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Abstract

We propose an unsupervised bottom-up saliency detec-

tion approach by exploiting novel graph structure and back-

ground priors. The input image is represented as an undi-

rected graph with superpixels as nodes. Feature vectors are

extracted from each node to cover regional color, contrast

and texture information. A novel graph model is proposed

to effectively capture local and global saliency cues. To

obtain more accurate saliency estimations, we optimize the

saliency map by using a robust background measure. Com-

prehensive evaluations on benchmark datasets indicate that

our algorithm universally surpasses state-of-the-art unsu-

pervised solutions and performs favorably against super-

vised approaches.

1. Introduction

Humans are able to rapidly identify the visually distinc-

tive objects in a scene. This fundamental capability has long

been studied in neuroscience and cognitive psychology. In

the computer vision community, researchers focus on sim-

ilar tasks to determine regions that attract attention from

a human perception system. The selected regions contain

finer details of interest and can be used for extraction of in-

termediate and higher level information. Therefore, a fast

and robust saliency detection algorithm can benefit various

other vision tasks.

The literature of saliency map estimation is vast. How-

ever, most existing approaches can be categorized into

unsupervised (typically bottom-up) [10, 28, 32, 36, 19]

and supervised (typically bottom-up, but more recent ap-

proaches are a combination of top-down and bottom-up)

[17, 24, 15, 20] approaches.

While supervised approaches are able to automatically

integrate multiple features and in general achieve better

performance than unsupervised methods, it is still expen-

sive to perform the training process, especially data col-

lection. Also, compared to traditional special-purpose ob-

ject detectors (e.g. pedestrian detection) where objects un-

Figure 1: Our novel graph structure with superpixels as

nodes. The purple and blue lines represent connections to

first and second order neighbors, respectively. The green

lines indicate that each node is connected to the boundary

nodes on four sides of the image. The red lines show that

the all boundary nodes are connected among themselves.

See Sec. 3.1 for details.

der the same class share some consistency, the salient ob-

jects from two images are often found vastly different in

terms of visual appearance, especially when the object can

be anything. Furthermore, the process of generating pixel-

wise ground truth annotations itself is expensive and labor-

intensive, and sometimes may even be impossible consid-

ering the scale of today’s massive long-tailed visual repos-

itories. This is typically the case in large e-commerce sce-

narios. A fast saliency technique can be an essential pre-

processing step for background removal or object/product

detection and recognition in large ecommerce applications.

In this paper, we propose an unsupervised bottom-up

saliency estimation approach. Our method is based on

the remarkable success of the spectral graph theory. We

focus on the core elements of spectral clustering algo-

rithms. Specifically, we introduce a new graph model

which captures local/global contrast and effectively utilizes

the boundary prior. Inspired by ISOMAP manifold learn-

ing [31], we introduce geodesic distance to calculate the

weight matrix. This constraint maximally enforces the

background connectivity prior. Furthermore, we exploit
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Figure 2: Pipeline of the proposed algorithm, divided into three parts: Graph Construction (Sec. 3), Query Selection (Sec.

4.1) and Refinement (Sec. 4.2). Nodes in the graph are superpixels. Weights are based on color and texture features. Groups

of background seeds are selected for initial saliency based on their influence via the graph structure. Inconsistent groups of

background seeds are eliminated. This estimated saliency map is refined by passing it again through the system. This process

is repeated at multiple scales and results are fused.

boundary prior for selecting seeds to perform an initial

background query. The resulting saliency map is further

used to generate seeds to perform another query to obtain

the final saliency map. As we will demonstrate empirically,

the proposed method universally outperforms state-of-the-

art unsupervised methods (e.g. GMR [36] ) by a large mar-

gin, and in some cases even excels supervised methods (e.g.

DRFI [14]). Our claim is that the proposed graph model

provides more desirable characteristics for saliency detec-

tion and achieves unprecedented balance between compu-

tational complexity and accuracy.

2. Related Works

The core of our work is closely related to graph-based

manifold ranking as in [36], geodesic distance as in [32],

boundary prior sampling as in [19] and multi-scale fusion

as in [35].

