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Abstract

We present a new approach for efficient approximate

nearest neighbor (ANN) search in high dimensional spaces,

extending the idea of Product Quantization. We propose

a two level product and vector quantization tree that re-

duces the number of vector comparisons required during

tree traversal. Our approach also includes a novel highly

parallelizable re-ranking method for candidate vectors by

efficiently reusing already computed intermediate values.

Due to its small memory footprint during traversal the

method lends itself to an efficient, parallel GPU implemen-

tation. This Product Quantization Tree (PQT) approach sig-

nificantly outperforms recent state of the art methods for

high dimensional nearest neighbor queries on standard ref-

erence datasets. Ours is the first work that demonstrates

GPU performance superior to CPU performance on high

dimensional, large scale ANN problems in time-critical

real-world applications, like loop-closing in videos.

1. Introduction

Finding the nearest neighbors (NN) of a query vector

in a high dimensional space is a fundamental task in com-

puter vision. For a given query vector y ∈ R
D, the nearest

neighbor problem consists of finding an element N(y) ∈ X
from a predefined fixed set X ⊂ R

D, which minimizes

a distance metric, most commonly the Euclidean distance

d(·) := ‖·‖
2
. This NN-problem can be written as

N(y) = argmin
x∈X

d(y, x). (1)

In many computer vision tasks these query vectors repre-

sent visual descriptors, meaning both D as well as X are

often large, leading to NN searches being a significant com-

putational bottleneck in many applications. This is due to

the necessity of computing exact distances in a high dimen-

sional space between many pairs of vectors, a problem ex-

acerbated by the phenomenon known as the curse of dimen-

sionality. More precisely, consider a D-dimensional hyper

unit-cube enclosing X . To explore a ν fraction of the vol-

ume, we need to visit a ν1/D percent of each hyper-cube

edge. This means that to explore 10% of a set of SIFT-

vectors (D = 128) in a hypercube, one has to search an

interval covering ≈ 98% of the possible values per coordi-

nate.

Due to this computational complexity, most applications

rely on approximate nearest-neighbor (ANN) search tech-

niques, which try to find the nearest neighbor with a high

probability. There exists many CPU-approaches for com-

puting ANN in the literature, the most common of which

are KD-trees [6], which hierarchically subdivide the vector

space. While these methods are widely used in graphics

and vision, it has been shown that KD-trees are no more ef-

ficient than brute force searches when D is large [9]. The

FLANN software package [16] proposes randomized KD-

forests and K-Means trees, which prune the overall search

space by identifying small regions around the query vec-

tors, yielding better performance with higher dimensional

vectors.

Another family of approaches are based on Locality Sen-

sitive Hashing (LSH) [5]. These methods hash database

vectors with a number of random projections, and perform

nearest distance checks only on vectors that are hashed to

the same bin. The speed and accuracy of such methods

depends on the hashing function used. Andoni and In-

dyk [1] describe a family of hashing functions which are

near-optimal. These ideas have since been extended into

the image domain for patch-based nearest neighbor com-

putation [13]. While these methods work well, they have

not yet achieved the same performance as space partition-

ing methods [16].

While leveraging GPU parallelism seems obvious, in

practice accelerating ANN search techniques using GPU

parallelism is notoriously difficult, largely due to the mem-

ory restrictions of GPUs when compared to the amount
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of RAM available to CPUs. As a result, existing GPU-

based methods often implement brute force approaches, are

limited to small datasets of up to 225 candidate neighbors

[18] or can handle only 3-dimensional vectors [16], making

these approaches unsuited for many vision problems. Our

method is designed to be highly parallel, and can be eas-

ily implemented on a GPU for significant improvements in

query time, while even a CPU version is competitive to pre-

vious methods.

In general, ANN searches are composed of an offline

phase, containing all query-independent computations like

building an indexing structure of the dataset; and an online

phase which comprises all query-dependent computations.

However, reported results from previous state-of-the-art

methods [11, 9, 3, 2] excluded expensive query-dependent

pre-computations from the timing of their online-phase.

This does not give a reasonable expectation of running time,

as in nearly all applications, the query vector y is unknown

until the query request, and cannot be precomputed in an

offline phase. Therefore, we include all query-dependent

computation steps in our timing results, in order to give a

better indication as to running times achievable for real ap-

plications.

