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Abstract

In this work, we propose a multi-camera system where

we combine a main high-quality camera with two low-res

auxiliary cameras. The auxiliary cameras are well cali-

brated and act as a passive depth sensor by generating dis-

parity maps. The main camera has an interchangeable lens

and can produce good quality images at high resolution.

Our goal is, given the low-res depth map from the auxiliary

cameras, generate a depth map from the viewpoint of the

main camera. The advantage of our system, compared to

other systems such as light-field cameras or RGBD sensors,

is the ability to generate a high-resolution color image with

a complete depth map, without sacrificing resolution and

with minimal auxiliary hardware.

Since the main camera has an interchangeable lens,

it cannot be calibrated beforehand, and directly applying

stereo matching on it and either of the auxiliary cameras

often leads to unsatisfactory results. Utilizing both the cal-

ibrated cameras at once, we propose a novel approach to

better estimate the disparity map of the main camera. Then

by combining the defocus cue of the main camera, the dis-

parity map can be further improved. We demonstrate the

performance of our algorithm on various scenes.

1. Introduction

Multi-camera systems have their advantages over tradi-

tional cameras, and recent commercial developments (e.g.,

Lytro [1] and Light [3]) have proven the market interest.

In this paper, we show that by combining a high qual-

ity interchangeable-lens camera with auxiliary cameras that

can recover depth (Fig. 1a), we can obtain many of the prac-

tical advantages of light field cameras [37]. When the pho-

tographer captures an image with the main camera, we also

synchronously capture images from the auxiliary cameras

(Fig. 1b). We then use these images to estimate the disparity

map from the viewpoint of the main camera (Fig. 1c). This

disparity map, along with the high-resolution main camera

image, then enables a number of applications such as re-

focus magnification (Fig. 10) and parallax view generation

(Fig. 11), while preserving image quality and resolution.

The reason we cannot just use two calibrated main cam-

eras to recover depth is because the main camera has an

(a) System setup (b) System input (c) System output

Aux view disparity

Right view Left view

Main view Main view disparity

Defocus magnification

Main camera

Aux cameras

Figure 1: System overview. (a) The system consists of a

high-res uncalibrated main camera and two low-res cali-

brated auxiliary cameras. (b) The inputs contain the main

camera image, the aux camera images, and the aux view

disparity map. (c) Given these images, we generate the dis-

parity map from the viewpoint of the main camera. We also

show an example application of applying synthetic blur be-

yond the aperture baseline limit given the disparity map.

interchangeable lens, so it is impossible to calibrate them

beforehand. Besides, two auxiliary cameras are usually still

much cheaper than a main camera. Finally, the auxiliary

cameras are only loosely attached to the main camera to in-

crease flexibility (one can easily detach them if we don’t

need depth maps). Therefore, calibration between main and

auxiliary cameras is not possible.

To address this challenge, we are required to use uncali-

brated rectification. However, the state-of-the-art results are

still far from those generated by calibrated cameras. There-

fore, instead of using two uncalibrated cameras, we use the

(uncalibrated) main camera in conjunction with a calibrated

pair of auxiliary cameras, e.g. the Panasonic Lumix DMC-

3D1K [2], forming a semi-calibrated system. Our system

thus contains a pair of calibrated low-res stereo cameras,

and a high-res uncalibrated main camera. This is also sim-

ilar to RGBD systems combining a color sensor and an ac-

tive depth sensor (e.g. Kinect), where we want to transfer

the depth to the viewpoint of the color sensor. However,

RGBD cameras fail to perform well outdoors in sunlight,

while our method is applicable indoors and outdoors. Be-

sides, we can gain more rectification information from the

color images of the calibrated camera pair, as we show in
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Sec. 3. To our knowledge, this is the first work that deals

with semi-calibrated systems.

We show that by decomposing the rectification into a 3-

step approach, we can take advantage of the information

from both the calibrated cameras at once, thus rectifying

all three images simultaneously and more accurately. Then,

by establishing the relationship between the three cameras,

disparity estimation can be done through an optimization

framework that ensures their disparity consistency.

