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Abstract

This paper proposes a novel extremely efficient, fully-

parallelizable, task-specific algorithm for the computation

of global point-wise correspondences in images and videos.

Our algorithm, the Global Patch Collider, is based on de-

tecting unique collisions between image points using a col-

lection of learned tree structures that act as conditional

hash functions. In contrast to conventional approaches that

rely on pairwise distance computation, our algorithm iso-

lates distinctive pixel pairs that hit the same leaf during

traversal through multiple learned tree structures. The split

functions stored at the intermediate nodes of the trees are

trained to ensure that only visually similar patches or their

geometric or photometric transformed versions fall into the

same leaf node. The matching process involves passing

all pixel positions in the images under analysis through

the tree structures. We then compute matches by isolating

points that uniquely collide with each other ie. fell in the

same empty leaf in multiple trees. Our algorithm is lin-

ear in the number of pixels but can be made constant time

on a parallel computation architecture as the tree traver-

sal for individual image points is decoupled. We demon-

strate the efficacy of our method by using it to perform op-

tical flow matching and stereo matching on some challeng-

ing benchmarks. Experimental results show that not only

is our method extremely computationally efficient, but it is

also able to match or outperform state of the art methods

that are much more complex.

1. Introduction

Correspondence estimation ie. the task of estimating

how parts of visual signals (images or volumes) correspond

to each other, is an important and challenging problem in

Computer Vision. Point-wise correspondences between im-

ages or 3D volumes can be used for tasks such as camera

pose estimation, multi-view stereo, structure-from-motion,

co-segmentation, retrieval, and compression etc. Due to its

wide applicability, many variants of the general correspon-

dence estimation problem like stereo and optical flow have

been extensively studied in the literature.

There are two key challenges in matching visual con-

tent across images or volumes. First, robust modelling of

the photometric and geometric transformations present in

real-world data, such as occlusions, large displacements,

viewpoints, shading, and illumination change. Secondly,

and perhaps more importantly, the hardness of perform-

ing inference in the above-mentioned model. The latter

stems from the computational complexity of performing

search in the large space of potential correspondences and

is a major impediment in the development of real time

algorithms. A popular approach to handle the problem

involves detecting ‘interest or salient points’ in the im-

age which are then matched based on measuring the eu-

clidean distance between hand specified [24, 34, 20, 7] or

learned [38, 35, 23, 32, 30, 6, 39, 29, 31] descriptors that

are designed to be invariant to certain classes of transfor-

mations and in some cases can also work across different

modalties. While these methods generate accurate matches,

the computational complexity (quadratic in the number of

interest points) of matching potential interest points restricts

their applicability to small number of key-points.

An effective strategy to generate dense correspondences

is to limit the search space of possible correspondences.

For instance, in the case of optical flow by only search-

ing for matches in the immediate vicinity of the pixel lo-

cation. However, this approach fails to detect large mo-

tions/displacements. Methods like [3, 22] overcome this

problem by adaptively sampling the search space and have

been shown to be very effective for optical flow and dis-

parity estimation [1, 4]. However, they rely on the implicit

assumption that the correspondence field between images

is smooth and fail when this assumption is violated. Tech-

niques based on algorithms for finding approximate near-

est neighbors such as KD-Tree [18, 2] and hashing [22, 9]

can be used to search large-displacement correspondences

and have been used for initializing optical flow algorithms

[37, 1, 36, 25]. However, these approaches search for can-

didate matches based on the appearance similarity and they

are not robust in scenarios when geometric and photometric

transformations occurs (see Fig. 2).
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In this paper, we address the problem of efficiently gen-

erating correspondences that can (1) have arbitrary dis-

tribution of magnitudes, (2) and that are between im-

age elements affected by task-dependent geometric and

photometric transformations. We propose a novel fully-

parallelizable, learned matching algorithm called Global

Patch Collider (GPC) to enable extremely efficient compu-

tation of global point-wise correspondences. GPC is based

on detecting unique collisions between image points using

a collection of learned tree structures that act as conditional

hash functions. In contrast to conventional approaches that

isolate matches by computing distances between pairs of

image elements, GPC detects matches by finding which

pixel pairs hit the same leaf during traversal through mul-

tiple learned tree structures.

