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Abstract

Joint modeling of the intensity of facial action units

(AUs) from face images is challenging due to the large num-

ber of AUs (30+) and their intensity levels (6). This is in

part due to the lack of suitable models that can efficiently

handle such a large number of outputs/classes simultane-

ously, but also due to the lack of labelled target data. For

this reason, majority of the methods proposed so far resort

to independent classifiers for the AU intensity. This is sub-

optimal for at least two reasons: the facial appearance of

some AUs changes depending on the intensity of other AUs,

and some AUs co-occur more often than others. Encod-

ing this is expected to improve the estimation of target AU

intensities, especially in the case of noisy image features,

head-pose variations and imbalanced training data. To this

end, we introduce a novel modeling framework, Copula Or-

dinal Regression (COR), that leverages the power of cop-

ula functions and CRFs, to detangle the probabilistic mod-

eling of AU dependencies from the marginal modeling of

the AU intensity. Consequently, the COR model achieves

the joint learning and inference of intensities of multiple

AUs, while being computationally tractable. We show on

two challenging datasets of naturalistic facial expressions

that the proposed approach consistently outperforms (i) in-

dependent modeling of AU intensities, and (ii) the state-of-

the-art approach for the target task.

1. Introduction

Human facial expressions are typically described in

terms of variation in configuration and intensity of facial

muscle actions defined using the Facial Action Coding Sys-

tem (FACS) [6]. Specifically, the FACS defines a unique

set of 30+ atomic non-overlapping facial muscle actions

named Action Units (AUs) [19]. It also provides rules

for scoring the intensity of each AU in the range from ab-

sent to maximal intensity on a six-point ordinal scale, de-
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Figure 1: The AU intensity estimation with the proposed

Copula Ordinal Regression using the random fields frame-

work. The pruning of the edges in the fully connected graph

is accomplished by learning the sparse graph of AU rela-

tionships using graph lasso. Pa and Pad denote the node

potentials (modeled using marginal ordinal models for each

AU) and the edge potentials (modeled using Copula func-

tions accounting for dependencies among the pairs of target

AUs), while the ~x represents the input features (a set of fidu-

cial facial points), in the proposed random field model.

noted as neutral<A<B<C<D<E. Thus, using FACS, hu-

man coders can manually code nearly any anatomically pos-

sible facial expression, decomposing it into specific AUs

and their intensities. However, this process is tedious and

error-prone due to the large number of AUs and the diffi-

culty in discerning their intensities [20]. On the other hand,

automated estimation of the AU intensity is challenging for

many reasons such as the subject-specific facial morphol-

ogy and expressiveness level [24], as well as the changes

in lighting and the head-pose variation. Co-occurrences of

the intensity levels of different AUs are another important

factor that affects their coding/automated estimation. For

instance, the criteria for intensity scoring of AU7 (lid tight-

ener) are changed significantly if AU7 appears with a maxi-

mal intensity of AU43 (eye closure), since this combination

changes the appearance as well as timing of these AUs [6].
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Furthermore, co-occurring AUs can be non-additive, in the

case of which one AU masks another, or a new and dis-

tinct set of appearances is created [6]. As an example of

the non-additive effect, AU4 (brow lowerer) appears differ-

ently depending on whether it occurs alone or in combina-

tion with AU1 (inner brow raise). When AU4 occurs alone,

the brows are drawn together and lowered, while in AU1+4,

the brows are drawn together but are raised due to the acti-

vation of AU1. This, in turn, significantly affects their ap-

pearance. Moreover, some AUs are often activated together,

e.g. AU12 and AU6 in the case of smiles, but with different

intensities depending on the type of smile (e.g., genuine vs.

posed). Therefore, modeling dependencies among (the in-

tensities of) multiple AUs is expected to result in models

that are more robust to noisy features and imbalanced train-

ing data, leading to a more accurate estimation of the target

AU intensities [26, 16].