In addition, when the main camera has defocus in the im-

age, we also take that cue into account. The auxiliary cam-

eras have small apertures, and can be considered as pinhole

cameras; the main camera, on the other hand, has a large

aperture and thus can generate very defocused images. By

combining stereo and defocus cues, we show that we can

estimate a higher quality disparity map.

In summary, our contributions are:

1) A method for combining high-res images with low-res

auxiliary cameras for depth capture that provides both high

quality imagery and depth maps.

2) A rectification scheme suitable for semi-calibrated

systems, and an optimization framework to determine the

disparities accordingly.

3) A method to combine defocus cues with stereo to help

improve the disparity estimation process.

2. Related work

Related camera systems: Systems combining low and

high resolution cameras have been proposed to perform

depth map upsampling [13,14,17,28,31,39,48,50] or color

image upsampling [10, 11, 20, 42]. However, their goal is

to increase the image resolution only, and the cameras in

their system are usually assumed calibrated. In contrast, we

are interested in generating a disparity map from the view-

point of an uncalibrated camera, which is a very different

and much harder problem, as we show in Sec. 5.

Some other work has been proposed to enable light-field

capabilities to a consumer camera [35, 41]. However, for

these methods the main camera image is deteriorated, which

may not be acceptable. Moreover, the optical attachment

proposed by Manakov et al. [35] is extremely large and not

practical for consumer photography. In the case of Reddy et

al. [41], the effective aperture of the camera is significantly

reduced, thus cutting down the light input.

Uncalibrated rectification: Uncalibrated rectification

dates back to Hartley et al. [23], where a linear and non-

iterative method is given to reconstruct stereo by uncali-

brated cameras. Loop and Zhang [33] decomposed each

collineation into a specialized projective transform, a simi-

larity transform and a shearing transform. Isgro and Trucco

[26] proposed a method that avoids computation of the fun-

damental matrix. Mallon et al. [34] proposed a method that

uniquely optimizes each transformation to minimize distor-

tions. Fitzgibbon et al. [18] tried to learn the priors for

calibrating families of stereo cameras A quasi-Euclidean

method proposed by Fusiello et al. [19] aims at achieving a

good approximation of the Euclidean epipolar rectification.

The previous methods all deal with two images. To rec-

tify three images, Ayache et al. [6] proposed a technique

to rectify image triplets from calibrated cameras. An et

al. [4] proposed using the geometric camera model instead

of the relative image orientation. For uncalibrated trinocu-

lar rectification, Sun [44] tried to rectify image triplets us-

ing the trilinear tensor, the projective invariants or funda-

mental matrices. Based on Sun’s method, Heinrichs and

Rodehorst [25] introduced a practical algorithm for various

camera setups. Rectification methods extended to an arbi-

trary number of views with aligned camera centers have also

been proposed [27, 38].

As can be seen, none of the previous methods tries to

handle a system where only part of it is calibrated. Fur-

thermore, all existing trinocular rectification methods either

require the three camera centers to be collinear or to be non-

collinear, and cannot handle both cases. In this work, we

extend the quasi-Euclidean work proposed by Fusiello [19]

to deal with three images, which generates much less dis-

tortion compared to the methods mentioned above.

Combining defocus with stereo: Since the main camera

has a large aperture, we can also integrate depth from de-

focus (DFD) into the depth estimation framework. Most

DFD work requires two or more images of the same

scene [8,21,30,40,45,46,47]. Although we can construct an

image pair using the auxiliary pinhole image and the main

view defocused image, the two images are not registered,

which makes DFD not reliable. However, we can still gain

information using merely the main view image by single

image DFD. For single image DFD, the work by Elder and

Zucker [15] generated a sparse defocus map by applying

first and second order derivatives to the input image. Bae

et al. [7] extended this work and obtained a dense defo-

cus map using interpolation. The deconvolution-based ap-

proach proposed by Levin et al. [29] can obtain both the

depth map and the all-in-focus image, but relied on a coded

aperture. Namboodiri and Chaudhuri [36] reversed a heat

diffusion equation to estimate the defocus blur at edge lo-

cations. Zhuo and Sim [51] estimated the defocus map by

re-blurring the input image using a known Gaussian blur

kernel. Lin et al. [32] designed a sequence of filters to ob-

tain an absolute depth map. In contrast, our method can

generate the depth ratio between two sides of edges, which

substantially enhances the depth map quality around occlu-

sion edges during the final optimization.