The split functions stored at the intermediate nodes of

the trees are trained to ensure that visually similar patches

fall into the same terminal node. The matching process in-

volves passing all pixel positions in the images under anal-

ysis through the tree structures. We then compute matches

by isolating points that uniquely collide with each other ie.

fell in the same empty leaf in multiple trees. We also in-

corporate a multi-scale top-bottom architecture, which sig-

nificantly reduces the number of outliers. Content-aware

motion patterns are learned for each leaf node, in order to

increase the recall of the retrieved matches.

Unlike existing feature matching algorithms, the pro-

posed global patch collider does not require any pairwise

comparisons or key-point detection, thus it tackles the

matching problem with linear complexity with respect to

the number of pixels. Furthermore, its computational com-

plexity can be made independent of the number of pixels by

using a parallel computation architecture as the tree traver-

sal for individual image points is decoupled.

We demonstrate the efficacy of our method by applying

it on a number of challenging vision tasks, including opti-

cal flow and stereo. Not only is GPC extremely computa-

tionally efficient, but it is also able to match or outperform

more complex state of the art algorithms. To summarize,

our contributions are two-fold: firstly, we propose a novel

learning based matching algorithm that conducts global cor-

respondence with linear complexity; secondly, we develop

a novel hashing scheme by training decision trees designed

for seeking collisions.

2. Related Work

Our work is similar to correspondence estimation al-

gorithms based on approximate nearest neighbor (ANN)

methods, such as KD-Tree [18, 2] or hashing [22, 9]. How-

ever, there are two notable differences: (1) GPC is trained

to be robust to various geometric and photometrics trans-

formations in the training data, and (2) it isolates potential

matches by looking for unique collisions in leaves of deci-
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Figure 1. Global Patch Collider (GPC). Local patches traverse

each tree in the decision forest, reaching different leaves. If two

patches from source and target image hit the same leaf across all

trees without collisions with other patches, they are considered as

a distinctive correspondence. For instance, source patch 4 and tar-

get patch 1 hit the same leaves of all the trees and there is no other

patch hit exactly the same leaves across all trees with them, thus it

is a distinctive correspondence.

sion trees. These leaves act like conditional hash functions.

The growing availability of real and synthetic datasets

for correspondence problems have led to the proposal of a

number of learning based approaches. In one of the earli-

est works along this direction, Roth and Black [27] showed

how optical flow estimates can be improved by incorporat-

ing a statistical prior on the distribution of flow in a Field

of Experts model. As the size of the available datasets

have grown, researchers have started to use high capacity

models such as deep convolutional neural network to either

learn the pair-wise similarity [29, 38] or learn the end-to-

end pipeline directly [16].

The computational architecture of GPC is similar to de-

cision forests [10]. Decision trees have been widely used in

various fields of computer vision, such as pose estimation

[28], image denoising [14], image classification [5], object

detection [21], depth estimation [13, 15], etc. However,

unlike all these applications, our method does not require

classification or regression labels. Our objective function

has been especially designed to ensure that visually similar

patches (or their perspective transformed versions) will fol-

low the same path in the trees and fall into the same leaf

node.

3. Global Patch Collider

GPC is a matching algorithm based on finding unique

collisions using decision trees as hash function evaluators.

Each tree learns to map patches that are in correspondence

into the same leaf while separating them from other patches

(see Fig. 1). We provide the formal description of the

Global Patch Collider (GPC) below.
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Figure 2. Examples of matched local patches. From left to right:

Sintel, Kitti, active stereo, MVS, synthetic. We can see that cor-

respondences are task dependent with different type of variations,

e.g. non-rigid transform, scaling, intensity change, rotation, back-

ground change, etc. It is difficult to propose a generic descriptor

that is robust to all kinds of variations, whereas our approach is

able to learn those variations directly from the training data.