Supervised vs. Unsupervised Unsupervised meth-

ods [10, 28, 32, 36, 19] aim at separating salient objects by

extracting cues from the input image only. To date, vari-

ous low-level features have been shown to be effective for

saliency detection, such as color contrast, edge density [28],

backgroundness [32, 36], objectness [6, 15], focus [15], etc.

By eliminating the requirement of training, unsupervised

methods can be easily integrated into various applications.

In contrast, supervised approaches [17, 24, 15, 20] acquire

visual knowledge from ground truth annotations. Recent

advances in deep learning show promising results on

benchmark datasets [20]. However, it is expensive to

collect the hand-labeled images and set up the learning

framework.

Graph-based Models Graph-based approaches have

gained great popularity due to the simplicity and efficiency

of graph algorithms. Harel et al. [10] proposed the graph

based visual saliency (GBVS), a graph-based saliency

model with multiple features to extract saliency informa-

tion. Chang et al. [6] present a computational framework

by constructing a graphical model to fuse objectness and

regional saliency. Yang et al. [36] rank the similarity

of superpixels with foreground or background seeds via

graph-based manifold ranking. This method is further

improved by Li et al. to generate pixel-wise saliency maps

via regularized random walks ranking [19].

Center vs. Background Prior Recently, more and more

bottom-up methods prefer to use the image boundary as

the background seeds. This boundary prior is more gen-

eral than previously used center prior, which assumes that

the saliency object tend to appear near the image center

[17, 24]. Wei et al. [32] define the saliency of a region to

be the length of its shortest path to the virtual background

node. In [39], a robust background measure is proposed to

characterize the spatial layout of an image region with re-

spect to the boundary regions.

3. Graph Construction

Our approach is based on building an undirected

weighted graph for superpixels. We first segment the in-

put image I into n superpixels S = {s1, s2, ..., sn} via

the Simple Linear Iterative Clustering (SLIC) [2] algorithm.

For each superpixel s, we extract color and texture informa-

tion to form a regional feature descriptor r. A metric is

proposed to calculate the edge weight between two given
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descriptors. Next, we construct a graph G = (V, E) (see

Fig. 1) where V is a set of nodes corresponding to superpix-

els S , and edges E are constructed using the proposed graph

model. E is quantified by a weight matrix W = [wij ]n×n

where the weights are calculated using distances between

extracted feature descriptors. In Sec. 3.1, we describe our

newly proposed graph model and in Sec. 3.2 we show how

to extract regional features and calculate the weight matrix

W .

3.1. Proposed Graph Model

Given a set of superpixels S , we start by building a k-

regular graph where each node is only connected to its im-

mediate neighbors. We define the adjacency matrix of the

initial graph G to be A = [aij ]n×n. If aij = 1, then the

nodes si and sj are adjacent, otherwise aij = 0. As G
is undirected we require aij = aji. B ∈ S denotes a set

of boundary nodes containing |B| superpixels on the four

borders of the input image. For robust purposes, we only

choose to use three borders, and the selection of borders is

described in Sec. 4.1. We subsequently add edges to the

initial graph G to build a new graph model with the follow-

ing rules: 1) Each node is connected to both its immediate

neighbors and 2-hop neighbors; 2) We add edges to con-

nect each node to boundary nodes on the four sides of the

image. The weight for each edge is divided by the num-

ber of boundary nodes; 3) Any pair of nodes on the im-

age boundary is considered to be connected. We denote the

above three rules by R1, R2 and R3, and the final edge set

E = {E1, E2, E3} can be obtained as:

R1 : E1 = {(si, sj)|si, sj ∈ S, aij = 1}
∪ {(si, sk)|sk ∈ S, akj = 1},
wij = weight(ri, rj).

R2 : E2 = {(si, sj)|si ∈ S, sj ∈ B},
wij = weight(ri, rj)/|B|.

R3 : E3 = {(si, sj)|si, sj ∈ B},
wij = weight(ri, rj).