3. Algorithm

As stated previously, our system consists of a main cam-

era and two auxiliary cameras. The main camera has higher

image quality, better resolution, and its optical parameters

can be changed on the fly. The auxiliary cameras shoot
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Figure 2: Block diagram for our algorithm without defocus

refinement. After we estimate a disparity map from the cal-

ibrated cameras, we warp it to the main view. This warped

disparity map, along with the color images from main and

aux cameras rectified using our method, are input to an op-

timization framework to generate the final disparity map.

The refinement steps for defocus will be described in Sec. 4.

smaller and lower quality images, and have fixed optical pa-

rameters. Our goal is to obtain the disparity map from the

viewpoint of the main camera. To make statements easier,

we will use the term side cameras to denote the auxiliary

cameras, and use the terms left camera and right camera to

differentiate between the two side cameras.

The overall algorithm, when the main camera has no de-

focus, can be divided into four steps. The refinement step

for defocus will be described in Sec. 4. First, we calibrate

the side cameras and estimate a disparity map from them

(Sec. 3.1). Then this disparity map is warped to the main

view to give us an initial disparity map (Sec. 3.2). Third,

we perform uncalibrated rectification on the main image

and the side images (Sec. 3.3), which is the main technical

contribution of this section. Finally, the disparity map from

the main view is estimated with the help of the warped side

disparity map (Sec. 3.4). The block diagram of the overall

algorithm is shown in Fig. 2.

3.1. Disparity estimation on side images

We first calibrate the two side cameras. To do this, we

use the cameras to take multiple photos of a checkerboard

at different orientations. After that, the Bouguet toolbox

[12] is used to calibrate the cameras, so we can rectify the

images. After rectification, we compute the disparity map

using the non-local method proposed by Yang [49]. This is

illustrated in Fig. 2a.

3.2. Side disparity map warping

Now we have the disparity map from the side point of

view. To get a disparity map from the main point of view,

one way is to warp the current side disparity map to the

main view (Fig. 2b). We describe how we perform this here,

(a) Disparity from aux cameras (b) Warped disparity

Figure 3: Side disparity map warping. After finding corre-

spondences between the side view and the main view using

NRDC, we estimate the projection matrix and warp the dis-

parity map to the main view.

and show how we utilize the warped disparity map to help

estimate the final disparity map in Sec. 3.4.

First, we establish correspondences between the side

view color image and the main view color image. Since

the two views have very different color domains, direct fea-

ture matching will not lead to satisfactory results. Instead,

we apply the non-rigid dense correspondence (NRDC) [22]

on the two views which takes color transformation into ac-

count. Then we apply the epipolar constraint to rule out

inconsistent matches. Finally, using the side camera coor-

dinate as the world coordinate, we compute the projection

matrix of the main camera, and warp the side view disparity

to the main view. An example is shown in Fig. 3.

Note that for the pixels that are behind some other pix-

els, although they are not visible in the main view, we still

know their corresponding positions in the side view. Thus,

we can construct a correspondence map between the two

images, where each pixel in the side view can be mapped

to a position in the main view even if it is not visible there.

This can be useful for applications such as inpainting, as

demonstrated in our application section. Finally, there will

definitely be holes in the warped disparity map due to oc-

clusions. But that is acceptable since we only want to ex-

ploit the information that we can acquire from the cali-

brated disparity map, and the holes simply mean we need

to rely on other sources, e.g. direct disparity estimation on

the main/side image pair, as introduced next.

3.3. Rectification on main/side image pairs

Since the main camera is not calibrated, we are required

to adopt uncalibrated rectification. Below we first give a

review on previous methods, then introduce our method.

3.3.1 Background

Suppose we are given two images Il and Ir to rectify. In

other words, we want to find two homographies Hl and Hr

such that when applied on the two images, their epipolar

lines become entirely horizontal. After acquiring the cor-

responding feature points ml and mr in Il and Ir, respec-

tively, the estimation of the homographies can be formu-

lated as

(Hrm
j
r)

T [u1]×(Hlm
j
l ) = 0 (1)
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where mj
r and mj

l are the jth corresponding feature points

of Ir and Il, respectively, and [u1]× is the skew-symmetric

matrix associated with the cross-product by u1 = (1, 0, 0).
We adopt the quasi-Euclidean method by Fusiello et al.

