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Abstract

This paper presents an algorithm that allows to learn low

dimensional representations of images in an unsupervised

manner. The core idea is to combine two criteria that play

important roles in unsupervised representation learning,

namely sparsity and trace quotient. The former is known

to be a convenient tool to identify underlying factors, and

the latter is known as a disentanglement of underlying dis-

criminative factors. In this work, we develop a generic cost

function for learning jointly a sparsifying dictionary and a

dimensionality reduction transformation. It leads to sev-

eral counterparts of classic low dimensional representation

methods, such as Principal Component Analysis, Local Lin-

ear Embedding, and Laplacian Eigenmap. Our proposed

optimisation algorithm leverages the efficiency of geometric

optimisation on Riemannian manifolds and a closed form

solution to the elastic net problem.

1. Introduction

Finding appropriate low dimensional representations of

data is a long-standing challenging problem in data process-

ing and machine learning. Recent development in represen-

tation learning shows that appropriate data representations

are the key to the success of machine learning algorithms,

as different representations can entangle different explana-

tory information of the data, cf. [4]. The aim of this pa-

per is to construct effective low dimensional representation

learning approaches to disentangle various explanatory or

discriminative information in the data for solving unsuper-

vised learning problems.

Sparse representation (SR) was developed as an instru-

ment to leverage the underlying sparse structure of data. It

has led to a great success in signal reconstruction, denoising

and image super-resolution, cf. [2, 9, 16, 31]. These meth-

ods can be considered as data-driven sparse representation

approaches. On the other hand, sparse coefficients can also

be interpreted as features that are suitable for the tasks of

learning, such as face recognition [29], subspace clustering

[11], and image classification [26].

Furthermore, it is also evidential that sparse representa-

tion of the data can be further processed by applying other

disentangling instruments, in order to reveal task-related in-

formation. For example, the work in [32, 33] incorporates

linear classifiers with sparse representation to jointly learn

a sparsifying dictionary and a classifier. Similarly, adopting

sparse representations in a classical expected risk minimi-

sation formulation leads to the so-called task-driven dictio-

nary learning approaches, specifically for supervised learn-

ing tasks, cf. [24]. In the unsupervised learning setting,

directly applying a Principal Component Analysis (PCA)

on sparse representations also results in promising perfor-

mance in 3D visualisation and clustering, cf. [12]. From a

perspective of representation learning, it is a logical conclu-

sion that sparse representations contain rich distributed in-

formation of the data with respect to certain learning tasks,

and it also necessitates application of further learning mech-

anisms to disentangle the underlying explanatory informa-

tion.

In this work, we are interested in the problem of unsuper-

vised learning. Among various unsupervised learning tech-

niques, the trace quotient criterion is a simple but powerful

instrument for data discrimination, in particular for Dimen-

sionality Reduction (DR). This generic criterion is shared

by various classic DR methods, such as PCA, Linear Local

Embedding (LLE) [25], Orthogonal Neighbourhood Pre-

serving Projection (ONPP) [22], Locality Preserving Pro-

jections (LPP) [17], and Orthogonal LPP (OLPP) [7]. Our

main construction in this work is to apply the trace quo-

tient criterion to further disentangle sparse representations

for unsupervised learning tasks.

The paper is organised as follows. Section 2 provides

a brief review on both sparse representations and the trace

quotient criterion. In Section 3, we construct a generic cost

function for learning both the sparsifying dictionary and

the orthogonal DR transformation, and develop a geomet-
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ric conjugate gradient algorithm on the underlying smooth

manifold. Three applications of the proposed generic model

are discussed in Section 4, together with their experimental

evaluations presented in Section 5. Finally, conclusions and

outlooks are given in Section 6.

2. The Elastic Net Solution and the Trace Quo-

tient Maximisation

In this section, we recall some facts about both sparse

representations and trace quotient optimisation based di-

mensionality reduction.

2.1. Sparse Coding

Given a set of data samples xi ∈ R
m, the aim of sparse

coding is to find a collection of atoms dj ∈ R
m such that

each data sample can be approximated by a linear combi-

nation of only a few of the atoms {dj}. According to [4],

the atoms can be interpreted as underlying factors that are

responsible for explaining the discrepancy in the data set.