To date, most of the work on automated analysis of AUs

has focused on detection of the presence/absence of AUs

(e.g., [17, 3, 20]) instead of their full range intensity estima-

tion. Furthermore, few methods attempted joint modeling

of AUs activations (e.g., [33, 7]). However, these methods

can deal only with the binary classification problems, and,

thus, are not applicable to the joint estimation of intensity

of multiple AUs. Because the AU intensity estimation is

a relatively new problem in the field, few works have ad-

dressed it so far. Most of these works perform independent

estimation of the AU intensity using either classification-

based approach [19, 22, 26] or regression-based approach

[12, 11]. To the best of our knowledge, the only methods

that attempt joint estimation of multiple AUs intensity are

reported in [27, 16, 13]. The methods [27, 16] perform a

two stage joint modeling of AU intensity. Specifically, in

[27], the scores of the pre-learned regressors, such as Sup-

port Vector Regression, are fed into a set of Markov Ran-

dom Field trees, used to model dependencies of subsets

of AUs. Similarly, [16] models AU dependencies using a

Dynamic Bayesian Network (DBN) approach, which feeds

as inputs the AU-specific spectral regressors. The current

state-of-the-art approach for the joint modeling of the AU

intensity [13] formulates a generative MRF model, called

Latent Tree (LT). In contrast to the two works mentioned

above, this method can deal with the highly noisy and miss-

ing input features due to its generative component. Never-

theless, there are several critical limitations of the proposed

approaches. The model outputs in [27] are treated as contin-

uous, despite the fact that the intensity levels are defined on

an ordinal (discrete) scale. Furthermore, in performing the

two-stage learning, [27, 16] fail to allow the input features

to influence the learned AU dependencies. Although de-

fined in a probabilistic manner, the LT approach [13] relies

on a set of heuristics for the model to be computationally

tractable for more than few AUs.

Contributions. To address the primary challenge of com-

putationally modeling the variable and complex dependen-

cies that exist among intensities of multiple AUs, then lever-

aging the models for more accurate AU intensity predic-

tion, we propose the Copula Ordinal Regression model for

joint AU intensity estimation. Specifically, we propose to

use the powerful framework of copula functions [29] to

efficiently model dependencies of intensities among AUs.

Copula functions generalize the notion of linear correlation

to more flexible dependency structures specified using sim-

ple parametric functional families (copula families). The

key advantage of copula models is that they retain repre-

sentational and computational efficiency by decoupling the

modeling of dependencies from the modeling of marginal

densities, as detailed in Sec.2.2. The basic idea is that one

starts with state-of-the-art independent (marginal probabil-

ity) AU models and then captures the intrinsic AU depen-

dence (joint probability) through copula functions, while

guaranteeing that the marginals remain unaltered. This

presents a distinct advantage over all previously surveyed

models that tightly couple the marginal and joint model

specification/estimation, resulting in often intractably com-

plex models.

Even though copulas model dependencies using com-

pact parametric functions, it is still necessary to estimate

their parameters from data. To this end, we propose a

new Conditional Random Field (CRF) model in Sec.2.2

and the accompanying learning and inference strategies in

Sec.2.4. The CRF-based model considers sparse, graph-

induced, cliques of AUs (inferred from data and illustrated

in Fig.1), where dependencies in each clique are modeled

using an independent copula model. The joint CRF model

is then estimated using a new, efficient block descent al-

gorithm that intuitively combines optimization of depen-

dencies (copula association parameters) with learning of

independent marginal model parameters (the intensity lev-

els of each AU from the corresponding covariates, i.e., the

locations of a set of fiducial facial points). To avoid the

typically challenging evaluation of the CRF partition func-

tion, we propose to use a composite marginal likelihood ob-

jective with guaranteed optimality properties [30, 5]. The

joint inference in this model is then accomplished using a

fast loopy belief approximation method on the learned CRF

model. We demonstrate the utility of COR on two bench-

mark datasets of spontaneous AUs, DISFA [22] and Shoul-

der Pain [18].

2. Methodology

Let us denote the training set as D = {Y,X}. Y =
[y1, . . . ,yi, . . . ,yN ]T is comprised of N instances of mul-

tivariate outputs stored in yi = {y
1
i , . . .y

q
i , . . .y

Q
i }, where

Q is the number of AUs, and y
q
i takes one of {1, ..., Lq}

discrete intensity levels of the q-th AU. Furthermore, X =
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[x1, . . . ,xi, . . . ,xN ]T are input features (e.g., facial points)

that correspond to the combinations of labels in Y. Thus,

our goal is to simultaneously estimate the combination of

the intensity levels yq of Q AUs, given the facial features

x. In what follows, we first introduce the ordinal regression

framework for modeling single output (Q = 1). We then

introduce the copula framework for modeling joint distribu-

tions, and formulate our model for joint learning and infer-

ence of intensity levels of multiple AUs.