3.1. Formulation

Single Tree Prediction. Given two images I and I ′, our

target is to find distinctive local correspondences between

pixel positions. Given a local patch x with center coordinate

p from an image I , we pass it into a decision tree T until it

reaches one terminal node (leaf). The id of the leaf is just a

hash key for the image patch and is denoted as T (x).

After processing all the patches, for each leaf j, GPC

stores a set of patches from source image denoted as Sj

as well as a set of patches from the target image, de-

noted as S ′
j . We will consider two patches to be a cor-

respondence pair if and only if they fall into the same

leaf and this leaf contains only one target patch and one

source patch. More formally, the set of correspondences

could be written as CT (I, I
′) = {(x,x′)|T (x) = T (x′)

and |ST (x)| = |S ′
T (x)| = 1}.

This decision tree approach can be considered as a hash-

ing function, where correspondent patches are picked by

finding distinctive collisions between source and target im-

age in the hash table. Simple binary hash functions can be

used instead of decision trees but they would not have the

conditional execution structure that decision trees have as

only one split function needs to be evaluated at every layer.

Forest Prediction. It is worth noting that a simple tree

is not discriminative enough to generate a large amount of

distinctive pairs. For example, given a 16-layer binary tree,

the maximum number of states is 32768, but, if we con-

sider megapixel images, there are millions of patches from

one image. Moreover, due to the content similarity, most

patches within one image will fall into a small fraction of

the leaves (between 6000 to 10000 on Sintel dataset). If

we merely increase the depth of the tree we will bring ad-

ditional computational and storage burdens for training the

decision trees. This motivates us to extend the single-tree

approach to a hashing forest scheme.

Specifically, instead of searching distinctive pairs that

Figure 3. Sparse matching with w/o multi-scale learning. From

top-left to bottom right: 7× 7, 15× 15, 31× 31, multi-scale.

fall into the same leaf, our method seeks distinctive pairs

that fall into the same leaf across all the trees in the for-

est. In particular, two patches are considered as a distinc-

tive match if they reach the same leaves for all the trees

and there is not any other patch from both source and tar-

get image reach exactly the same leaves. Given two im-

ages I and I ′ and a random forest F , the set of corre-

spondence is formulated as CF (I, I
′) = {(x,x′)|F(x) =

F(x′) and |SF(x)| = |S ′
F(x)| = 1}. F(x) is a sequence

of leaf nodes {j1, ..., jT } where x falls in this forest, and

SL represents a set of patches that fall into the ordered leaf

nodes sequence L. For a forest with T trees and L lay-

ers for each tree, the number of states in total is 2L(T−1).

In practice, the number of states is between 50k to 200k

for a 16-layer-8-tree forest on 0.4-megapixel image from

Sintel dataset [8]. Note that our method only seeks unique

matched pairs, thus no re-ranking or pairwise comparison is

needed.

Split Function. Each split node contains a set of learned

parameters θ = (w, τ), where w is a hyper-plane and τ rep-

resents a threshold value. The split function f is evaluated

at a patch x as:

f(x;θ) = sign(wTφ(x)− τ) (1)

where φ(x) is the features for x, we will introduce our

patch-based features for each task individually. This hyper-

plane classifier is commonly adopted in decision forest [10].

Note the sparse hyper-planes can be used to increase effi-

ciency, since only a small fraction of the feature is tested.

Furthermore, the nature of random forest allows us to easily

process patches and trees in parallel and independently for

each pixel.
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Figure 4. Qualitative comparisons among top-5 algorithms on Sin-

tel optical flow benchmark. Top to bottom: input image (average

of two), ground-truth, EpicFlow [26], CPM, FlowFields [1], Glob-

alPatchCollider (ours).