In other words, sparse coding generates sparsely distributed

representations of data with respect to the specific atoms.

The collection of atoms (often as columns in a matrix) is

called a dictionary D ∈ R
m×r, leading to the model

xi = Dφi + ǫi, (1)

where φi ∈ R
r is the corresponding sparse representation,

and ǫi ∈ R
m is additive noise. In this work, we restrict each

column di ∈ R
m of D to have unit norm, i.e.

S(m, r) :=
{
D ∈ R

m×r
∣∣ rk(D) = m, ‖di‖2 = 1

}
, (2)

which is a product manifold of (m − 1)-dimensional unit

spheres. In the literature, there are several well-established

methods for sparse coding, which all depend on a certain

sparsity measure, cf. [2, 10].

Once a dictionary is given, there are several ways of find-

ing the sparse representation. If sparsity is measured by em-

ploying a combination of the ℓ1- and the ℓ2-norm, a solution

to the elastic net problem [34], i.e.

φ∗ := argmin
φ∈Rr

1
2‖x−Dφ‖22 + λ1‖φ‖1 +

λ2

2 ‖φ‖
2
2 (3)

yields a convenient way to obtain the sparse representation.

The two regularisation parameters λ1 ∈ R
+ and λ2 ∈ R

+

are chosen to ensure stability and uniqueness of the solu-

tion. Solutions to the elastic net problem (3) share a con-

venient fact that, under certain assumptions, there exists a

closed from expression.

Let us define the set of indices of the non-zero entries

of the solution φ∗ = [ϕ∗
1, . . . , ϕ

∗
r ]

⊤ ∈ R
r by Λ := {i ∈

{1, . . . , r}|ϕ∗
i 6= 0} and k := |Λ|. Then the solution of the

elastic net (3) has a closed-form expression as

φ∗
D(x) :=

(
D⊤

ΛDΛ + λ2Ik
)−1 (

D⊤
Λx− λ1sΛ

)
, (4)

where Ik is the k × k identity matrix, sΛ ∈ {±1}
k car-

ries the signs of φ∗
Λ, and DΛ ∈ R

m×k is the subset of D
in which the index of atoms (columns) fall into the support

Λ. With a reasonable assumption that the dictionary D is

suitably incoherent, the solution φ∗
D(x) shares an algorith-

mically convenient property of being locally twice differ-

entiable with respect to both D and x, cf. [24]. Such a

prominent property leads to the framework of task-driven

dictionary learning, which is specifically dedicated to su-

pervised learning problems.

2.2. Low dimensional representations based on the
trace quotient criterion

The goal of low dimensional representation learning is to

find representations yi ∈ R
l of given data samples xi ∈ R

m

with l < m, via a mapping

µ : Rm → R
l, x 7→ µ(x), (5)

which captures certain desired properties of the data to fa-

cilitate the specific applications. Many classic DR methods

restrict the mapping µ to be an orthogonal transformation,

i.e. µ(x) := U⊤x with U ∈ St(l,m). Here St(l,m) de-

notes the Stiefel manifold

St(l,m) :=
{
U ∈ R

m×l|U⊤U = Il
}
. (6)

In the category of unsupervised learning, this model in-

cludes various classic DR methods, such as PCA, Orthog-

onal Locality Preserving Projection (OLPP) [7], Orthogo-

nal Linear Graph Embedding (OLGE) [30], and Orthogonal

Neighbourhood Preserving Projections (ONPP) [22].

Often, the aforementioned DR methods find the orthog-

onal transformation U ∈ St(l,m) via maximising the so-

called trace quotient or trace ratio, i.e.

g : St(l,m)→ R, g(U) :=
tr(U⊤AU)

tr(U⊤BU)
, (7)

where A ∈ R
m×m is assumed to be symmetric positive

semi-definite and B ∈ R
m×m is often assumed to be sym-

metric positive definite. Both matrices are constructed ac-

cording to the specific problems, cf. [8, 21], and examples

will be given and discussed in Section 4.