2.1. Ordinal Regression

Let l 2 {1, . . . , L} be the ordinal label for the intensity

level of the q-th AU. In the ordinal regression framework

notation [1], we define the latent projection yq⇤ 2 < as a

function of covariates x, and then relate this latent projec-

tion to the ordinal level (yq) through the threshold bounds:

yq⇤ = βqxT + "q, yq = l iff  ql−1 < yq⇤   
q
l , (1)

where x 2 <D, βq is the ordinal projection vector,  ql is the

lower bound threshold for count level l ( q0 = −1 <  q1 <
 q2... <  qL−1 <  qL = +1). The error (noise) terms "q

capture the idiosyncratic effects of all omitted variables for

the q-th AU. They are assumed to be identically distributed

across the intensity levels, each with a univariate continu-

ous marginal distribution function F (zq) = Pr("q < zq).
In the case of the normal distribution with zero mean and

variance (σq)2, the marginal distribution function is defined

as the normal cumulative density function (cdf) F (zq) =

Φ(zq) =
R zq

−1
N (⇠; 0, 1)d⇠. Then, classification in ordinal

regression models is performed using the following ordinal
likelihood [1]:

l⇤ = argmax
l=1...L

Pr(yq = l|yq⇤) = argmax
l=1...L

F (zql )− F (z
q
l−1),

(2)

where zqk =
( q

k
−βqxT )

σq are the cumulative pro-

bits. The model parameters are then stored in 'q =
{ q1,  

q
2, . . . ,  

q
L−1, β

q, σq}.

2.2. Copula Model

A copula is a method for generating a stochastic depen-

dence relationship in the form of a multivariate distribution

of random variables with pre-specified marginals [28].

Formally, a copula C(u1, u2, . . . uQ): [0, 1]
Q ! [0, 1] is

a multivariate distribution function on the unit cube with

uniform marginals [31]. The main idea of copulas closely

related to that of histogram equalization: for a random

variable yq with (continuous) cdf F , the random variable

uq := F (yq) is uniformly distributed on the interval [0, 1].
Using this property, the marginals can be separated from

the dependency structure in a multivariate distribution [2].

This is given by Sklar’s theorem [29].

Theorem 1 (Sklar, 1973) Given uq random variables with

cdfs F (yq), q = 1, . . . , Q, and joint cdf F (y1, . . . , yQ),
there exist a unique copula C such that for all uq:

C
(

u1, . . . , uQ
)

= F
(

F−1(u1), . . . , F−1(uQ)
)

(3)

Conversely, given any distribution functions F1, ..., FQ and

copula C,

F (y1, . . . , yQ) =C(F (y1), . . . , F (yQ)), (4)

is a Q-variate distribution function on y1, . . . , yQ with

marginal distribution functions F .

This result allows us to construct a joint distribution by

specifying the marginal distributions and the dependency

structure separately [2]. This offers one the critical flex-

ibility necessary for any multivariate output context: it is

possible to simultaneously model complex marginal den-

sities with potentially arbitrary multivariate output depen-

dency structures without the need to specify the two in some

complexly intertwined, hard-to-interpret and hard-to-learn

model. Note that while the copula representation separates

the two contexts (marginal and joint) the two remain tied

through Eq. 3.

When the random variables are discrete, as is the case

with the AU intensity levels, only a weaker version of Theo-

rem 1 holds: there always exists a copula that satisfies Eq. 4,

but it is no longer guaranteed to be unique [29]. Neverthe-

less, we can still construct the joint distribution for discrete

variables as:

Pr(y1 = l1, . . . , yQ = lQ) =

Pr( l1−1 < y1⇤ <  l1 , . . . ,  lQ−1 < yQ⇤ <  lQ)

=
1
P

c1=0
. . .

1
P

cQ=0
(−1)c1+...+cQF (z1l1−c1 , ..., z

Q

lQ−cQ
)

=
1
P

c1=0
. . .

1
P

cQ=0
(−1)c1+...+cQC✓(u

1
l1−c1

, ..., uQ
lQ−cQ

)

(5)

where uqlq−cq = F (zqlq−cq ), cq 2 {0, 1}, is defined in

Sec.2.1, and ✓ are the copula parameters, as defined below.

It is important to note two critical aspects here. First, Eq. 5

captures dependency structures among the discrete outputs

by correlating their error terms "1, . . . , "Q via the copula.

Secondly, the joint density model induced by the copula

is conditioned on the covariates x, i.e., F (y1, . . . , yQ)  
F (y1, . . . , yQ|x). This, in contrast to the models in [27, 16]

that rely solely on the AU labels, allows the covariates to

directly influence the dependence structure of AUs.