[19], where the homographies are decomposed as

H = KnRK−1
o (2)

where Kn and Ko are the intrinsic matrices of the new and

old cameras respectively, and R is the rotation matrix. As-

suming negligible lens distortion, no skew and principal

point at the image center, an intrinsic matrix is only de-

pendent on the focal length. Therefore, the only parame-

ters for each camera are the focal length and three rotation

angles. Since rotation of one camera around its x-axis is

redundant, we can further eliminate one degree of freedom,

leaving only 7 free parameters.

3.3.2 Our method

The quasi-Euclidean method described above rectifies two

images. To rectify three images, directly applying it will

lead to solving 10 rotation angles and two focal lengths for

the left-main and right-main image pairs (assuming com-

mon focal length between the left and the right cameras). In

the following, we decompose the semi-calibrated rectifica-

tion process into three steps, as summarized in Fig. 4. The

general idea is to first bring the imaging planes of all the

cameras to the same plane (step 1, 2), and then bring their

x-axes to a common axis (step 3). By doing so, we show

that we can reduce the rotation parameters to 6 angles.

Step 1 First, the calibrated side cameras are rotated by an-

gles θlx and θrx respectively around the x-axis, so that their

view direction is perpendicular to the plane the three cam-

eras lie in (Fig. 4a). Since the side cameras are already rec-

tified, θlx = θrx and we will just use θlx for both of them.

This angle always exists since the rotation axis, which is the

line joining the two side camera centers, lies on the plane.

Step 2 Second, the main camera is rotated around the x-

axis by an angle θmx and the y-axis by an angle θmy , to

bring its view direction parallel to the view direction of the

side cameras (Fig. 4b).

Step 3 At this point, all three cameras have parallel view

directions which are perpendicular to the plane they lie in,

so we only need to rotate them around the z-axis to rectify

them. We do this separately for the left-main and the right-

main camera pair.

Left-main pair For the left and main camera pair, we

rotate them by angles θlz and θmz , respectively (Fig. 4c,4d).

Right-main pair Since the left camera rotated by θlz
and the main camera rotated by θmz are rectified, they have

the same x-axis. Hence, when both are further rotated by

−θlz , they will still have parallel x-axes, which means the

main camera rotated by θmz − θlz will have parallel x-axis

(a) (b)

(c) (d)

(e) (f)

Figure 4: Rectification on main/side image pair. The three

boxes represent, from left to right, the left camera, the right

camera, and the main camera. (a) The side cameras are

rotated about their common x-axis to make their view axis

perpendicular to the plane the three cameras lie in. (b) The

main camera is rotated about the x- and y-axis to bring its

view axis parallel to the view axes of side cameras. (c)-(d)

The left camera and the main camera are rotated about their

view axes to become rectified. (e)-(f) Similarly, the right and

the main camera are rotated about their view axes.

to the original left and right cameras. Then, to bring the

main and the right cameras into a rectified setup, they must

be further rotated by a common angle θrz . Therefore, for

the right and main camera pair, we rotate them by angles

θrz and θmz − θlz + θrz , respectively (Fig. 4e,4f).

Thus, we only have 6 rotation parameters, namely

θlx, θmx, θmy, θlz, θmz , and θrz . Adding the two param-

eters for focal length, this leaves us a total of 8 parame-

ters. In implementation, we apply the standard Levenberg-

Marquardt algorithm to solve for the parameters. This fin-

ishes our rectification process (Fig. 2c).