Due to the rotation invariance of the function g, i.e.

g(UΘ) = g(U) for Θ ∈ R
l×l being orthogonal, we can

redefine the trace quotient function as

f : Gr(l,m)→ R, f(P ) :=
tr(AP )

tr(BP )
, (8)

where Gr(l,m) denotes the Graßmann manifold as the set

of all m-dimensional rank-l orthogonal projectors, i.e.

Gr(l,m) :=
{
UU⊤|U ∈ St(l,m)

}
. (9)

Various efficient optimisation algorithms over Riemannian

manifolds have been developed to maximise the function f ,

cf. [8, 14, 18, 19].
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3. The Proposed Joint Learning Framework

In this section, we firstly present a generic cost func-

tion, which adopts the sparsifying dictionary learning in the

framework of trace quotient maximisation in Section 3.1.

Then a geometric conjugate gradient algorithm is presented

in Section 3.2.

3.1. A generic cost function

As suggested by the work of [12, 24], further processing

on the sparse representation is capable of unveiling task-

related underlying factors, potentially for both supervised

and unsupervised learning tasks. In what follows, we con-

struct a cost function, which allows to jointly learn both the

sparsifying dictionary and the orthogonal transformation in

the framework of trace quotient maximisation.

Let us denote by Φ(D,X) := [φx1
(D), . . . , φxn

(D)] ∈
R

r×n the sparse representation of the data X =
[x1, . . . , xn] for a given dictionary D. We confine our-

selves to the solutions of the elastic net minimisation. Let

A : Rr×n → R
r×r and B : Rr×n → R

r×r be two smooth

functions that serve as generating functions for the matrices

A and B in the trace quotient (7). The specific constructions

of the mappings A and B are given in Section 4. Then we

define a generic trace quotient function in sparse represen-

tations as

f̃ : S(m, r)×Gr(l, r)→R,

f̃(D,P ) :=
tr(A(Φ(D,X))P )

tr(B(Φ(D,X))P ) + σ
,

(10)

with σ ∈ R
+ being chosen to guarantee the denominator of

f̃ to be positive. manifold S(m, r)×Gr(l, r). In the rest of

the paper, we refer to our proposed model as SPARse LOW

dimensional representation learning (SparLow).

In order to prevent solution dictionaries from being

highly coherent, which is critical for guaranteeing the lo-

cal smoothness of the elastic net solutions, we employ a

log-barrier function on the scalar product of all dictionary

columns to control the mutual coherence of the learned dic-

tionary D, cf. [16], i.e.

r(D) := −
∑

1≤i<j≤k

log(1− (d⊤i dj)
2). (11)

Furthermore, the authors in [28] argue that an appropriate

dictionary of choice in sparse representation can reveal the

semantics of the data. We propose the following regulariser

on the dictionary to be learned

h(D) = ‖D −D∗‖2F , (12)

where D∗ is the optimal data-driven dictionary learned from

sparse coding of the data X , and ‖·‖F denotes the Frobenius

norm. Practically, we use a dictionary D̂ produced by state

Algorithm 1: A CG-SparLow Algorithm.

Input : X ∈ R
m×n and functions A : Rr×n → R

r×r

and B : Rr×n → R
r×r as specified in

Section 4 ;

Output: Accumulation point D∗ ∈ S(m, r) and

P ∗ ∈ Gr(l, r) ;

Step 1: Generate initialization D(0) ∈ S(m, r) and

P (0) ∈ Gr(l, r), and set j = 1 ;

Step 2: Compute

G(1)= H(1)← (∇J(D
(0)),∇J(P

(0))) ;

Step 3: Set j = j + 1 ;

Step 4: Update

(D(j+1), P (j+1))←(D(j+1), P (j+1))+λH(j),

where λ is computed by employing a

backtracking line search along geodesics;

Step 5: Update H(j+1) ← G(j+1) + γH(j), where

G(j+1) = (∇J(D
(j+1)),∇J(P

(j+1))), and γ
is chosen according to Eq. (14) ;

Step 6: If j mod (r(m− 1) + l(r − l)− 1) = 0, set

H(j+1) ← G(j+1) ;

Step 7: If
∥∥G(j+1)

∥∥ is small enough, stop. Otherwise,

go to Step 3;

of the art methods, such as K-SVD. Our experiments have

verified that the heuristic regulariser h ensures solutions of

the generic cost function J defined in Eq. (13) to be self

explanatory to the data, and guarantees stable performance

towards the task of learning.