Under this formulation, the probability of a particular la-

bel combination y is determined by the volume of the axis-

parallel hyper-rectangular subregion of [0, 1]Q induced by

vertices (u1l1 , . . . , u
Q

lQ
) and (u1l1−1, . . . , u

Q

lQ−1
) correspond-

ing to that label combination. For the copula introduced in

Eq. 5, this involves evaluation of 2Q cdfs. As an example,

for Q = 2 the model this reduces to:
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Pr(y1 = l1, y2 = l2) = F (z1l1 , z
2
l2
)

+F (z1l1−1, z
2
l2−1)− F (z

1
l1−1, z

2
l2
)− F (z1l1 , z

2
l2−1)

(6)

This evaluation becomes computationally expensive and

impractical for Q > 5 due to the number of cdfs (25+)

that need be evaluated. In Sec. 2.3, we propose a compu-

tationally more astute model, which avoids the exponential

explosion induced by arbitrary Q.

One specific benefit of copulas is that they can model dif-

ferent forms of (non-linear) dependency using simple para-

metric models forC(·). In this paper, we limit our consider-

ation to the commonly used Frank copula [9] from the class

of Archimedean copulas, defined as:

C✓(u
1, ..., uQ) = −

1

✓
ln

0

B

B

B

@

1 +

Q
Q

q=1
(e−✓u

q

− 1)

(e−✓ − 1)
Q−1

1

C

C

C

A

. (7)

The dependence parameter ✓ 2 (−1,+1)\{0}, and the

perfect positive/negative dependence is obtained if ✓ !
±1. When ✓ ! 0, we recover the ordinal model in Eq.2

(Frank copula becomes the independence copula [9] that is

equivalent to the product of ordinal models for each AU).

Although various copula functions (e.g., Clayton, Gumbel,

etc.) are available for modeling different dependence struc-

tures, we choose Frank copula in this paper for two rea-

sons. First, it has a simple closed-form, in contrast to, e.g.,

the Gaussian copula [2], which, in general, requires the in-

tractable computation of multivariate Gaussian cdfs. Sec-

ondly, Frank copula is particularly suitable for the target

task as it allows modeling of both positive and negative de-

pendencies, while also capturing dependency in both the left

and right tails (i.e., when different AUs are activated either

at low intensity, or at high intensity levels together).

2.3. Copula Ordinal Regression

As mentioned in Sec.2.2, the joint modeling of multi-

ple AUs using the model in Eq.5 is possible. However,

this becomes prohibitively expensive as the number of out-

puts (i.e., AUs) increases. For instance, for 10 AUs, as

commonly coded in face datasets, this would involve 210

evaluations of the copula function. We mitigate this by ap-

proximating the learning of the joint pdf in Eq.5 using the

bivariate joint distributions capturing dependencies of AU

pairs. To this end, we use the Conditional Random Field

(CRF) [15] framework. Formally, we introduce a random

field with an associated graph G = (V, C), where nodes

v 2 V, |V | = Q, correspond to individual AUs and cliques

c 2 C correspond to subsets of dependent AUs modeled us-

ing the copula functions. The joint probability distribution

of Q intensity random variables is then defined as:

P (y|x,Ω) =
1

Z

Y

c2C

Ψ(yc|x), (8)

where Z is the partition function, yc is the subset of random

variables in clique c, Ψ(·) is the conditional potential on the

labels in this clique, explained below, and Ω = {#, ✓} are

the model parameters.1

In this setting specifically, we only consider unary and

binary cliques, modeling individual independent AUs and

pairs of AUs. In other words, C = V [ E, where E is the

set of edges in G. Hence,

Ψ(yc|x) =

8

>

>

<

>

>

:

Pr(yr|x),
c = r 2 V

unary clique

Pr(yr, ys|x)γ ,
c = (r, s) 2 E
pairwise clique

(9)

where the unary term is the traditional independent AU or-

dinal regression model defined in Sec. 2.1 and the pairwise

term is specified in Eq. 6. Note that the unary terms depend

only on the #r parameters of the ordinal regression model,

while the edge potentials depend also on the copula asso-

ciation parameter ✓rs that models the dependency of (r, s)
pair of outputs. Furthermore, the weight γ is chosen so as

to balance the magnitude of the cliques.

While modeling only bivariate distributions may seem a

natural way of representing the joint distribution, we model

also the marginals via the unary potentials for two reasons.

First, while the marginals focus on independent classifica-

tion of target AU intensity, the bivariate copulas focus on

encoding the dependence between the intensity levels of

two AUs. Thus, by including the copulas in the potential

function, a more discriminative classifier for the AU inten-

sity levels is expected. Secondly, in the case when there

is no dependence between AUs, in an ideal case ✓rs ! 0,

and Frank copula converges to the independence copula [9].