(1)

The structure of our graph model is shown in Fig. 1. Since

neighboring superpixels are more likely to be visually sim-

ilar, R1 enables us to effectively utilize local neighborhood

relationships between the superpixel nodes. R2 connects

each node to all boundary nodes, enforcing the global con-

trast constraint. Since the number of boundary superpixels

may be large, we average the edge weights, making the to-

tal contribution of boundary nodes equivalent to only one

single superpixel. R3 enforces the graph to be a closed-

loop. Combined with R2 which connects each superpixel to

boundary nodes. R3 further reduces the geodesic distance

of two similar superpixels.

Figure 3: The effect of our graph model described in

Sec. 3.1. From left to right: input image, result using the

graph structure proposed by [36], result obtained using our

graph model. Our model performs better since it encodes

background consistency, global contrast and local contrast.

Figure 4: Examples where geodesic distance generate more

accurate results. From left to right: input image, results

without enforcing the geodesic distance constraints, results

with geodesic constraints. Geodesic distance avoids miss-

ing parts due to color bleeding.

3.2. Feature Extraction

In this section, we detail the process of extracting feature

descriptors from each superpixel. This process is crucial to

the estimation of the final saliency map as the edge weights

are calculated by comparing the feature descriptors of two

nodes. A good feature descriptor should exhibit high con-

trast between salient and non-salient regions. In our work,

we mainly adopt two kinds of features: color and texture.

For color features, we consider mean color values and color

histograms in the CIELAB [12] color space for each su-

perpixel. For texture features, we use responses from the

Leung-Malik (LM) filter bank [18]. Let vlab, hlab, htex be

the mean L*a*b* color, L*a*b* histogram and max LM re-

sponse histogram of superpixel s, we define the distance

between two superpixels as:

dist(ri, rj) =λ1||vlabi − vlabj ||+ λ2 χ
2(hlab

i , hlab
j )

+ λ3 χ
2(htex

i , htex
j ).

(2)

where r = (v, hlab, htex) is the combined feature descriptor

for superpixel s, λ1, λ2 and λ3 are weighting parameters,

χ2(h1, h2) =
∑K

i=1

2(h1(i)− h2(i))
2

h1(i) + h2(i)
is the chi-squared

distance between histograms h1 and h2 with K being the

number of bins. The edge weights can be obtained by the
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Algorithm 1: Visual Saliency via Novel Graph Model

and Background Priors

Data: Input image I and related parameters

1. Apply SLIC [2] and separate input image I into n
superpixels S = {s1, s2, ..., sn}, establish graph

structure with Eq. (1).

2. Calculate W and D using Eq. (2) and Eq. (3).

3. Select three borders as query seeds as described in

Sec. 4.1 and obtain query vector y = [y1, y2, ..., yn]
T .

4. Acquire initial saliency estimation S† using Eq. (7),

Eq. (8) and Eq. (9).

5. Optimize S† using Eq. (10) and re-apply Eq. (7) to

obtain the foreground estimation. Apply Eq. (4) and

average results across different levels to obtain final

saliency map S‡.

Result: A saliency map S‡ with the same size as the

input image

Gaussian similarity function:

weight(ri, rj) =

⎧

⎪

⎨

⎪

⎩

exp(−dist(ri, rj)/σ
2) if aij = 1,

minρ1=ri,ρ2=ri+1,...,ρm=rj
∑m−1

ρ=1 weight(ρk, ρk+1) if aij = 0.
(3)

where σ is a constant. In the above equation, the second

condition considers the shortest path between nodes i, j. As

can be seen from Eq.(2), our approach is completely based

on intrinsic cues of the input image. Without any prior

knowledge of size of the salient object, we adopt the L-layer

Gaussian pyramid for robustness. The lth-level pyramid I l

is obtained as:

I l(x, y) =

2
∑

s=−2

2
∑

t=−2

ω(s, t)I l−1(2x+ s, 2y + t), l � 1.