By combining the two regularisers discussed above, we

construct the following cost function to jointly learn both

the sparsifying dictionary and the orthogonal transforma-

tion, i.e.

J : S(m, r)×Gr(l, r)→ R,

J(D,P ) := f̃(D,P ) + µ1r(D) + µ2h(D),
(13)

where the two weighting factors µ1, µ2 ∈ R
+ control the

influence of the two constraints on the final solution.

3.2. A geometric conjugate gradient algorithm

In this subsection, we present a geometric CG algorithm

on the product manifold S(m, r) × Gr(l, r) to maximise

the generic cost function J , defined in (13). It is well known

that CG algorithms offer prominent properties, such as a su-

perlinear rate of convergence and the applicability to large

scale optimisation problems with low computational com-

plexity, e.g. in sparse recovery [15]. We refer to [1] for

further technical details for these computations.

We denote by T(D,P )S(m, r) × Gr(l, r) the tangent

space of S(m, r) × Gr(l, r) at (D,P ), the Riemannian
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gradient of J at (D,P ) by G := (∇J(D),∇J(P )) ∈
T(D,P )S(m, r) × Gr(l, r), and by H ∈ T(D,P )S(m, r) ×
Gr(l, r) the conjugate gradient direction. Given

dimS(m, r) = r(m − 1) and dimGr(l, r) = l(r − l), we

summarise a conjugate gradient algorithm for maximising

the function J as defined in (13), cf. Algorithm 1.

For updating the direction parameter γ in Step 5, we con-

fine ourselves to a formula, which is proposed in [23], as

γ =
〈G(j+1), G(j+1)−G(j)〉
〈H(j), G(j)〉

, (14)

with the inner product 〈·, ·〉 being defined as

〈(P1, Q1), (P2, Q2)〉 = tr(P⊤
1 P2) + tr(Q⊤

1 Q2). (15)

Finally in Step 6, the search direction is periodically reset

to the gradient, in order to achieve fast convergence.

4. Applications of the SparLow Model

In the previous section, we propose a generic regularised

cost function, and develop a geometric conjugate gradient

algorithm to maximise the generic cost function J . In what

follows, we present counterparts of three classic unsuper-

vised learning methods, namely, PCA, LLE, and Laplacian

Eigenmap. Experimental evaluations are conducted in Sec-

tion 5, to illustrate the performance of our proposed frame-

work, in comparison to several direct competitors.

4.1. PCA­like SparLow

The standard PCA method computes an orthogonal

transformation U ∈ St(l,m) such that the variance of the

low dimensional representations is maximised, i.e. U is the

maximiser of the problem

max
U∈St(l,m)

tr
(
U⊤XHnX

⊤U
)
, (16)

where Hn = In −
1
n
1n1

⊤
n is the centring matrix with

1n = [1, · · · , 1]⊤ ∈ R
n. In the framework of trace quo-

tient, the denominator can be trivially considered to be

tr(U⊤BpcaU) with Bpca = tr(XHnX
⊤)In, which is a

constant. By adopting the sparse representations Φ(D,X),
we construct straightforwardly

Apca(Φ(D,X)) := Φ(D,X)Hn(Φ(D,X))⊤, (17)

and

Bpca(Φ(D,X)) :=tr(Φ(D,X)Hn(Φ(D,X))⊤)Ir. (18)

4.2. LLE­like SparLow

The original LLE method aims to find low dimensional

representations of the data via fitting directly the barycentric

coordinates of a point based on its neighbours constructed

in the original data space, cf. [25]. It is well known that

the low dimensional representations in the LLE method can

only be computed implicitly. In order to overcome this

drawback, the so-called Orthogonal Neighbourhood Pre-

serving Projections (ONPP) is developed in [22], by intro-

ducing an explicit orthogonal transformation between the

original data and its low dimensional representation.