3.2. Training.

Training Data. Each tree in the forest is trained inde-

pendently on a random subset S of the training data. For

our correspondence problem, the set S contains triplet sam-

ples (x,xpos,xneg) where x is a patch in a training source

image, xpos is the ground-truth correspondent patch in the

target image and xneg is a negative patch sampled around

the ground-truth location in the target image with a random

offset.

Training Objective. Intuitively, for each node we want

to choose the optimal parameters that keep positive and

reference patches into the same child node, and that split

them from the negative patches. Therefore, for each internal

node, we propose to choose the parameters that maximize

weighted harmonic mean between precision and recall:

max
θ

precision(S,θ) · recall(S,θ)

w1precision(S,θ) + w2recall(S,θ)
(2)

where w1 + w2 = 1. The optimization task is equivalent

to maximize precision if w1 = 0, w2 = 1 and maximize

recall if w1 = 1, w2 = 0. In practice we choose a small

w1 ∈ [0, 0.3], since we prefer high-precision matches due

to the nature of correspondence problem.

The optimization is conducted in a greedy manner. We

randomly sample hyper-planes and for each hyper-plane we

choose the best threshold through line-search. Each node

selects the hyper-plane and the threshold that maximize our

objective function. To further improve the efficiency of

the training we share features across nodes within the same

layer and updating threshold for each node only. This tech-

nique is known in literature as Random Ferns [5].

3.3. Extensions.

The described method is very efficient and retrieves very

accurate and sparse matches. However, some applications

require a denser coverage in order to incorporate smooth-

ness constraints within neighbor pixels. To do so we pro-

pose three possible extensions that do not introduce any ad-

ditional cost in the overall running time. First, we design

a multiscale version of the algorithm to increase the cover-

age across the image and improve the recall of the matched

pairs. Secondly, hard pairs are sampled with higher prob-

ability during the training stage. Finally we learn motion

prior over the patches: this gives a low compute way to dis-

ambiguate non-unique matches without performing any ex-

pensive re-ranking steps.

Multi-scale Learning. Many feature matching methods

have difficulties in finding all reliable matches at a fixed

scale. For instance, for small local patches, matches are

ambiguous due to repetitive patterns or smoothing regions

due to the lack of context. This motivates us to utilize in-

formation from multiple scales. However, simply stacking

multiple features will dramatically increasing the dimen-

sion of the hyper-plane which brings difficulty for optimiza-

tion. Therefore, we proposed a multi-layer learning scheme

where the decision trees are organized in a coarse-to-fine

manner. The first several layers are required to focus on

features at a coarse resolution and they will look into finer

resolutions as the tree goes deeper. Tab. 1 shows precision-

recall of single-scale approach and multiple scales methods

and Fig. 3 depicts the matching results. Compared with a

single-scale approach with the same tree architecture, this

multi-scale approach achieves better recall at the same level

of precision.

Mining Hard Pairs. One of the drawback of the greedy

training approach is that difficult positive pairs are dis-

carded early once they are split into different internal nodes.

In the context of optical flow and stereo, we found these

samples are mostly due to large motion. Therefore, when
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Figure 5. Qualitative comparisons for sparse matching on Sintel flow dataset (zoom-in for better quality). Left to right: Sift, LibViso,

CSH, DeepMatching, Ours. Number of matches in Sift and LibViso are not dense enough. CSH and Sift generates too many outliers.

DeepMatching has the best coverage but also generates some outliers (background and the arm on top, the man’s head on bottom). Our

method is almost outlier-free and has most matches.

Dataset Optical Flow Sintel (Final, Pr at k% recall)

Method 1% 5% 10% 25% 50%

Locality Sensitive Hashing - - - 85.2% 76.6%

Global Patch Collider (single-tree) - - - 94.5% 89.5%

Global Patch Collider (multi-tree) 99.8% 99.3% 97.5 93.6% 89.5%

Global Patch Collider (+multi-scale) 99.8% 99.5% 99.3 98.1% 94.7%

Table 1. Precision at %k recall under different configurations. Our baseline is a random balanced tree with hyper-plane split function.

sampling training patches we give higher probability to

large-displacement patches.