(4)

where I0 is the original image, ω(s, t) is a Gaussian weight-

ing function (identical at all levels). The number of super-

pixels nl = |Sl| for the l-th level pyramid I l is set as:

nl =
nl−1

22(l−1)
(5)

Next, we extract multiscale features rl and build weight

matrices W l for each level. The final saliency estimation

is conducted on each level independently and the output

saliency map is combined using results from all levels (see

Sec. 5.2 for details).

4. Background Priors

Given the weighted graph, we can take either foreground

or background nodes as queries [36]. The resulting saliency

map is calculated based on its relevance to the queries. Our

algorithm is based on background priors, which consists of

two parts: the boundary prior and the connectivity prior.

The first prior is based on the observation that the salient

object seldom touches the image borders. Compared to the

center prior [17, 24] which assumes that the salient object

always stays at the center of an image, the boundary prior

is more robust, which is validated on several public datasets

[32]. In our work, we choose three out of four borders as

background seeds to perform queries [19]. This is because

the foreground object may completely occupy one border

of an image, which is commonly seen in portrait photos.

Therefore, eliminating one border which tends to have a

very distinct appearance generates more accurate results.

The second prior is based on the insight that background

regions are usually large and homogeneous. Therefore, the

superpixels in the background can be easily connected to

each other. This prior is also applicable for images with a

shallow depth of field, where the background region is out

of focus. The rest of this section is organized as follows:

Sec. 4.1 elaborates the detailed steps of the initial back-

ground query and Sec. 4.2 illustrates a refinement scheme

based on the connectivity prior.

4.1. Query via the Boundary Prior

To provide more accurate saliency estimations, we first

compare the four borders of the image and remove one with

the most distinctive color distribution. We combine bound-

ary superpixels together to form a single region, and use Eq.

(2) to compute the distance of any two of the four regions

{Btop,Bbottom,Bleft,Bright}. The resulting 4 × 4 matrix

is summed column-wise, and the maximum column corre-

sponds to the boundary to be removed.

Once the query boundaries are obtained, we can label

the corresponding superpixels to be background. More for-

mally, we build a query vector y = [y1, y2, ..., yn]
T , where

yi = 1 if si belongs one of the four query boundaries, oth-

erwise yi = 0. Given the weight matrix W = [wij ]n×n

computed in Sec. 3.2, we can obtain the degree matrix

D = diag(d1, d2, ..., dn), where di =
∑

j wij . Let f be the

ranking function assigning rank values f = [f1, f2, ..., fn]
T

which could be obtained by solving the following mini-

mization problem:

f†=argmin
f

1

2

⎛

⎝

n
∑

ij=1

wij

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

fi√
di
− fj
√

dj

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

2

+μ

n
∑

i=1

||fi−yi||2
⎞

⎠.

(6)

where μ is a controlling parameter. The optimized solution

is given in [38] as:

f† = (D − W

μ+ 1
)−1y. (7)

Three ranking results f†(b) will be achieved after applying

Eq. (7), where b corresponds one of the three borders. Since

the ranking results show the background relevance of each
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Table 1: Ablation study on adding different components to the baseline GMR [36] algorithm (Sec. 5.2). All results correspond

to ECSSD. GF = guided filter [11], RTV = texture smoothing using relative total variation [34], EBR = erroneous boundary

removal [19], RPCA = robust PCA [5], LAB = CIELAB color [12], HIST = L*a*b* histogram, LM = Leung-Malik filter

bank [18], LBP = local binary patterns [26], AVE = simple averaging, HS = hierarchical saliency [35], GMR = graph based

manifold ranking [36], BC = boundary connection, GEO = geodesic distance. Methods included in the final pipeline are

marked in bold.

