evaluating the PR curves.

To compare color distributions, our approach uses in-

formation gain, also known as the Kullback-Leibler diver-

gence, DKL [16]. Information gain effectively measures

the overall difference between two distributions by measur-

ing the loss of information that occurs when one probability

distribution is used to approximate another. In our case, we

use information gain to measure how well the aerial-view
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Figure 4. Sample images selected from positive/negative matching results as determined by our matching pipeline (green/red borders,

respectively) on the NYC dataset. Matched facades within the positive images are colored blue. Sample motifs from the aerial and

matched street view facades are also shown.

patch describes the street-view patch, as given by

DKL(f
A
d ,

∗

fS
d ) =

∑

x

fA
d (x) ln

fA
d (x)
∗

fS
d (x)

(4)

where
∗

fS
d is the shadow-corrected street-view motif distri-

bution, and fA
d is the aerial-view motif distribution. Two

identical distributions result in a score of 0. We normalize

DKL by

D̂KL = 1− exp(−DKL) (5)

To obtain the cost associated with the color similarity, we

apply the Kullback-Leibler divergence to a 32x32 image

patch at pixels i and j for each of the color spaces, as shown

by Figure 3b. The cost D̂i,j is the average divergence over

the three CIELab color dimensions.

3.1.3 Texture

Gabor filter bank responses have been shown to be effective

descriptors for many datasets [24, 27]. While urban facade

datasets are not as sparse as previously tested datasets, tex-

ture features can be useful discriminators for building fa-

cades.

When comparing two motifs, we apply four 1-

wavelength Gabor filters to each motif at 0◦, 45◦, 90◦, and

135◦. The texture cost T̂i,j for each pair of sampled points

associated with matching two motifs is the sum of each fil-

ter response’s SSD (sum squared difference).

3.1.4 Location Proximity

Due to the rigid structure of building facades, relative lo-

cations of corresponding motif pixels are expected to vary

smoothly, e.g. according to affine deformations due to view-

point. Therefore, we include an additional location change

cost in order to bias the overall solution by this smoothness

constraint. The cost is given by L̂i,j , which is the relative

distance between the two matched points as a ratio to the

maximum possible distance (diagonal of motif).

3.2. Matching by Cost Minimization

Optimal correspondences between the sets of sampled

points from two motifs are solved by minimizing the cost

function of Equation 1 over all 1-1 point correspondences,

solved as a bipartite matching problem using the Hungarian

algorithm [15]. Weights for the four component cost ma-

trices are WE = WD = WT = 0.3167 and WL = 0.05.

This gives edge-based, color-based and texture-based ap-

pearance features equal weighting, while spatial similarity

has a lower weight that adds a slight smoothing bias. An
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Figure 5. Evaluation of street-view facades matched to 120 different aerial-view facades (40 NYC, 10 SF, 70 Rome). We show the

Precision-Recall curves for our proposed method against (1) a baseline approach using SIFT descriptor matching in orthorectified views,

(2) Root-SIFT [2], a renormalization of SIFT that outperforms SIFT for retrieving building facades across large view changes, (3) Binary

Coherent Edge Descriptors [36], a generic patch matching descriptor applied to our extracted motifs, and (4) S
4 [4], a sophisticated

symmetry-based feature designed for facade matching between aerial and ground-level views. The far right panel shows results of our

method using different combinations of the 3 major feature spaces (shape context, color, texture) used in our motif matching cost function.

overall matching score for the pair of motifs is given by

the sum of the costs returned by the Hungarian algorithm

with the optimal point-match set. All potential pairs of mo-

tif matches are ranked based on their matching scores, from

which positive/negative matches are then determined.

4. Experimental Results

Figure 4 shows qualitative matching results for an aerial

facade. Given an aerial facade and its automatically de-

tected lattice, samples of some of the candidate street-view

images are shown.

A quantitative evaluation of our method is carried out

on a set of 120 aerial facades. Each facade is visible in

10-15 street images, giving us over 1000 total potential fa-

cade matches. We have hand labeled all street-view facades

corresponding to each aerial facade in the dataset. These

labeled facades are treated as the ground truth during our

evaluation. A true positive match from a street-view fa-

cade to an aerial facade occurs when their motifs achieve

the highest ranking matching score and they are from the

same scene facade. Such a motif-based match can occur

even in cases where the two detected facade lattices do not

have any spatial overlap. This type of match is still 1-to-1

(albeit not pixel to pixel) since only the best-scoring lat-

tice/motif pair is chosen, one from an aerial view image and

one from a street-view image, and thus the Precision-Recall

curve is well-defined.

Figure 5 shows a quantitative evaluation based on 120

aerial facade examples. Four different sets of precision-

recall curves are shown. The first three show our method

compared with other matching methods on 40 NYC, 10

SF, and 70 Rome facades, respectively. To make this com-

parison fair, street view and aerial view facades were first

orthorectified using their detected lattices before comput-

ing SIFT descriptors, since it is known that SIFT features

are not able to match well across large, oblique viewpoint

changes. Even with that help, SIFT and Root-SIFT match-

ing are not as effective at matching facades as our proposed

method, or the other sophisticated methods. Finally, we

compare the average results of different combinations of

our cost function feature spaces across all three cities. Al-

though color alone is not an effective tool for discriminating

between different facades, it still adds improvement when

used in conjunction with other features. In Figure 6, a 3D

cost space is shown for the shape, color, and texture feature

costs computed when matching to a particular NYC aerial

facade. Blue/red stars are used to indicate whether a street

facade is a ground truth match/non-match to the reference

aerial facade. The decision made by our matching process

is depicted by a green or red dashed line for a match or non-

match, respectively.