Motion Pattern Learning. Our method could be further

extended to learn priors of motion patterns. To be specific,

at each terminal node, we train a six-layer decision tree to

predict whether two patches are true correspondent simply

according to the relative motion. This is based on the mo-

tivation that motions are highly correlated with local con-

tent of images. For instance, boundary patches are more

possible to move along the direction perpendicular to the

edges than along the edge direction. Fig. 6 depicts the mo-

tion priors over different leaves. As we can see the patterns

of motion diverse significantly, which justify our approach

to using motion features to further boost performance. In

the testing stage, we could further utilize non-distinctive

patches by predicting whether two patches are likely to be a

good match.

3.4. Complexity Analysis.

The run-time complexity of the algorithm depends lin-

early on the size of the image I . For instance, in optical

flow task, the total complexity of our matching algorithm is

O(dTLN) +O(N) (3)

where N is the number of patches, d is the number of

features examined in each split function, T is the number

Figure 6. Motion histogram for ten randomly picked leaves. His-

togram bins are divided according to motion radius (0, 1, 3, 10)

and angle (−π to π).

of trees, and L is the layer of the each tree. To be spe-

cific, the forest prediction stage requires O(dTLN) opera-

tions and matching stage requires a linear pass over all non-

zero states with a maximum number of N . Therefore, our

method considers all the possible matches globally in lin-

ear time and does not require any pairwise comparison. In

practice, the parameters for our algorithm are T = 8, L =
12, d = 27 for optical flow and T = 7, L = 12, d = 2
for stereo. As comparison, KD-tree based matching will

takes O(dN logN) +O(dN logN) +O(dmN) with an ad-

ditional tree building step and deep matching approximate

takes O(NN) operations.

4. Experimental Results

This section presents the results for the proposed Global

Patch Collider to the following tasks: (i) optical flow, (ii)

structured light stereo matching and (iii) feature matching
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Algorithm 1 Global Patch Collider

Input: Image I and I ′ and the trained decision forest F .

- Get all local patch features {x} and {x′} from source

and target images respectively.

- Initialize C(I, I ′) with empty set.

- For each patch x encode and store the forest status F(x)
according to Sec. 3.1.

- Enumerate all the forest status with non-zero number of

hits. If there is only one source patch and target patch,

add this distinctive pair (xi,x
′
j) into the correspondence

set C(I, I ′).
Output: C(I, I ′)

Figure 7. Qualitative comparisons for structured light stereo. Top

to bottom: left input, full-iter (random initialization), 1-iter (ran-

dom initialization), 1-iter (ours). Our initialization can help

achieve better results within only one iteration, e.g. regions of the

computer and the table on the right side of two images.

for widebaseline stereo. For the first problem, we perform

evaluations using the popular MPI-Sintel benchmark [8]

and the KITTI 2015 Optical flow dataset [17]. We compare

our method with current state-of-the-art algorithms. The

structured light stereo matching task is conducted over a se-

quence of infrared stereo images, and compared with the

patch-matching stereo algorithm [4]. Finally we adopt the

fountain dataset [34] to validate domain transfer ability for

the proposed method.