Vector Quantization (VQ) [14] is a simple method that

clusters the search space into a number of bins based on the

distance to the cluster centroid. If a query vector is quan-

tized to a bin, all other vectors in that bin are likely to be

good candidates for being the nearest neighbor. Unfortu-

nately, if a query lies at the edge of a bin, one has to consider

all neighboring bins as well, and the number of neighbors

to each Voronoi cell increases exponentially w.r.t to the di-

mension D of the space.

The concept of Product Quantization (PQ) was intro-

duced in [12] and made popular in the computer vision com-

munity by Jegou et al. [9]. Several state-of-the-art ANN ap-

proaches extend these ideas, such as locally optimized prod-

uct quantization[11] and the inverted multi-index [4]. These

methods currently provide the most efficient techniques for

ANN search for high dimensional data, in terms of speed,

accuracy, and memory requirements. In general, PQ based

approaches consist of the following three main steps: (1)

a robust proposal mechanism is used to identify a list of

nearest neighbor candidates in the database (similar to the

vectors from a bin in the VQ example), (2) a re-ranking

step then sorts these candidates according to their ascend-

ing approximate distances to the query vector. Finally, the

approximated k-nearest vectors after re-ranking are further

sorted using (3) an exact distance calculation.

We present an extension to the family of PQ methods

called the Product Quantization Tree (PQT). The main con-

tributions of our approach are: a two level product and

quantization tree that requires significantly fewer exact dis-

tance tests than prior work; a relaxation of the Dijkstra-

Algorithm for an effective bin traversal order; a fast, re-

ranking step to approximate exact distances between query

and database points in constant time O(P ), where a query

vector is split into P parts; and a highly optimized GPU

based open-source implementation.

In this work, we compare our method using a common

benchmark, BigANN [9], which consists of 1 billion 128-

dimensional SIFT-vectors and 10000 query vectors. This

dataset is challenging due to the infeasibility of an exhaus-

tive search, as well as the sheer size of the data (just stor-

ing the database vectors requires 132 GB of memory). At

comparable approximation quality the GPU implementa-

tion achieves significant speed-up over prior work. We pro-

vide source code of our approach to encourage the devel-

opment of new applications that require high-performance

ANN queries.

2. Background

Our approach builds on PQ [9], which we describe here,

followed by a description of the most related work to ours.

Let X = {x1, . . . , xn} be a finite set of database vectors

xi ∈ R
D. Without loss of generality we consider the Eu-

clidean space (X, d), however our approach can be used

with any arbitrary metric d.

2.1. Vector and Product Quantization

In vector quantization (VQ), each vector x ∈ R
D

is encoded by a codebook C = {c1, . . . , ck} of k cen-

troids with the mapping: c : X → C, x 7→ c(x) :=
argminc∈C d(x, c), In other words, each vector is repre-

sented by its closest centroid in the codebook. The set

Ck = {x ∈ R
D|c(x) = ck} is called the cluster or bin

for centroid ck. This quantization of vectors introduces an

approximation error, but allows for quick retrieval of a sim-

ilar set of vectors Ck, i.e., all those that are quantized to the

same bin as the query. Classical Lloyd iterations [15] can

be used on a subset of the original data to efficiently find a

good codebook C.

In PQ, the high dimensional vector space is transformed

into a product space, whose subspaces are then quantized

using VQ. Under the assumption that D = P ·m for some

P,m ∈ N we can write x ∈ R
P ·m as the concatenation of P

vector parts x = ([x]1 , [x]2 , . . . , [x]P )
T with [x]i ∈ R

m.

This allows for exponentially large codebook generation by

encoding x ∈ R
D into a Cartesian product of subspaces

C = C1 × C2 × · · · × CP , with kP bins, while only requir-

ing space for k · P centroids (see Figure 1d) . Increasing

the number of bins enables a much finer granularity for the

query process, and so the vectors in each single bin have a

significant higher correlation. The canonical projection is a

mapping of each part [x]p independently

cp : X → Cp, x 7→ cp(x) := argmin
c∈Cp

d([x]p , c), (2)
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a) Vector Quantization b) Product Quantization

c) Hierarchical Subspace
Clustering

d) Product Quantization Tree

Figure 1: Three different quantization schemes with k =
32 clusters. Vector Quantization (a) represents vectors by

their closest centroids. Product Quantization performs the

clustering in subspaces (here axes) (b). A tree structure can

be used to build a hierarchy of clusters on each axis (c).