Specifically, the ONPP method solves the problem

max
U∈St(l,m)

tr
(
U⊤XMX⊤U

)
, (19)

where M = (In−W )⊤(In−W ) with W ∈ R
n×n being the

matrix of barycentric coordinates of the data. Similar to the

previous subsection, we construct the following functions

for an LLE-like SparLow approach, i.e.

Alle(Φ(D,X)) := Φ(D,X)M(Φ(D,X))⊤, (20)

and

Blle(Φ(D,X)) :=tr(Φ(D,X)M(Φ(D,X))⊤)Ir. (21)

4.3. Laplacian SparLow

Another category of DR methods are the ones involv-

ing a Laplacian matrix of the data. It includes, for exam-

ple, Locality Preserving Projection (LPP) [17], Orthogonal

LPP (OLPP) [7], Linear Graph Embedding [30]. Similar to

the approaches applied in the previous two subsections, we

adapt a simple formulation by setting

Alap(Φ(D,X)) := Φ(D,X)M(Φ(D,X))⊤, (22)

with M := {mij} ∈ R
n×n being a real symmetric matrix

measuring the similarity between data pairs (xi, xj), and

Blap(Φ(D,X)) := Φ(D,X)W (Φ(D,X))⊤, (23)

with W = {wij} ∈ R
n×n being a diagonal matrix having

wii :=
∑

j 6=i mij for all i = 1, . . . , n. Specifically, the

similarity matrix M can be computed by applying a Gaus-

sian kernel function on the distance between two data sam-

ples, i.e. mij = exp(−‖xi − xj‖
2
2/t) or constant weights

(mij = 1 if φi and φj are adjacent, mij = 0 otherwise).

5. Experimental Evaluations

In this section, we investigate the performance of our

proposed SparLow methods on real image data. We apply

the SparLow methods to firstly learn low dimensional rep-

resentations of real images, and then evaluate their perfor-

mance in two unsupervised learning scenarios, namely, (1)

the 1NN classification using known class labels, cf. [13];

and (2) 3D visualisation of disentangling factors learned by

applying the SparLow.
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Figure 1. 3D visualization using OLPP, PCA and ONPP on USPS handwritten digits. From top to bottom: Applying OLPP/PCA/ONPP

in original space, in sparse space with respect to initial dictionary D̂, and in sparse space with respect to learned dictionary via SparLow,

respectively.

5.1. Experimental Settings

In the following of the paper, we refer to the three Spar-

Low methods proposed in Section 4.1, 4.2, and 4.3 as PCA-

SparLow, LLE-SparLow and Lap-SparLow, respectively.

Similarly, we refer to direct applications of the classic DR

methods on sparse representations that are generated with

respect to a fixed dictionary as SparLDR. Three members

of the SparLDR family are investigated in our experiments,

namely, SparPCA, SparOLPP, and SparONPP, as the three

corresponding counterparts of the SparLow.

In our experiments, dictionaries are initialised as a

column-wise normalised Gaussian matrix and then im-

proved by employing the K-SVD algorithm [2]. The

learned dictionaries D̂’s are used in the regulariser h, as

defined in (12). Once an initial dictionary D̂ is given, the

orthogonal projection P ∈ Gr(l, r) can be obtained by ap-

plying classical DR methods on the sparse representations.

However, when the size of the training dataset is huge, di-

rectly performing classical DR methods is often prohibitive.

In order to overcome this difficulty, we propose to randomly

select a relatively small number of samples, and then to em-

ploy the classical DR methods on their sparse representa-

tions to obtain an estimation of the initial orthogonal pro-

jection P0 ∈ Gr(l, r).
Throughout all experiments, we consistently set σ =

10−3 in Eq. (10). We treat each image as an m-dimensional

vector, and normalise it to one. Let n be the number of

all signals which contain c classes, we use ntrain, ntest to

denote the number of total training samples and the num-

ber of total testing samples, respectively. Usually, we set

n = ntrain + ntest.