Evaluation
Preprocessing Sampling Features Scaling Graph

GF RTV EBR RPCA LAB HIST LM LBP AVE HS GMR BC GEO

Precision 0.712 0.716 0.725 0.755 0.731 0.725 0.718 0.614 0.727 0.734 0.731 0.771 0.743

Recall 0.729 0.712 0.723 0.646 0.575 0.631 0.682 0.577 0.710 0.716 0.569 0.626 0.618

F-Measure 0.713 0.716 0.725 0.745 0.715 0.716 0.715 0.610 0.725 0.733 0.714 0.756 0.730

Runtime (s) 0.136 2.237 0.011 4.782 0.025 0.031 0.094 0.047 0.002 0.129 0.258 0.327 0.538

node, we still need to calculate their complement values to

obtain the foreground-based saliency:

Si(b) = 1− f†
i (b), i = 1, 2, ..., n. (8)

The results are then put into element-wise multiplication to

calculate the saliency map:

S† =
∏

b

Si(b). (9)

4.2. Refinement

In this section, we seek to optimize the result from the

previous section. The optimized result will be used as fore-

ground query by applying Eq. (7) again. The cost function

is designed to assign 1 to salient region value and 0 to back-

ground region. The optimized result is then obtained by

minimizing the following cost function [39]:

f‡=argmin
f

⎛

⎝

n
∑

i=1

Fi(fi−1)2+

n
∑

i=1

Bif
2
i +

∑

i,j

wij(fi−fj)
2

⎞

⎠.

(10)

Where Fi and Bi are foreground and background probabili-

ties, Fi > mean(Si) and Bi < mean(Si). The three terms

are all squared errors and the optimal result is computed

by least-square. The newly obtained f is a binary indica-

tor vector and can be used as seed for foreground queries.

By re-applying Eq. (7), we obtain the final saliency map

S‡ = (D − W

μ+ 1
)−1f‡.

5. Experiments

5.1. Parameter Setup

We empirically set parameters in all experiments. λ1, λ2

and λ3 in Eq. (2) are set to 0.25, 0.45 and 0.3, respectively.

In our experiment, we use a 3 level pyramid, hence l = 3
in Eq. (4). The constant σ in Eq. (3) and μ in Eq. (6) are

empirically chosen and σ2 = 0.1, 1/(μ + 1) = 0.99. Our

method is implemented using Matlab on a machine with In-

tel Core i7-980X 3.3 GHz CPU and 16GB RAM.

5.2. Ablation Studies

We start by modifying the GMR framework proposed by

[36]. We experiment different design options among five

categories: preprocessing, sampling, features, scaling and

graph structure. The individual components are added to

the original GMR framework and quantitative evaluations

are conducted on the entire ECSSD dataset (Fig. 5 and Fig.

8).

Preprocessing The input images are often composed of

objects at various scales with diverse texture details. There-

fore, it is important to remove detrimental or unwanted con-

tent. We choose two edge-preserving filters for testing:

guided image filtering [11] and imaging smoothing via rel-

ative total variation [34]. The first method performs edge-

preserving smoothing while the second method extracts im-

portant structure from texture based on inherent variation

and relative total variation measures. Quantitative evalu-

ations suggest that both methods are able to improve the

saliency detection results with similar performance.

Sampling Our method estimates saliency by using

boundary superpixels as queries. If the foreground object

touches one or more boundaries of the image, then the query

results may be problematic. Therefore, it is important to

smartly choose boundary superpixels as seeds. We tested

two schemes for sampling boundary superpixels: erroneous

boundary removal and robust principle component analysis.

The details of the first method is illustrated in Sec. 4.1. The

second method is based on the recently proposed rank min-

imization model [5]. We randomly sample 25% of all su-

perpixels on each border, and repeat this step n times. This

results in 4n set of query seeds. For each set we apply Eq.

(7) to estimate saliency values for all superpixels. We un-

roll each resulting image into a vector and stack them into a

matrix P . The low rank matrix A can be recovered from the

corrupted data matrix P = A+E by solving the following

convex optimization problem:

min
A,E

||A||∗ + λ||E||1. (11)
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Figure 5: Quantitative PR-curve and F-measure evaluation of 9 approaches on 3 datasets. The rows from top to bottom

correspond to ECSSD, THUS10K and JuddDB, respectively. Clearly, our approach excels all other unsupervised approaches

and performs favorably against a powerful supervised approach (DRFI).