3.4. Final disparity map estimation

Now we have the warped disparity from the side view

and the rectified main-side images, we formulate an opti-

mization process to integrate them (Fig. 2d). Let I lm and Il
be the rectified main-left image pair, and Irm and Ir be the

rectified main-right image pair. Then let dml be the dispar-

ity between I lm and Il, dmr be the disparity between Irm and

Ir, and dlr be the warped side view disparity as described

in Sec. 3.2. Since the left, the right and the main camera are

all in the same plane and have parallel viewing axes, dml

and dmr are proportional to each other (up to some known

image rotation). It follows that dml = Clrdlr = Cmrdmr,

where Clr and Cmr are two constants (the rotation notation

is dropped for simplicity). As a result, dml can be estimated
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Figure 5: Defocus model. We consider a 1D case, where a

depth discontinuity is present in the scene. Due to occlu-

sion, a pixel on the imaging plane is modeled as the sum of

two partial Gaussians (the blue and green regions).

as

dml = argmin
d

{λs∇d/∇I + λlr‖d− Clrdlr‖
2

+ λml‖I
l
m(x, y)− Il(x+ d, y)‖2

+ λmr‖I
r
m(x, y)− Ir(x+ d/Cmr, y)‖

2}

(3)

where the first term applies the smoothness constraint, the

second term ensures that dml matches dlr, the third term is

regular stereo matching between the main-left pair, and the

final term ensures consistency to the main-right pair. All

λ’s are constant weights. In this way, we have a joint esti-

mation incorporating all three disparities between the three

cameras. Note that in practice, what we really want is the

disparity map from the original view of the main camera;

thus, the optimization is done in the following way: for each

pixel in the original main image, we find its counterpart in

the left/right images using the transformation we found in

the rectification. We repeat this process for each dispar-

ity and compute their costs. This is similar to traditional

stereo, only that we replace the horizontal shift by some

other transformation function.

To obtain Clr and Cmr, we first estimate an initial dml

by computing the disparity between I lm and Il. Then we use

iteratively reweighted least squares (IRLS) to find a robust

ratio Clr that relates dml to dlr. The same procedure is

performed again to find Cmr.

4. Combining defocus cues

When the main image has defocus, we combine that cue

into the disparity estimation. We consider two cues: defo-

cus cue from the main image alone and the defocus cue from

the main-side image pair, which are described as follows.

Defocus cue from main image Classical shape-from-

defocus methods address the point spread function (PSF)

as either a pillbox or a 2D Gaussian function [43]. In this

work, we model the defocus as a Gaussian kernel. As shown

by Bhasin et al. [9], the PSF around occlusions will be trun-

cated and is no longer symmetric. Below we derive a sim-

ple constraint on disparities around occlusion edges based

on the image gradients.

Pixel formation We first derive the formation of a pixel

at an occlusion edge. Consider a simple 1D case where a

depth discontinuity between two planes is present, as shown

in Fig. 5. Similar to Favaro et al. [16] and Hasinoff et

al. [24], we express the irradiance measured on the imag-

ing plane using the reversed projection blurring model [5].

However, we make an assumption that around the edges,

the radiance of the two planes is nearly constant. This dra-

matically reduces the computation. As can be seen, the

intensity of that pixel is then modeled as the sum of two

partial Gaussians of the two planes. Let the discontinu-

ity be at origin x = 0, and let the chief ray (red line) hit

plane 1 at x = t and plane 2 at x = u. We first con-

sider the case t < 0. Let the ray which hits plane 1 at

x = 0 hit plane 2 at x = v. Due to similar triangles,

v − u =
d2−df

d1−df
(0 − t) = σ2

σ1

(−t), where σ1, σ2 are the

blur kernel sizes induced at plane 1 and 2, respectively. Let

Φ be the cumulative Gaussian distribution. Then the sum of

Gaussian on plane 1 is Φ1(0 − t) = Φ1(−t), and the sum

of Gaussian on plane 2 is Φ2(u − v) = Φ2(
σ2

σ1

t). The case

when t > 0 can be derived similarly. Finally, note that the

world coordinate x and the image coordinate s are related

by x = s · d/df . Thus, the intensity of a pixel whose chief

ray hits object plane at t is

I(s) ∼=

{

I1Φ1(−
σ1

σ2

d2

df
s) + I2Φ2(

d2

df
s), s > 0

I1Φ1(−
d1

df
s) + I2Φ2(

σ2

σ1

d1

df
s), s < 0

(4)

where I1 and I2 are radiances at plane 1 and plane 2, re-

spectively.