5.2. Handwritten digit images

Our first experiment is performed on the handwritten

digits from the MNIST database 1 and the USPS [20]. The

1http://yann.lecun.com/exdb/mnist/
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MNIST database consists of 60, 000 handwritten digits im-

ages for training and 10, 000 digits images for testing. All

images are grayscale between 0 and 1 and have a uniform

size of 28× 28 pixels. The USPS database has 7, 291 train-

ing images and 2, 007 testing images of size (16 × 16). By

vectorising the pixel intensity values of the images, each

image is represented as a vector of dimension m = 784 or

m = 256 for the MNIST database and the USPS database,

respectively.

In this experiment, the parameters for elastic net are set

to be λ1 = 0.2, λ2 = 2 × 10−5, and µ1 = 5 × 10−3,

µ2 = 2.5× 10−4, for both experiments on the MNIST and

USPS datasets. The size of dictionary is chosen to be r =
1000. For CS-PCA [12], we employ one common strategy

of randomly choosing a certain number of data points as

dictionary in a given set of training data, cf. [29].

To demonstrate the effectiveness of the proposed algo-

rithms, experiments of 3D visualisation were conducted on

the USPS dataset, compared to the classic DR methods and

the SparLDR methods, see Fig. 1. It is easily seen that

the low dimensional representations captured in the original

data space, shown in the first row in Fig. 1, are very hard to

cluster or group. In particular, the boundary between each

pair of digits are completely entangled. Direct applications

on the sparse representations for a given dictionary, i.e. the

second row in Fig. 1, show a significant improvement in

disentangling the class information. Furthermore, it is evi-

dentially clear that visualisation powered by the SparLow,

i.e. the third row in Fig. 1, leads to direct clustering of the

handwritten digits.

Table 1. Classification Performance for the MNIST & USPS

datasets of the Proposed SparLow methods, with comparisons to

some classical unsupervised DR approaches.

Methods Accuracy: USPS Accuracy: MNIST

PCA [12] 86.36%, l = 50 83.43%, l = 50
OLPP [7] 84.10% 82.50%

ONPP [22] 87.38% 83.08%
KPCA [21] 89.15%, l = 50 −
LLE [25] 68.80% 66.09%
LE [21] 71.88% 68.16%

t−SNE [27] 77.12% 76.59%
ISOMAP [21] 64.80% 60.51%

GTM [5] 56.92% 60.63%
PCA-SparLow 92.18%, l = 50 89.42%, l = 50
Lap-SparLow 91.80% 87.19%
LLE-SparLow 90.12% 86.55%

Let us denote by δi the ith largest eigenvalue of

Φ(D,X)Hn(Φ(D,X))⊤, and further define “Ratio of

eigenvalues” in Fig. 4 as tl =
∑l

i=1 δi/
∑r

j=1 δj . Fig. (4)

shows that our proposed PCA-SparLow significantly in-

crease the ratio tl. It also can be seen, our tl are consistently
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regularizations on USPS database. PCA-SparLow/R denotes

PCA-SparLow without regularizations, and in same way to Lap-

SparLow/R and LLE-SparLow/R.
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(a) USPS
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(b) MNIST

Figure 3. Comparison of 1NN classification using PCA-SparLow,

PCA, KPCA, CS-PCA on MNIST & USPS database. Dictionary

size is 1000.

larger than those of CS-PCA and KPCA, which indicates

that the PCA-SparLow method captures more structure in-

formation, which preserves power in the l dimensional sub-

space, cf. [7].

One obvious benefit of the proposed SparLow model

is that the learned low dimensional representations share

both reconstructive and discriminative capacities. In this

experiment, after applying the SparLow methods on the im-

ages from the USPS database, we employ the 1NN method
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Figure 4. Ratio of top l largest eigenvalues against all eigenvalues

in learning process of PCA-SparLow.

to classify the reduced features. Reconstruction errors in

terms of Peak Signal-to-Noise Ratio (PSNR) are presented

in Fig. 2(a). Fig. 2(b) shows the box plot of results of apply-

ing the 1NN classification ten times on the USPS database

with random initialisations. It is clear that the regulariser

h, defined in Eq. (12) has the capability of ensuring good

reconstruction, and achieving stable discriminations.