Our method use the hierarchy of two quantization levels,

first using PQ with a low number of centroids, and then a

second-layer of PQ within these bins (d). Points drawn as

are PQ centroids, and each corresponding cluster is split

again into finer 4 clusters (2 on each axis) with centroids

illustrated as .

to its nearest part-centroid. The nearest centroid c(x) ∈ C
for x ∈ R

D is the concatenation of the sub-centroids

c(x) = (c1(x), c2(x), . . . , cp(x))
T
. (3)

Finding a good quantizer c(·) for X is distributed into find-

ing P codebooks C1, C1, . . . , CP independently, which can

also be done using Lloyd iterations. Note that when setting

P = 1, Product Quantization becomes Vector Quantization.

While it is indeed easy to produce exponentially many

(in terms of P ) clusters using PQ, most will be empty be-

cause of the dataset distribution (see supplementary mate-

rial). However, if we assume that the set of query vectors

has a similar distribution as the set of database vectors, we

can expect that most queries will also correspond to non-

empty clusters. Nonetheless, we still must be able to deal

with clusters of highly diverse cardinality as illustrated in

Figure 1.

For a better quantization, the authors of [7] proposed to

augment PQ using the mapping

c : X → C, x 7→ c(x) := argmin
c∈C

d(Rx, c), (4)

where R ∈ R
D×D is a rotation matrix. However, this re-

quires a high dimensional matrix multiplication for rotating

the query for each visited cluster, which is expensive even

for a GPU implementation. We note that the authors of [11]

pre-compute all possible projections Ryi of the query vec-

tors in the offline phase, but this approach is only practical

when query vectors are known beforehand.

2.2. Inverted file system

For a query vector y ∈ R
D, the approach of [9] proposes

an inverted index system with an asymmetric distance com-

putation. This consists of an initial VQ step that acts as a

coarse quantizer with a codebook of k centroids to extract a

set of candidates vectors (k = 8192 clusters are used [9]).

The number of candidates is empirically set to 0.05% of the

database size to achieve a recall ≥ 0.9 by visiting 64 clus-

ters. This corresponds to 524288 candidate vectors for each

query in the BigANN database. This approach requires k

exact D-dimensional distance calculations for each query

vector y to identify reasonable clusters. The centroids are

then sorted based on distances, and the w-best clusters are

chosen, giving a list of database vectors Lc ⊂ X which

have a high chance of containing the nearest neighbor.

These vectors are again sorted in a re-ranking step based

on PQ of the expensive residual-computation rw = y − cw
to the identified cluster cw, which is precomputed in [9],

[11] and stored in a distance lookup-table. Again, this pre-

computation is only possible when query vectors are known

in advance.

The distance between the query vector y ∈ R
D and each

nearest neighbor candidate x ∈ Lc can be approximated by

quantizing the residual using a second PQ codebook with

k2 words. Re-ordering the list Lc → Ls and considering

the first few vectors L′
s ⊂ Ls, an exhaustive search in L′

s

becomes feasible.

The lookup and re-ranking steps when visiting w clusters

requires k1+w ·k2 exact distance calculations during query

time. With typical values of k1 = 8192, w = 64, k2 = 256,

this implies 24576 distance calculations.

Our hierarchical approach reduces the total number of

exact distance calculations to less than 200. On a mod-

ern NVIDIA Titan X computing 16k exact distances is 62

times slower (0.13 ms) than 256 exact distance computa-

tions (0.0021 ms). Hence, the number of exact vector com-

parison would become a bottleneck. A complete query in

our algorithm only takes about 0.02 ms due to an efficient

index structure and the parallel nature of our approach.