4.1. Optical Flow

For optical flow experiments, we evaluate our method

on the challenging MPI-Sintel dataset [8]. We first split the

training dataset into training (sequence 1-12) and validation

(sequence 13-22), where we evaluate the performance of the

sparse matching and pick the best hyper-parameters. Refer-

ence patches are randomly sampled with higher-probability

over large-motion patches (pixel larger than 10). A positive

patch is chosen according to the ground-truth flow of cen-

ter pixel and a negative patch is randomly sampled around

ground-truth location with an offset between 3 to 20. This

configuration would generate very difficult negative sam-

ples due to the local appearance similarity of images. In

total we have 4-million patches for training and 1.25 mil-

lion patches for validation. Three scales are selected for the

multi-scale patch collider (7 × 7, 15 × 15, 31 × 31). We

EPE All S0-10 S10-40 S40+

FlowFields [1] 5.810 1.157 3.739 33.890

GlobalPatchCollider 6.040 1.102 3.589 36.455

CPM 6.078 1.201 3.814 35.748

DiscreteFlow [25] 6.077 1.074 3.832 36.339

EpicFlow [26] 6.285 1.135 3.727 38.021

TF+OFM [19] 6.727 1.512 3.765 39.761

Deep+R [12] 6.769 1.157 3.837 41.687

DeepFlow2 [36] 6.928 1.182 3.859 42.854

MDP-Flow2 [37] 8.445 1.420 5.449 50.507

LDOF [7] 9.116 1.485 4.839 57.296

Classic+NL [33] 9.153 1.113 4.496 60.291

Table 2. Optical Flow Leader-board on Sintel (final) benchmark.

use Walsh-Hadamard transform (WHT) as feature due to its

efficiency and representation power1. For each rgb channel

we pick the first 9 components, thus our feature dimension

in total is 81 for multi-scale collider and 27 for single-scale

collider.

Precision-Recall. We first report precision-recall on val-

idation triplets with multiple-configurations in Tab. 1. The

balance of precision-recall could be achieved via adjusting

the number of layers and the number of intersected trees. As

the model becomes complex we could achieve higher preci-

sion and lower recall. We compare our method with a ran-

dom balanced tree baseline with exactly same features and

tree architecture but randomly generated hyper-plane. This

is essentially equivalent to locality sensitive hashing method

[11]. Tab. 1 shows that our learning-based approach clearly

out-performs the random baseline in terms both single-tree

and forest setting. Furthermore, under the same level of re-

call, we can see that a multi-scale learning achieves higher

precision than the single-scale approach.

Sparse Matching. We conduct sparse matching experi-

ments on a subset of our validation data (every 5 frame).

Tab. 3 reports the results in terms of endpoint error, inlier

percentage as well as number of matches per image. We

consider pixel-wise motion estimation with endpoint error

larger than 3 pixels as outliers. We also report our algorithm

under multiple configurations, namely single-scale, multi-

scale and mutli-scale plus motion learning. Several match-

ing methods are picked as competing algorithm. Coherency

sensitive hashing [22] is a hashing based PatchMatch algo-

rithm which is designed for dense nearest-neighbor field2.

SiftMatching [24] is a baseline for sparse matching3. Lib-

Viso2 [20] is a fast feature matching algorithm which is

designed for sparse correspondence with applications in

1Since 2n × 2n patch size is required for WHT, we extrapolate the

additional row and column with padding.
2We use the author’s implementation. In order to ensure a fair com-

parison for dense approaches, we only compare pixels available at ‘Ours

15× 15’ approach when calculating endpoint errors and inlier percentage.
3We use the implementation in VLFeat and set PeakThres to be 0 for

DoG based keypoint detection.
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Figure 8. Domain transfer ability for wide-baseline stereo match-

ing. Left to right: matching results across 1, 2, 3 frames respec-

tively. Green lines are inlier and blue lines are outlier.

SLAM, optical flow and stereo4. DeepMatching [36] is the

state-of-the-art matching algorithm specially designed for

optical flow task5. From this table we can see that our al-

gorithm achieves the lowest endpoint error and outliers per-

centage with more number of matched points on average.

In terms of coverage in the most difficult case, our method

outperforms other feature matching algorithms. Compared

with single-scale approach, mutli-scale GPC significantly

reduces the endpoint error and outlier percentage, but also

decreases the number of matched points in the worst case.

If we also consider non-unique hits with motion learning,

the proposed method reaches the same accuracy level with

multi-scale method while keeps a reasonable number of

matches. Qualitative comparisons of sparse matching are

shown in Fig. 5. Two failure cases of our global patch col-

lider are shown in Fig. 10. Although motion and multi-scale

learning is introduced to increase coverage, in some cases

(e.g. in presence of motion blur and rotation) our method

may fail in capturing some large transformed regions.