Figure 6: Qualitative evaluation. DRFI is one of the best supervised approaches. All other approaches shown here are

unsupervised. Our model is closely related to GMR, but gives much better performance. See Sec. 5.3 for details.
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where ||·||∗ denotes the nuclear norm, ||·||1 denotes the sum

of absolute values of matrix entries, λ is a positive weight-

ing parameter and E is a sparse error matrix. In our experi-

ment, we set n = 5 and perform the query 20 times for each

image to get the initial saliency map S†. Evaluation on the

complete ECSSD dataset shows that RPCA achieves better

precision than erroneous boundary removal.

Features As stated in Sec. 3.2, we associate each su-

perpixel with a feature vector to calculate the weight matrix

W . A good feature descriptor should exhibit high contrast

between salient and non-salient regions. In our experiment,

we mainly test four different features: mean L*a*b* value

[12], L*a*b* histogram, responses from the LM filter bank

and local binary patterns (LBP) [26]. Among these fea-

tures, the mean L*a*b* value is shown to be effective in

[32, 36, 39]. According to Jiang et al. [14], the L*a*b* his-

togram is the most important regional feature in their fea-

ture integration framework. We are able to achieve satis-

factory precision using the first two features. The LM filter

response gives better overall recall. LBP feature seems to be

not as effective as LM texture features in our case. There-

fore, we linearly combine the first three features together to

form the final feature vector.

Scaling In the saliency detection literature, hierarchical

models are often adopted for robustness purpose [35, 14].

Our first experiment is to build an image pyramid, apply

our algorithm to each layer and simply average all maps

(Sec. 3.1). We subsequently test the approach proposed in

[35]. This method differs from naive multi-layer fusion by

selecting optimal weights for each region using hierarchical

inference. Due to the proposed tree structure, the saliency

inference can efficiently be conducted using belief propaga-

tion.

Graph Structure We use the model proposed by [36] as

a baseline to test variations on the graph structure. The ref-

erence model enforces rule R1 and R3 in Sec. 1 and adopts

Euclidean distance as the weighting metric. We conduct ex-

periments on both graph structures (Sec. 3.1) and distance

metrics (Sec. 3.2). Quantitative evaluations show a major

performance improvement compared to other methodolo-

gies.

Combination We have presented 5 different strategies

to facilitate more accurate saliency estimation. However,

it is difficult to test all permutations and analyze the in-

teractions between different methods. Therefore, how to

optimally combine these methods still remains non-trivial.

For example, the use of guided filter and multiscale aver-

aging alone improves the recall scores. However, when

combined together the performance drops slightly. Also,

we choose not to use RPCA-based boundary sampling and

belief-propagation based multi-layer fusion due to speed-

accuracy tradeoffs. In our final model we choose not to

perform any texture smoothing and employ the multiscale

averaging scheme due to its simplicity and efficacy. The

color histogram based erroneous boundary removal scheme

is used for generating the initial queries. The methods we

choose to include in the final pipeline are marked in bold in

Table 1. At the core of our algorithm is the newly proposed

graph model and geodesic distance metric as they offer sig-

nificant performance improvements.

5.3. Comparison with State-of-the-Art

Datasets In the experiments, we qualitatively and quan-

titatively compare the proposed approach with eight state-

of-the-art approaches, including DRFI [14], DSR [22],

GMR [36], HS[35], LMLC [33], MC [13], RC [7], SF

[27]. It is important to note that besides DRFI, all other

methods are unsupervised. The evaluation is conducted on

three challenging datasets: ECSSD, THUS10K and Jud-

dDB. The Extended Complex Scene Saliency Dataset (EC-

SSD) [35] contains 1000 semantically meaningful but struc-

turally complex images from the BSD dataset [3], PASCAL

VOC [9] and the Internet. The binary masks for the salient

objects are produced by 5 subjects. THUS10K [8] con-

tains 10000 images with pixel-level ground-truth labelings

from the large dataset (20,000+ images) proposed by Liu

et al. [24]. The JuddDB dataset [4] is created from the

MIT saliency benchmark [16], mainly for checking gen-

erality of salient object detection models over real-world

scenes with multiple objects and complex background. Ad-

ditionally, we compared with all saliency object segmenta-

tion methods mentioned in [23] and [37] on the PASCAL-

S dataset, including CPMC+GBVS [23], CPMC+PatchCut

[37], GBVS+PatchCut [37], RC [7], SF [27], PCAS [25]

and FT [1]. The PASCAL-S is proposed to avoid the dataset

design bias, where the image selection process deliberately

emphasizes the concept of saliency [23].