Blur kernel size Given the pixel formation, the blur

kernel size can be obtained as follows. Let G denote the

Gaussian function. Taking the derivative of I , and let

s → 0, we get

I ′(s) =

{

−σ1

σ2

d2
df

I1G1(−
σ1

σ2

d2
df

s) + d2
df

I2G2(
d2
df

s), s > 0

− d1
df

I1G1(−
d1
df

s) + σ2

σ1

d1
df

I2G2(
σ2

σ1

d1
df

s), s < 0

(5)

I ′(s)|s→0 =

{

d2

df

I2−I1√
2πσ2

, s → 0+

d1

df

I2−I1√
2πσ1

, s → 0−
(6)

I ′(0+)

I ′(0−)
=

σ1/d1
σ2/d2

(7)

Therefore, the blur kernel sizes around an edge are related

to the gradients around the edge.
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Disparity constraint Finally, given the blur kernel size

σ at a point, we can obtain the disparity d by [45]

σ = Cσ(d− df ) (8)

where Cσ is a constant and df is the disparity of the in-focus

plane.

To use the above constraint, for the main image, we first

apply the Canny edge detector to find the edges. Then we

calculate df by taking the average of the in-focus regions in

the disparity map computed before. Finally, the constraints

on the disparities around the edges are modeled as

R =
(d1 − df )/d1
(d2 − df )/d2

=
I ′(0+)

I ′(0−)
(9)

where d1 and d2 are disparities on the two sides of the edge,

and x = 0 is the edge position.

Defocus cue from the main-side image pair We assume

that the defocus image is the original sharp image convolved

with a spatially variant Gaussian kernel. In other words, the

defocus main image I lm, Irm and the sharp side images Il,
Ir are related by

I lm = Il(x+ dml, y) ∗G(σ(dml)) (10)

Irm = Ir(x+ dmr, y) ∗G(σ(dmr)) (11)

where G(σ) is a Gaussian with variance σ2, and σ is a spa-

tially variant function of the disparity value.

Combining stereo and both defocus cues Given the re-

lationships we have above, we make two modifications to

the previous optimization framework (Eq. (3)). First, we

exploit the defocus cue from main-side image pair by blur-

ring the side images according to the disparity before doing

stereo matching. This can help improve the stereo match-

ing process since the blurred side image will be more sim-

ilar to the main image. Second, we apply the constraints

on the disparities around edges we found using the defocus

cue from the main image. This is beneficial because it ex-

plicitly models depth discontinuity at an edge, which is not

handled by the defocus inference from the main-side image

pair. As a result, by combining both cues, we are able to

generate more accurate results along occlusion boundaries,

while still preserving the dense property from matching be-

tween the main-side image pair.

We thus rewrite the optimization objective as

dml = argmin
d

{λs∇d/∇I + λlr‖d− Clrdlr‖
2

+ λml‖I
l
m(x, y)− Il(x+ d, y) ∗G(Cσ(d− df ))‖

2

+ λmr‖I
r
m(x, y)− Ir(x+ d/Cmr, y) ∗G(Cσ(Cmrd− df ))‖

2

+ λr

∑

li

∑

p1,p2∈N (li)

‖
d(p1)− df
d(p2)− df

−R(p)‖2}

(12)

where li is an edge found by the Canny edge detector, N
is the 2 neighboring pixels lying on the normal of the edge,

and R(p) is the gradient ratio we computed from Eq. (9).

The λ’s are constant weights and are chosen as 5, 1, 1, 1, 2

in our experiment, respectively.

5. Results

In this section, we evaluate our results of both the rectifi-

cation and disparity map computation. We have captured

data with a number of systems that have a main camera

(Canon EOS 30D) and auxiliary cameras, such as the Pana-

sonic Lumix DMC-3D1K Camera.

Rectification To perform a quantitative analysis, our rec-

tification method is applied on 8 image sets and compared

to the method by Fusiello et al. [19]. Since Fusiello et

al. explicitly minimizes the errors on the extracted match-

ing feature points, it might generate results that overfit the

points. Thus, to make the comparisons fair, we divide the

matching points into two sets, one for training and one for

testing. For each tested algorithm, it first uses the training

points to explicitly minimize the error. After that, the ob-

tained homographies are used to calculate the errors on the

testing points. The average Sampson errors [19] on the rec-

tified images are summarized in Table 1. It can be seen that

in general, our algorithm generates more accurate results.