2.3. Inverted multiindex (IMI)

The inverted multi-index [4] exploits PQ rather than VQ

for an indexing structure over all database vectors, which re-

duces the number of centroid-distance calculation for clus-

ter proposals or vise-versa increases the number bins: Given

part distances to k codebook vectors, for each part [y]p of
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the query vector this approach sorts the corresponding k

centroids w.r.t. to the ascending distances

[y]1 → {i10, i11, i12, . . . , i1k−1} = I1
[y]2 → {i20, i21, i22, . . . , i2k−1} = I2

...
...

...
...

...

[y]P → {iP0, iP1, iP2, . . . , iPk−1} = IP ,

where i23 is the ID of the 3rd nearest cluster for part 2. The

combined cluster IDs of all parts encoded a bin ID via a

multi-index

i ∈ I1 × I2 × · · · × IP . (5)

For NN-search, starting with bin Bi, i = (i10, i20, . . . , iP0)
a heuristic is needed to traverse all bins Bi in the vicinity.

The authors of [4] make use of a priority queue to dy-

namically select the next closest not yet visited bin until suf-

ficiently many bins/vectors are proposed. All vectors stored

in each visited bin Bi are then examined in an exhaustive

search using PQ-based re-ranking of the residual to each

bin centroid.

Both methods [9, 4] achieve state-of-the-art precision but

have efficiency issues when making a query. VQ-based in-

dexing requires a very large number of full dimensional-

ity codebook vector comparisons, and even for PQ-based

indexing the number is still large. PQ-based indexing is

hindered by a slow enumeration of the next best bin [4].

Additionally, both methods require quantizing the residual

within each bin for re-ranking; this is accelerated by pre-

computing the residual quantization for each part in [4],

however with unknown query vectors, this optimization can

not be made.

We address these issues by introducing a Product Quan-

tization Tree (Sec. 3). Our approach presents an efficient

heuristic for proposing bins (Sec. 3.2), as well as a novel re-

ranking method based on projections to quantized lines for

re-ranking (Sec. 3.3). Our re-ranking step is especially effi-

cient as it can simply reuse distance calculations computed

during the tree traversal. Finally, we demonstrate that our

approach can be efficiently implemented on a GPU using

CUDA (Sec. 4).

3. Product Quantization Tree

The Product Quantization Tree (PQT) is built upon a

combination of the inverted multi-index and hierarchical

PQ. The main idea is that product quantization is performed

using a hierarchical VQ-tree [16] for each part rather than a

flat codebook. The tree structure on the centroids speeds up

the query (online), sorting into the database (offline), and

indexes considerably more bins in contrast to the inverted

multi-index. Additionally, it is designed to enable the reuse

of computed values for fast re-ranking.

[c0]1

VQ

[c1]1

VQ

[c2]1

VQ

[c3]1

VQ

[c0]2

VQ

[c1]2

VQ

[c2]2

VQ

[c3]2

VQ

PQ

k1 = 4

refinement

k2 = 5

refinement

k2 = 5

search space

x

[x]1

[x]2

Figure 2: Both parts of ([x]1 , [x]2) ∈ R
D are quantized by

a VQ tree with k1 = 4 clusters in the first and k2 = 5 finer

clusters in the second level. During traversal, only the best

w closest clusters of the first level are refined. The example

search space by extending w = 2 clusters is illustrated as

the gray area.

3.1. Tree structure  offline phase

Sorting each database vector x ∈ X into a bin Bℓ gives

disjoint sets, X =
⋃

·
K
k=1 Bk. We describe how to effec-

tively map a vector into a bin, m : X → I1×I2×· · ·×IP .

The indexing structure is a tree which consists of two

levels of quantizers. The first level is a traditional P -parts

product quantizer with k1 centroids for each part. Each re-

sulting part cluster is then independently refined by one ad-

ditional vector quantizer with k2 centroids as illustrated in

Figure 2. The bins are addressed by any combination of the

per-part child node centroids. This gives K = (k1 · k2)
P

bins in total.

Training the codebook. Constructing the VQ-trees is

done independently for each part, first by constructing a VQ

codebook (level 1) using Lloyd iteration in the fashion of

the Linde-Buzo-Gray algorithm [14] and then quantizing all

sub-vectors (level 2) assigned to a first level cluster.