Dense Flow. Once we compute sparse matches, we use

the state-of-the-art interpolation method EpicFlow [26] to

generate dense flow results on the Sintel testing benchmark.

Tab. 2 shows the qualitative results of top-8 optical flow

methods on Sintel testing benchmark (final) as well as other

three popular algorithms6. Please note all the top-5 methods

use EpicFlow as post-processing and the original EpicFlow

uses DeepMatching [36] as sparse initialization. The pro-

posed GPC is ranked second among all the optical flow

methods. In particular our proposed approach achieves the

best results over pixels with motion between 10 pixels and

40 pixels. It is worth noting that our matching algorithm

is the only method which does not need pairwise similarity

comparison or re-ranking from multiple proposals. Fig. 4

shows qualitative comparison of all the competing algo-

rithms over the testing dataset.

4.2. KITTI Optical Flow.

We evaluate our algorithm on the KITTI 2015 Optical

flow dataset [17]. To be specific we follow the same con-

figuration used in the Sintel dataset. In the training stage,

we trained a GPC with 8 trees, with 12 layers. Each layer

learns a specific scale from (7×7, 15×15 and 31×31) with

4We use the author’s implementation.
5We use the author’s implementation.
6This is a snapshot of Sintel benchmark on Nov. 10 2015. For latest

results, please refer to http://sintel.is.tue.mpg.de/.

Method EPE Inlier % Mean # Min # Max #

CSH 5.7427 86.39% dense dense dense

Sift Matching 3.3814 92.60% 1120 61 2393

LibViso 1.5577 92.42% 848 45 1805

Deep Matching 3.0844 87.36% 5945 2008 6818

Ours 15× 15 1.8796 94.69% 21048 973 93934

Ours M-Scale 1.2809 97.29% 16813 27 88309

Ours M-Scale+Motion 1.3626 96.17% 26131 890 169736

Table 3. Sparse matching performance on Sintel Dataset.

Figure 9. Results on KITTI optical flow. From top to bottom: input

image, flow estimation, flow error.

Error Fl-bg Fl-fg Fl-all

All / All 30.60 % 33.09 % 31.01 %

Noc / All 20.09 % 28.92 % 21.69 %
Table 4. Performance on KITTI flow 2015 benchmark

27 dimensional feature for each scale. In the testing stage,

our sparse matching is conducted with GPC and we used

EpicFlow [26] to obtain the final dense optical flow, with

the standard hyper-parameters for the KITTI dataset. The

average number of matches per image is 14563, whereas

the minimum number of matches is 2542. Tab. 4 shows the

results. In general our method is comparable with sparse

matching + EpicFlow, but orders of magnitude faster in the

matching stage. We also show some qualitative results in

Fig. 9.

4.3. Structured Light Stereo Matching

For the stereo matching task, we collected 2200 infrared

stereo images in indoor scene with a Kinect depth sensor

based on structured illumination. The reference pattern is

recovered using the calibration procedure in [15]. The pat-

tern and Kinect images are rectified so that disparity is along

horizontal line [15]. We used 1000 frames as training set

and the rest as test test. The GPC patch size is set to 7× 7.

For this scenario, we use the following pixel-wise differ-

ence test as split function: f(x, θ) = sign(x(i)−x(j)−τ).
Each internal node calculates the pixel-wise intensity differ-

ent at two pixel offsets (i, j) and the binary decision is made

whether the difference is smaller than the threshold τ . This

relative feature is illumination invariant and requires little

computation. In the training stage, we trained a 10-tree for-

est with 16 layers for each tree over 1 million triplets ran-
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Figure 10. Failure cases of Global Patch Collider. Left: compared with deep matching, which explicitly models rotation, our method failed

in capturing rotation of the basket; Right: both deep matching and our patch collider failed in capturing non-rigid deformation of the bat.