Moreover, when the average errors are close, e.g. image 4,

the error variance generated by our algorithm is still smaller

due to its robustness. An example visual result is shown in

Fig. 6. By visual experiment, we found that our algorithm

performs the best where few feature points are available.

This is reasonable, because [19] explicitly minimizes the

errors on the feature points, so it might overfit them while

generating large errors on the less textured areas. On the

other hand, our algorithm applies more constraints by en-

suring consistency to both calibrated images, so the chances

that it overfits the feature points are lower.

Disparity map We compare our disparity maps at differ-

ent stages of the algorithm. We first show the results where

defocus is not present in the main image in Fig. 7. It can

be seen that for the warped disparity, the result is accept-

able, but there will be many holes due to occlusions. For

the result using our rectification, there will be no holes,

but there will also be many errors due to incorrect rectifi-

cation. By combining these two using the optimization in

Sec. 3.4, the final disparity map can take advantage of both

the warped disparity and the rectification. We also compare

with results generated from direct depth upsampling [17]

and simple uncalibrated rectification [19]. For [17], we use

the warped side disparity maps as input. It can be seen that

since conventional depth upsampling methods assume the

depth image and the color image can be perfectly aligned,

they will be misled by the errors in the disparity maps, e.g.,

the left side pillar in the first row. They also struggle to

handle the large occlusions caused during the transfer; For

instance, artifacts can be seen around the monitor in the first

3722



# Avg [19] Avg (Ours) Var [19] Var (Ours)

1 1.3795 0.7433 1.8769 0.3684

2 1.8839 0.9083 1.9613 0.5396

3 1.4637 0.8586 1.5533 0.4481

4 0.9839 0.8865 1.2459 0.2784

5 0.9504 0.7159 1.1607 0.3468

6 3.8306 2.3171 2.9373 1.9889

7 1.3899 0.7596 1.5429 0.2869

8 3.8752 2.2736 4.4571 0.5109

Table 1: Rectification error comparison. It can be seen that

in general, our algorithm generates more accurate results.

Moreover, when the average errors are close, e.g. image

4, the error variance generated by our algorithm is still

smaller due to its robustness.

(a) Fusiello et al. [19] (b) Our method

Figure 6: An example rectification result on main/side im-

age pairs. The cyan lines show where both algorithms per-

form well; the red lines show where the method by Fusiello

et al. fails, while ours still generates reasonable results.

row and around the bag in the second row. Finally, all re-

sults are much better than simply doing uncalibrated recti-

fication [19].

Next, we compare results where defocus is present in the

main image, using methods with and without our defocus

refinement. We also compare with the results obtained by

depth upsampling [17], Lytro Illum and Kinect version 2.

For each scene, we take pictures using our setup as well as

using the Lytro camera and Kinect, as shown in Fig. 8. We

can see that by utilizing the defocus cue, we are able to gen-

erate much sharper boundaries along occlusion edges. We

also get more accurate results on the background since its

blur is taken into account now. Again, our results are su-

perior than simple depth upsampling, since the imperfect

calibration registers wrong depths that [17] uses as seeds.

Moreover, we generate results which are much less noisy

than the results of Lytro Illum. Using Kinect as ground

truth, we can see that our results are very similar to its re-

sults, while we only use passive sensors. Besides, our dis-

parity map has a higher resolution compared to the result

of Kinect, so when zoomed in, there will be fewer artifacts,

as shown in Fig. 9. For quantitative comparisons, we pro-

vide the depth RMSE using Kinect as ground truth in Ta-

ble 2. We show the average RMSE of all indoor scenes, and

compare with results by Ferstl et al. [17], Zhuo et al. [51],

and Lytro Illum. We also provide results when only our

stereo cue or defocus cue is used. The best result is achieved

when combining both cues. Note that this comparison can-

not capture the full benefit of incorporating defocus cues,

Ferstl et al. Zhuo et al. Lytro Illum

0.0605 0.0727 0.0655

Ours (w/o defocus) Our defocus only Our final

0.0568 0.0651 0.0558

Table 2: Depth RMSE using Kinect as ground truth.

since the result of Kinect does not have sharp boundaries

around depth discontinuities.