While the inverted multi-index approach [4] also uses

two levels of product quantization, the second is exclusively

used for re-ranking. As opposed to this, we use two levels

for indexing. While additional tree levels are possible, we

empirically found this configuration to be optimal in terms

of balancing the number of bins to check with the reduction

of candidate vectors.

3.2. Query  online phase

A query now consist of four steps: tree traversal, bin

proposal, vector proposal, and re-ranking.

The tree traversal is carried out as described above pro-

ducing an ordered list of (i, d)2p for the best subset of level 2
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clusters.

Tree Traversal. The tree reduces the number of exact

distance computations required during traversal by pruning.

After comparing to all k1 first-level codebook vectors, the

distances are sorted, and only the w best clusters are refined

for further distance calculations for the level 2 codebook.

Let y ∈ R
D be the query vector, distances d([y]p ,

[

c1
]

p
) to

the k1 first-level . in the first level are computed separately

for each part. This step returns a set of IDs and distance

pairs

{(i, d′)1p | d
′ = d([y]p ,

[

c1i
]

p
)} (6)

for each part p and each level 1 centroid.

From these possible per-part clusters, we only use the

closest w centroids for further processing, i.e. computing

the distances d([y]p ,
[

c2
]

p
) only to those level 2 centroids

whose corresponding c1 are in the best set. The level 2 dis-

tances are ordered to find the best cluster indices for each

part. Finally, combining the best indices of the individual

parts identifies the best bin as in Equation 5.

A typical configuration might consist of four parts (P =
4, k1 = 16, k2 = 16, w = 4), amounting to only 16 +
4 · 16 = 80 full vector distance calculations to address

(16 · 16)4 ≈ 4 trillion bins. For practical purposes we

applied modulo-hashing by using unsigned integers repre-

senting the index.

Bin Proposal Heuristic. Given the best bin as deter-

mined by the index i = (i11, i21, . . . , iP1), one has to find

a sequence of neighbor bins to check such that a sufficient

number of vectors for re-ranking is generated. The priority

queue used in Babenko and Lemptsky [4] would yield the

optimal sequence but it requires a resorting operation for

each proposed bin, which is expensive and is sequential by

nature.

Instead, we propose to choose a fixed traversal heuristic.

The most simple order would be to compute all id-vectors

v ∈ {1, r}P and sort them according their distance from the

origin ‖v‖2. However, this returns an isotropic bin traversal

heuristic as depicted in Figure 3 (blue line) compared to the

optimal sequence from [4] (green line) and our proposed

anisotropic traversal heuristic (red line). The anisotropic

version with flexible slope produced a better approximation

of the Dijkstra ordering. Hereby, we pre-compute bin or-

derings for 10 slopes 1.08k with k = −5,−4, . . . , 4. Each

slope describes the progress balance on one part-pair. A

slope of 1 would equally handle both parts, while a slope of

1.08−5 would allow more bin combinations with higher ids

in the second part (see red line in Figure 3).

3.3. Reranking by line quantization

In the index structure, each database vector is quantized

to its nearest bin with a quantization error ∆i. To find

the best vectors in the bin they need to be sorted based

10 11 12 13 15 17

9 10 11 12 14 16

8 9 10 11 13 15

3 4 5 6 8 10

1 2 3 4 6 8

0 1 2 3 5 7d
is
ta
n
ce

p
ar
t
p
:
∥ ∥ ∥
[x
] p
−

[c
] p

∥ ∥ ∥

distance part p′:
∥

∥

∥
[x]p′ − [c]p′

∥

∥

∥

naive: 10 bins

anisotropic: 8 bins

optimal: 7 bins

Figure 3: Merging the independent lookups from differents

parts p, p′ to find the best bin-combination requires sort-

ing all combinations. A Dijkstra-based traversal [4] (green)

cannot be evaluated on a GPU due to its sequential nature,

though it is the optimal sequence. Possible parallel approx-

imations are a naive (blue) or a anisotropic (red) heuristic.

on their distance to the query vector. However, full D-

dimensional distance calculations for each vector are too ex-

pensive. Similarly, re-ranking based on product quantized

residuals [9] requires comparison to yet another codebook.