Evaluation We follow the canonical precision-recall

curve and F-measure methodologies to evaluate the per-

formance of our algorithm using the toolbox provided by

[21]. The PR-curve and F-measure comparisons are shown

in Fig. 5. Specifically, the PR curve is obtained by bina-

rizing the saliency map using varying thresholds from 0 to

255, as mentioned in [1, 7, 27, 29]. F-measure is obtained

using the metric proposed by [1]:

Fβ =
(1 + β2)Precision×Recall

β2Precision+Recall
(12)

Here, the precision and recall rates binarized using an adap-

tive threshold determined as two times the mean saliency

of a given image. We set β to 0.3 to emphasize the

precision[1, 36, 19].

As can be seen in Fig. 5, our method significantly out-

performs all seven unsupervised methods by a large margin.

Specifically, our method achieved an improvement of 6% in

comparison with the baseline GMR model on the challeng-

ing ECSSD dataset. Also, our method is highly competitive
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Figure 7: Quantitative PR-curve and F-measure evaluation

of 7 methods on the PASCAL-S dataset. Note that our

method achieves similar or better F-measure as more com-

pute expensive methods.
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Figure 8: Quantitative PR-curve on different design options

mentioned in Sec. 5.2. The baseline method (GMR) and

final combined method (GraB) are added to both figures for

comparison.

when compared to DRFI on all three datasets. It is worth

noting that DRFI takes around 24 hours for training and

10 seconds for testing given a typical 400×300 image [14],

whereas our method is fully unsupervised and only takes

800 milliseconds to process a similar image. Furthermore,

DRFI takes 2500 images for training and extracts more than

20 different features, while our method is purely based on

the input image and only uses 3 simple features. In other

words, our method is much more efficient than DRFI yet

still capable of maintaining competitive accuracy. The effi-

cacy of our graph model is self-evident.

Quantitative evaluations on PASCAL-S [23] (Fig. 7)

show that our method achieves higher precision, recall

and F-measure scores compared to the state-of-the-art

CPMC+GBVS algorithm presented in [23]. Also, our

method performs favorably against the more recent Patch-

Cut method [37] and clearly above all other saliency al-

gorithms. Again, our method is training-free and per-

forms much faster than CPMC+GBVS and PatchCut.

(CPMC+GBVS takes around 30s to process a 400 × 300
image, according to our experiment; PatchCut takes around

10s for segmenting a 200× 200 image, as reported by [37].

Both methods require extra training/example data).

Our evaluation does not include some of the latest

deep-learning methods. The crux of this paper is to pro-

pose a novel heuristic model which is able to achieve

similar performance to supervised methods like DRFI or

CPMC+GBVS without preparing expensive training data.

This provides simplicity and easy-to-use generality in many

practical applications where computing power is limited

and ground truth annotations are very expensive or impos-

sible to acquire.

Fig. 6 shows a few saliency maps for qualitative evalua-

tion. We note that the proposed algorithm uniformly high-

lights the salient regions and preserves fine object bound-

aries than other methods.

6. Conclusion

We present a novel unsupervised saliency estimation

method based on a novel graph model and background pri-

ors. Our graph model incorporates local and global contrast

and naturally enforces the background connectivity con-

straint. The proposed feature distance metrics effectively

and efficiently combines local color and texture cues to rep-

resent the intrinsic manifold structure. We further optimize

the background seeds by exploiting a boundary query and

refinement scheme, achieving state-of-the-art results. Our

future work includes theoretical analysis on the proposed

graph model and its potential towards building better clus-

tering algorithms. Also, we would like to accelerate our al-

gorithm via parallel computing, as large-scale spectral clus-

tering has been trivially accomplished in high-performance

graphics hardware [30].
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