Finally, we compare the SparLow methods to several

state of the art methods, on the task of 1NN classification.

For PCA, KPCA and PCA-SparLow, we set l = 50, for

other methods, we set l = 20. For USPS, we use the

full training and testing database. For MNIST, we ran-

domly choose 20, 000 images for training, and use standard

10, 000 testing database. According to Fig. 3 and Table 1,

it is obvious that the SparLow methods consistently outper-

form the state of the arts.

5.3. CMU PIE faces analysis

In this subsection, we test the SparLow methods on the

CMU PIE face database [6]. The CMU PIE face database

contains 68 human subjects with 41, 368 face images. As

suggested in [6], a subset containing 11, 554 PIE faces are

chosen, all of which are manually aligned and cropped, thus

we nearly get 170 images for each individual, with the scale

32 × 32 and 256 grey levels per pixel. All experiments are

repeated ten times with different randomly selected training

and test images, and the average of per-class recognition

rates is recorded for each run. In our experiments, we set

λ1 = 10−2, λ2 = 10−5, µ1 = 2.5× 10−4, µ2 = 5× 10−3.

First of all, similar to the experiments conducted on the

handwritten digits, Fig. 5 gives the 3D visualisation of low

dimensional representations learned by the SparLow meth-

ods and their classical counterparts. It unveils a same mes-

sage that the SparLow methods can disentangle the class

information very clearly. Fig. 6 illustrates the performance

of LDR, SparLDR and SparLow in terms of recognition ac-

curacy. It is easily seen that the SparLow methods outper-

form the state of the art algorithms, such as PCA, OLPP and

ONPP.
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Figure 6. Face recognition on 68 class PIE faces. The classifier is

1NN. Randomly choose ntrain = 8160 and ntest = 3394.

Moreover, visualising the facial features is a common ap-

proach to assess the performance of DR methods. In order

to facilitate this task, we define the jth disentangling factor

υj as

υj = Duj ∈ R
m, (24)

with uj being the jth column vector of projection matrix U .

This construction is similar to the concept of eigenfaces in

[3], laplacianfaces in [17], orthogonal laplacianfaces in [7],

and orthogonal LLEfaces in [25]. Fig. 7(b) gives the first

10 basis vectors of learned disentangling factors for PCA-

SparLow, Lap-SparLow and LLE-SparLow. As for compar-

ison, Fig. 7(a) shows the first 10 eigenfaces, laplacianfaces,

and LLEfaces. It shows that (i) our learned facial features

are more prominent, especially for laplacianfaces and LLE

faces, (ii) our learned facial features captures richer infor-

mation, such as varying pose and expression (e.g. smile).

6. Conclusions and Outlooks

In this work, we present an unsupervised low dimen-

sional representation learning approach, coined here as

SparLow, which leverages both the sparse representation

and the trace quotient criterion. It can be considered as a

two-step disentangling mechanism, which applies the trace

quotient criterion on the sparse representations. Our pro-

posed generic cost function is defined on a sparsifying dic-

tionary and an orthogonal transformation, which form a

product Riemannian manifold. A geometric CG algorithm

is developed for optimizing the cost function. Our experi-

mental results depict that in comparison with the state of the

art unsupervised representation learnings methods, our pro-

posed SparLow method possesses promising performance
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(c) ONPP and its sparse counterparts

Figure 5. 3D visualization using OLPP, PCA and ONPP on PIE faces. From top to bottom: Applying OLPP/PCA/ONPP in original space,

in sparse space with respect to initial dictionary, and in sparse space with respect to learned dictionary, respectively.

(a) Features extracted from original data

(1)

(2)

(3)

(b) Features extracted from sparse representations

Figure 7. Visualisation of facial features. The presented features are generated via Eq.(24). From top to bottom: (1) PCA eigenfaces; (2)

Laplacianfaces; (3) LLEfaces.

in data visualisation and 1NN classification. The proposed

SparLow is flexible and can be extended to more general

cases of low dimensional representation learning models

with orthogonal constraints.
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