Inspired by the Johnson-Lindenstrauss lemma [8], we

propose line quantization, where some of the information

gathered during traversal is reused.

Offline computation Each vector ( ) is quantized to the

nearest projection ( ) onto any line ( - ) through the level 1

centroids for each part, see Figure 4. For multiple parts,

this quantization effectively spans hyper-planes. The dis-

tance of the query point to the line quantized vector can be

evaluated exactly and efficiently using only one 2D triangle

calculation per part.

In order to disambiguate the database vectors x

in these bins, we propose an approximation by pro-

jecting each vector part [x]p in the linear subspace

span([ci]p , [cj ]p), ci, cj ∈ C defined by the first level cen-

troids [ci]p and [cj ]p illustrated by in Figure 4. We chose

[ci]p , [cj ]p such that the quantization error δp is minimized.

Therefore, when approximating each database vector part

[x]p by (1 − λp) [ci]p + λp [cj ]p calculating the distance

d(y, x) does not rely on the values of x but uses existing

information from the tree-structure.

Using this approach, we store λp and (ip, jp) for

each database vector using 1+1 bytes in our implementa-

tion. Storing the information of λp and the indicies from

[ci]p, [cj ]p in Figure 5 describes the approximation ( ) of

a vector ( ). In fact, all information about database vector

xi ∈ X we need for the complete algorithm is encoded in

the 3 · P tuple

xi ↔ (λ1, . . . , λP , i1, . . . , iP , j1, . . . , jP ), (7)
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∆1

∆2

[bk]p

[x1]p
δ1

[x2]p

δ2

[c1]p

[c2]p

[c3]p
[y]p

Figure 4: Line Quantization. In traditional PQ, each

database vector xi ( ) is projected onto the bin centroid ( )

yielding an approximation error ∆i. Vectors in a bin would

be indistinguishable wrt. a query y. We project xi onto ( )

on the nearest line - which gives an approximation error

δi.

λpcp

δp

∆p([ci]p)

∆p([cj ]p)

hp(y, x)

bp

ap

[y]p

[x]p

[ci]p

[cj ]p

Figure 5: Exact query to line calculation. The database vec-

tor part ([x]p, ) is projected onto ( ) at the line ([ci]p , [cj ]p)
with error δp. When re-ranking the exact distance hp be-

tween the query ( [y]p ) and the quantized database point

is obtained using triangulation. All necessary values are

known as they are computed during tree traversal (ap, bp)
or during database construction (cp, λp, (i, j)).

which can be heavily compressed to about 2 bytes per

part. While this scheme does not have the same compres-

sion rate as previous methods, it is the first to allow an

efficient parallel re-ranking on the GPU by look-up from

already computed values without any computational over-

head.

We only need to store one small global lookup table of

P × k1 × k1 precomputed distances between all pairs of

level 1 centroids, i.e. ‖ [cs]p − [ct]p ‖
2
2 for all p, s, t. This

can be computed in the offline phase as it is independent of

query vectors.

Online computation During tree traversal all distances

between a query point y ∈ R
D and all level 1 centroids have

already been computed as list of pairs (i, d)1p. The approx-

imate distance to the database vector x is computed given

the triple (λp, ip, jp), looking up ap and bp in the query’s

list, and cp. The distance between y and x is approximated

by

d(y, x)2 =

P
∑

p=1

d([y]p , [x]p)
2 ≈

P
∑

p=1

hp(y, x)
2 (8)

≈

P
∑

p=1

(

b2p + λ2
p · c

2
p + λp · (a

2
p − b2p − c2p)

)

. (9)

Note, that it is possible to compute the distance between a

query and database vector by triangulation exactly up to the

projection error δi as illustrated in Figure 5.

In practice we use different numbers of parts for the tree

(Ptree = 2 or 4) and for the line quantization (Pline = 8, 16
or 32) for sufficiently precise re-ranking. Using exactly the

same level 1 codebook with p parts, we split each centroid

part to get p′ = k · p parts and compute the distances by

aggregating the components.

4. GPU Implementation

Our approach is well suited to take advantage of GPU

parallelism, which we implemented in CUDA. There are

two levels of granularity of parallelism. The first is by pro-

cessing multiple vectors in parallel, each vector with one

block of threads. The second is by processing vector ele-

ments in parallel for all threads within the block.