Baseline Sparse EPE Outlier % Mean #

Ours 1.30 1.28% 3754

Ours (high-recall) 1.41 1.79% 8369

Ours (motion) 1.00 0.88% 9883

Table 5. Sparse matching performance on IR Stereo data w/o mo-

tion.
Baseline 1-iter 2-iter

Random 1.5940 36.81% 1.5698 36.59%

Ours 1.5863 35.26% 1.5642 34.90%

Table 6. PatchMatch based on dense stereo results w/o initializa-

tion with global patch collider.

domly collected from the training set. In practice we found

choosing the first 7 layers will already ensure a good bal-

ance between precision and recall for this task, since the

number of possible matches is greatly reduced by epipolar

constraint. For each internal node, we generate 1024 ran-

dom proposals and pick the best one which maximizes our

objective defined in Eq. (2). Tab. 5 shows the average end-

point error and outlier percentage under different configu-

rations. Pixels with disparity error larger than 1 are con-

sidered as outliers. In this table ‘Ours’ represents our stan-

dard unique-collisions based matching, ‘Ours (high-recall)’

represents reducing the complexity of the tree architecture

(6-layer, 8-tree) in order to generate comparable number of

matches before inducing ‘motion’ prior. Please note that in

this 1-dimensional matching case, ‘motion’ learning is con-

ducted simply as training a 1D-Gaussian binary classifier

with disparity as input for each node. With this prior and

non-unique collisions our method further increases both ac-

curacy and recall. We also conducted dense stereo recon-

struction experiment by using our sparse matching as ini-

tialization for PatchMatch based stereo [4]. In Fig. 7, we

show PatchMatch results after 1-iteration with our method

initialization and random initialization respectively. As we

can see our method could generate more completed results

and even comparable with the quality of full-iteration of

PatchMatch. Quantitative comparisons are shown in Tab. 6.

4.4. Feature Matching for Wide­baseline Stereo

We also conduct an experiment to show the domain

transfer ability of GPC. To be more specific, we trained a

Global Patch Collider over Sintel dataset for optical flow

Method Sift Ours

Frame Diff 1 2 3 1 2 3

EPE 0.12 0.21 1.07 0.04 0.17 0.94

Inlier% 96% 92% 71% 98% 87% 53%

Mean # 669 239 71 6933 1143 200

Table 7. Quantitative analysis of our method’s domain transfer

ability on wide-baseline stereo matching (trained on Sintel).

task and used it for matching correspondence on EPFL

wide-baseline stereo data [34]. Given the camera poses,

we use our patch collider to find matches across two im-

ages then discard those violating the epipolar constraints.

Errors are measured in the 3D space by projecting the two

matched points back into world coordinate using the GT

depth. A match pair is considered as outlier if the ℓ2-error

is larger than 0.15m in 3D space. Fig. 8 depicts an example

of matches across 1 frame, 2 frames and 3 frames respec-

tively. Green lines are inliers and blue lines are outliers. We

also consider Sift as a baseline approach and reported the

quantitative results on average over all frames on ‘Foun-

tain’ subset in Tab. 7. From the table and figure we can

see that our method achieves better results for small base-

line cases, but the performance dropped over wide-baseline

case. This is expected since the GPC model is trained on the

Sintel dataset, where large viewpoint changes and signifi-

cant patch deformations barely happen on adjacent frames.

5. Conclusion

This paper proposes a novel algorithm, the Global Patch

Collider, for the computation of global point-wise corre-

spondences in images. The proposed method is based

on detecting unique collisions between image points us-

ing a collection of learned tree structures that act as con-

ditional hash functions. Our algorithm is extremely effi-

cient, fully-parallelizable, task-specific and does not require

any pairwise comparison. Experiments on optical flow and

stereo matching validates the performance of the proposed

method. Future work includes high level applications such

as hand tracking, and nonrigid reconstruction of deformable

objects.
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