6. Applications

Defocus magnification Given the partially defocused

main image and the disparity map, we can blur the defocus

region even more to simulate the shallow depth-of-field of a

larger aperture, as demonstrated by Bae et al. [7]. The result

compared to [7] is shown in Fig. 10. Note that their result

incorrectly blurs the cookie can in the foreground, while

leaving most of the background (e.g. lights on the ceiling)

unblurred. Our algorithm, by combining stereo and defocus

cues, generates a more accurate depth map which then gives

a more realistic result.

Parallax view generation Given the high-quality dispar-

ity map, we are able to generate realistic parallax views of

the main image. However, generating parallax using only

the disparity map will result in holes due to occlusion. To

resolve this, we take advantage of the correspondence map

introduced in Sec. 3.2. Once we know which pixel the hole

corresponds to in the side views (assuming it exists), we can

“borrow” that pixel to fill in the hole. We also use Poisson

blending to compensate for the color changes. This is illus-

trated in Fig. 11.

7. Conclusion

In this paper, we propose a multi-camera system that in-

cludes an uncalibrated main camera and two calibrated aux-

iliary cameras. Previous works consider either entirely cali-

brated or uncalibrated systems. However, by exploiting the

information from the calibrated cameras, we show that we

can improve the disparity estimation of the main camera in

two-fold. First, by decomposing the rectification process

into three steps, we can rectify all three images at once,

thus ensuring their consistency. An optimization framework

to determine the disparity is also developed. Second, when

defocus is present in the main image, we also take that into

account. Defocus from a single image helps resolve the dis-

parity ambiguities around edges, while disparity from an

image pair can lead to a dense defocus map. By combin-

ing cues from both stereo and defocus, the disparity map is

further improved. Utilizing this disparity map, we show we

are able to achieve many of the applications of light field

cameras, while still preserving high image quality.

Acknowledgement

We thank Timo Ahonen for his helpful advice, the sup-

port and funding from Nokia, the UC San Diego Center for

Visual Computing, and a Berkeley Fellowship.

3723



(a) Side view input (b) Main view input (c) Warped from side

view (Sec. 3.2)

(d) Our rectification

(Sec. 3.3)

(e) Our method (Sec.

3.2-3.4)

(f) Ferstl et al. [17] (g) Fusiello et al. [19]

Figure 7: Disparity map results. (c) The disparity map warped from side view. (d) The disparity map estimated on images

using the rectification method in Sec. 3.3. (e) The disparity map obtained using the optimization process in Sec. 3.4. (f) The

disparity map obtained using depth upsampling [17] on warped side view disparity map. Some artifacts can be seen, e.g.,

on the left side pillar and around the monitor in the first row, and around the bag in the second row. (g) The disparity map

estimated on images rectified by Fusiello et al.

(a) Side view input (b) Main view input (c) Ours (w/o defocus) (d) Ours (w/ defocus) (e) Ferstl et al. [17] (f) Lytro Illum (g) Kinect

Figure 8: Disparity map comparisons. (c)(d) By exploiting the defocus cues, our method generates more accurate results

on the background (e.g. the sofa), and sharper boundaries around the foreground objects. (e) The disparity map obtained

using depth upsampling [17]. It can be seen that since the side view disparity map and the main camera calibrations are not

perfect, some errors will be registered to the main view, e.g. the floor in the first row and around the table in the second row.

(f) The depth map from Lytro Illum. It can be seen that it is quite noisy, incorrectly labels some background as foreground,

and does not produce as sharp edges as our method. (g) The depth map from Kinect. We can see that our result is very

similar to Kinect, while we only use passive sensors.

(a) Ours (b) Kinect

Figure 9: Close-up comparison between our result and

Kinect. It can be seen that our result, due to the higher

resolution, has fewer artifacts.

(a) Bae et al. [7] (b) Our method

Figure 10: Defocus magnification applied on Fig. 8b. Note

that in (a), the cookie can in the foreground is blurred, while

most of the background is not blurred.

(a) Original main view (b) Original left view

(c) Parallax view w/o hole filling (d) Parallax view w/ hole filling

Figure 11: Parallax view generation. Note that (d) real-

istically reproduces the view behind the monitor from the

side view, which is accomplished from the correspondence

map introduced in the text, which contains more informa-

tion than the disparity map.
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