Database bins are represented by a long, sorted array

containing all vector IDs and a pointer array indicating

where the vectors of each bin start. The pointer array is

assembled by first computing a histogram of vectors over

all bins and then computing the prefix sum [17]. In order to

deal with a possibly excessive number of bins, we hash the

bins using a simple modulus. As many bins contain zero

vectors collision is simply ignored.

One kernel computes the distances to all level 1 centroids

and sorts them using bitonic sort in shared memory. The

second kernel does the same for the selected level 2 clusters

based on the previous output. These two kernels are used

both for sorting vectors into the bins as well as for kNN

queries. For database vectors, a special kernel computes the

optimal line projection (Sec. 3.3).

For each query vector, we then generate an ordered list

of bins following the heuristic of Sec. 3.2. Each thread in

a block computes and stores one bin ID. All empty bins are

removed. Then, the kernel produces a list of potential vector

IDs, each thread is responsible for copying all vectors IDs

of one bin. The final kernel calculates the distances for the

re-ranking using the line quantization and outputs the re-

ranked list of IDs. Here, re-ranking one vector is executed

by one warp each.

2032



method ms R@1 R@10 R@100 su

FLANN [16] 5.32 0.97 - - ×9.6
LOPQ [11] 51.1 0.51 0.93 0.97 ×1
IVFADC* 11.2 0.28 0.70 0.93 ×4.5
PQT1 (CPU) 4.89 0.45 0.86 0.98 ×10.4
PQT2 (CPU) 5.74 0.98 (exact re-ranking) ×8.9

PQT (GPU) 0.02 0.51 0.83 0.86 ×2555

GPU brutef. 23.7 1 1 1 ×2

Table 1: Performance on the SIFT1M dataset using dif-

ferent methods. Reported query times include query + re-

ranking times. The GPU implementation uses the first 212

vectors from the proposed bins and (64 · 8)4 bins. The re-

ported CPU performance is base on (8 · 4)2 bins. Speedup

(su) is reported relative to the slowest method. PQT2 is

PQT1 but with additional exact re-ranking. (*) indicates

that the timing was reported by the authors. R@n means,

the correct vector is within the first n returned vectors from

the algorithm.

5. Results

We now present the results of the PQT evaluated on sev-

eral standard benchmark sets. All reported CPU query times

were obtained from a single-thread C++ implementation us-

ing SSE2 instructions. Results of our GPU implementations

are obtained with a NVIDIA GTX Titan X.

We use the publicly available benchmark SIFT1M,

SIFT1B datasets [10], of 106, 109 128-dim vectors and

GIST1M [9] of 106 960-dim vectors. For the codebook

training process we used the first 100K/1M vectors from the

respective datasets. It was not possible to obtain any results

on GIST1M using FLANN in Table 2.

5.1. Query times and Recall

We compared our implementation with the available im-

plementations of [11] and [4]. Due to the approximation

nature of these algorithms and discrete parameter space it is

not trivial to find parameter settings which produce the same

accuracy for timing comparisons. Therefore, we choose a

highly optimized GPU-based exhaustive search as a strong

baseline method. The accuracy is measured in recall R@x,

which is the fraction of nearest neighbors found in the first

x proposed vectors after re-ranking.

Table 1 gives the average query time in milliseconds ob-

tained on the same machine using public available code.

Compared to all PQ-based approaches [4, 11] our approach

(Pline = 32) is faster on the CPU at similar accuracy. Allow-

ing [11] to use more memory consumption for re-ranking

slows down the query process. Note that the reported time

of [11] excludes all intensive operations like the multiplica-

method avg. (ms) R@100

SH [5] 22.7 0.132

IVFADC 65.9 0.744

FLANN not possible

PQT(CPU) 63 0.83

Table 2: Performance of the GIST1M dataset using differ-

ent methods. PQT uses 128 parts for re-ranking.
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Figure 6: Recall rates on the SIFT1B data set (p = 4, k1 =
32, k2 = 16, w = 8) with ordering of bins. The recall

from PQT is without a reranking step. Even with significant

lower query time, our approach is comparable in quality to

the inverted multi-index with k = 212.

tion of query vector with a D × D rotation matrix, which

was pre-computed.