5. Applications

In this section we show two potential applications for

regularity-based matching by using the 2D lattice informa-

tion for image enhancement in both aerial and street-level

views. The first application removes foreground objects

that occlude an architectural facade of interest (inpainting)

and the second replaces low-resolution facade texture with

a higher-resolution version (superresolution). Both inpaint-

ing [14] and superresolution [25] of a repeated facade pat-

tern have been addressed previously, but those works syn-

thesize a virtual new texture assuming a perfectly repeating

pattern, whereas our approach copies actually observed pat-

tern data from a different unoccluded or higher-resolution

view. Inpainting work such as [32], also copies information

from other views, but the region to be inpainted is chosen

by a user. Our approach automatically detects the region of

occlusion by analyzing the facade pattern.

5.1. Removal of Street­Level Occlusion
From our set of matched street-view lattices, a central

lattice is built that collects and associates patches from

each facade across all images in which that facade is vis-
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Figure 6. NYC 3D Feature-Cost Space for the three major features used in our proposed method. Blue star = ground truth positive, red

star = ground truth negative. Green dashed line = selected as a match by our matching process, red dashed line = selected as non-match.

a, h show facades that are matched with low cost to the aerial facade. b, g are examples of facades with similar appearances according

to our feature space but are considered false positives, while c is an image that our method does not match well due to significant affine

deformations and changes in the window reflection colors. Quantitative results shown in Figure 5

ible. Cross-view matching is performed by correlating each

lattice patch set over the patch sets of other images while

maintaining the alignments of the two patch sets. The cor-

relation offset location with the highest score is selected as

the best matched lattice alignment. That is,

locQ = argmax
i,j

NCC
i,j

(P,Q) (6)

where Q is the set of lattice patches currently being con-

sidered, P is the current central lattice patch set, i,j is the

offset of Q with respect to the origin of P, and NCC com-

putes the mean normalized cross correlation score between

two lattice patch sets at an offset of i,j (correlation scores

between one or more null patches are not included in the

mean score). We leverage the initial aerial view facade by

restricting the offset location from causing the central lattice

to exceed the aerial-view lattice patch set dimensions. At

the end of this process, the central lattice patch set contains

patch samples from all matched facades, in their appropri-

ate relative positions with respect to each facade. Note that

multiple sample patches may be available for the same rela-

tive facade location, when that location is visible in multiple

matched street views.
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Figure 7. Occlusion removal is performed on this NYC street-

view by replacing missing/obstructed lattice patches with available

patches from another viewpoint. This is facilitated by construction

of a central lattice patch set that brings into alignment correspond-

ing patches from all of the matched street views.

After building a central lattice that contains all visible

street-view patches, we are able to automatically remove

both major and minor occlusions from a given viewpoint

(Figure 7). Minor occlusions are defined as objects that

are small and thus minimally affect the occluded lattice

patch. Examples include street lamps, sign poles, or elec-

trical wires. These types of occlusions can be automatically

detected by comparing the difference to the median patch

of this patch to its corresponding median differences from

other viewing angles. Patches with minor occlusions are

considered those with difference energies several standard

deviations above the mean difference energy.

Major occlusions occur when an object obstructs a large

portion of the building from some views, affecting the per-

ceived regularity. We can detect these by finding patches in

the central lattice patch set that are present in some images,

but not present in others even though they fall within that

image’s field of view.

To correct/replace occluded patches, a mapping of the

coordinates from one patch to another, F , is defined by

determining the projective transformation between the four

corner locations of the occluded patch and the corner loca-

tions of a corresponding matched patch. The pixels of the

occluded patch are replaced using the mapping F

po(i, j) = pm(F{i, j}) (7)

where po is a pixel in the obstructed patch, pm is a pixel

in a matched patch. We select the image for the patch re-

placement as the image in closest proximity to the image

containing the occlusion in order to minimize perspective

distortion.

Figure 8. Six aerial lattice patches (from NYC dataset) replaced

with corresponding street-view lattice patches after automatically

adjusting for lighting differences in CIELab space

5.2. Aerial­Level Image Enhancement through Tex­
ture Replacement

As explained in Section 5.1, a central lattice patch set

containing all aligned patches detected from street-level

views is constructed and can be used to replace pattern tiles

that are occluded. Since the central lattice patch set is also

aligned with the original aerial image facade lattice, it is

also possible to perform texture replacement of patches in

the aerial view with patches extracted from the set of street

views. Since street views are often of significantly higher

resolution than the aerial imagery, this type of texture re-

placement can be used to generate higher resolution aerial

views, as shown in Figure 8.

6. Conclusion

We have addressed the scientific problem of aerial to

street-view facade matching. This application poses tech-

nical challenges beyond generic image patch matching

and even beyond ground-level-only, wide-baseline facade

matching. Our results have shown that regularity is an ef-

fective tool in extracting discriminative facade features that

can be used for matching under challenging viewpoint and

lighting changes. By analyzing facade lattice structures, we

show that color, shape, and edge-based features combine to

form an effective cost function for differentiating between

buildings when used within a framework that performs pair-

wise matching of sample patches summarizing the motif tile

of the repeated facade pattern. We also have shown two ex-

ample applications facilitated by multi-view facade match-

ing and alignment: removal of occlusion from street-level

views, and image enhancement of facade texture in aerial

views.
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