On the GPU, sorting the SIFT1M vectors into the bins

takes 1051ms, performing the line quantization for these

1M vectors about 458ms (p = 4, k1 = 16, k2 = 8, w = 8).

The processing time for one query is roughly 39 microsec-

onds, split into 4% traversal, 35% bin selection, 11% vector

proposal, and 50% re-ranking. In our implementation the

maximum number of sortable vectors on the GPU per query

is currently limited to 4096 during re-ranking. Applying

different algorithms, this restriction could be removed.

With the right configuration of bins, high recall values

can even be achieved on the SIFT1B data set (Figure 6). Be-

cause the full data set did not fit on the GPU, the data base

was build in waves of 1M vectors, aggregating the informa-

tion on the CPU. With file I/O this took about 144min. On

a NVIDIA GTX Titan X with 12GB of RAM one can up-

load the resulting DB structure, i.e. bin sizes and vector IDs

per bin. For the SIFT1B dataset it was essential to re-sort

the proposed bins by the actual distance. This slowed down

query time to 0.027ms in total without re-ranking. The re-

call rate of our approach is R@10=0.35. For the re-ranking

we directly accessed the CPU main memory from the GPU
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Figure 7: Line Quantization. The different curves show

the recall of the SIFT1M dataset for varying values of Pline

using p = 2, k1 = 16, k2 = 8, w = 4. A query took

3, 4, 6, 9ms on a single CPU with |Lc| < 20000.

Pline min distor. max distor. avg. distor. time (ms)

2 10874.9 179870 30534.6 2.0

4 8967.8 166722 26257.9 2.6

8 6709.2 145082 19719.4 3.6

16 3318.3 84640 10509.7 5.3

32 1035.3 39143 3686.71 8.5

Table 3: Squared Line-quantization error (distortion δ) by

projecting each x ∈ X onto a line using p = 2, k1 =
16, k2 = 8, h1 = 4 for the SIFT1M data set. Last column

gives the average query time.

resulting in a total query time of 0.15ms.

Memory is the limiting factor for the maximum number

of actual bins. We apply hashing to 100M bins. Increasing

the number of parts P or introducing a further level into the

tree would further boost the number of bins – at the same

time, also the number of bins to be visited in the vicinity

would drastically increase and slow down the system.

5.2. Precision of Line Quantization

We tested the performance of encoding each database

vector x ∈ X by its projection onto a line for different num-

bers of parts used for line quantization (see Figure 7 and

Table 3). The recall rate increases with the number of line

parts, Pline. Low quantization errors with moderate com-

putational and storage effort are obtained with Pline = 16.

Note, that the necessary data for each query vector is di-

rectly assembled during the tree traversal without the need

for any further quantization computation. See the supple-

mentary material for re-ranking results on MNIST (784 di-

mensions).

6. Conclusion

In conclusion, we introduce a new method for efficient

similarity search on large, high dimensional datasets. We

propose a two level Product Quantization Tree for quickly

indexing large numbers of bins with minimal memory and

computation overhead. We combined this with a novel re-

ranking method based on closest-line projections, and a bin

ordering heuristic. The tree structure provides all interme-

diate values, which accelerate the re-ranking procedure.

Our prototype implementation demonstrates improve-

ment in accuracy and speed over state-of-the art methods for

ANN queries. We demonstrated the scalability from com-

petitive performance to FLANN [16] in small benchmark

sets (SIFT1M) and outperform to the state-of-the-art meth-

ods at the challenging BigANN benchmark set containing

one billion vectors of dimension 128, as well as in datasets

with high dimensionality (GIST1M). By construction, the

proposed approach can easily be implemented as well on

the GPU , which evaluates to a significant speedup against

previous methods.

While our method worked well in the examples and

datasets we tried, there are many avenues for future re-

search. For example, it is possible that other tree structures

featuring different combinations of PQ and VQ, or even

these methods in combination with different approaches

such as KD-trees, or LSH would be an interesting area of fu-

ture research. Additionally, performing efficient on-the-fly

updates to the database vectors, and resulting tree structure

would be another area for future work.
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