Yet, due to numerical instability, parameter estimation can

be fragile in this case, leading to poor performance of the

learned classifier. We control this by having the marginals

in the unary potentials.

The most critical aspect in evaluation of the joint dis-

tribution in Eq. 8 is computation of the partition function.

This is an np-complete problem, and thus, exact inference

in general case is intractable. This is true in our case as

it involves the integration over all possible AUs and their

intensity levels, i.e, typically 610 computations. However,

approximate methods based on Markov chain Monte Carlo

(MCMC) and loopy belief propagation (LBP) for parameter

learning have been proposed. Since our joint distribution

can be decomposed as a product of (unnormalized) likeli-

hood terms, we resort to a simpler approach - the compos-

ite marginal likelihood (CML) [30]. CML decomposes the

1For simplicity, we often drop the dependency on Ω in notations.
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multi-label classification problem into a set of simpler and

easier-to-learn subproblems, making the parameter learning

extremely efficient for subproblems [32]. By using the no-

tion of CML, our learning objective can be written as:

NCL = −

N
X

i=1

2

4

X

r2V

ln Pr(yr
i |xi) + γ

X

(r,s)2E

ln Pr(yr
i , y

s
i |xi)

3

5,

(10)

thus, avoiding the costly computation of the partition func-

tion. Here, N is the number of training instances. Note that

under appropriate regularity conditions, the maximum com-

posite likelihood estimator converges in distribution to true

value of the model parameters (see [30] for details).

Estimation of the AU pairs. Modeling the fully connected

graph (i.e.,Q⇥(Q−1)/2 bivariate copulas) is impractical as

not all AU exhibit a dependence pattern (e.g., AU16 (lower

lip depressor) and AU17 (chin raiser) do not co-occur). In

CRF and MRF models, the cliques (i.e., the edges) are typi-

cally determined from the precision matrix rather than from

the correlation matrix S. This is because the precision ma-

trix unravels partial correlations among the variables, while

the correlation matrix focuses on marginal correlations [10].

Important advantage of using partial correlations to infer

AU dependencies is that, in contrast to marginal correla-

tions, AUs that are correlated through another AU are ig-

nored, therefore, avoiding the redundant modeling. To se-

lect the edges in the AU dependency graph, we exploit the

partial correlations using a sparse estimate of the preci-

sion matrix Υ computed from S. The aim is to reduce the

number of the model parameters by not accounting for the

‘weak’ dependencies among AUs. To this end, we first em-

pirically estimate S. Then, to obtain a sparse representation

of S, we employ the graphical lasso estimation [8] to solve

the following convex optimization:

(Υ, S̃) = min
Υ%0
− ln det(Υ) + tr(SΥ) + kΥk1, (11)

where  is the regularization parameter.2 Finally, the edge

set E is defined by keeping the edges satisfying the condi-

tion: E = {(r, s) : |Υr,s| > δ}. δ = 0.05 is chosen so

that only the pairs of AUs with strong partial correlations

are kept, resulting in a model with significantly fewer pa-

rameters [23]. The learned graphs are depicted in Fig. 3.

2.4. Learning and Inference

The parameter optimization in the model is performed

by minimizing NCL (Eq.10) w.r.t. Ω. For this, we employ

the Conjugate gradient method with line search [25].

Re-parametrization. The gradient-based learning pro-

posed above has to be accomplished while respecting two

sets of constraints: (i) the order constraints on ψ: {ψj−1 
ψj for j = 1, . . . , L}, and (ii) the positive scale constraint

2We used the Glasso Matlab code from [8].

on σ: {σ > 0}. To avoid constrained optimization, we in-

troduce a re-parametrization of ψ using displacement vari-

ables δk, where ψj = ψ1 +
Pj−1
k=1 δ

2
k for j = 2, . . . , L− 1.

The positiveness constraint for σ is simply handled by in-

troducing the free parameter σ0 where σ = σ2
0 . Thus,

the unconstrained parameters of the ordinal marginals are

{β,ψ1, δ1, . . . , δL−2,σ0}, and they are defined separately

for each of the Q ordinal marginals, and stored in ϕ.

Training. During training, we seek to find optimal parame-

ters Ω⇤ by solving the regularized optimization problem

Ω⇤ = argmin
Ω={',✓}

NCL(ϕ, θ) + λR', (12)

where NCL is given by Eq.10, R' is the standard L2 reg-

ularizer of the projection β and σ0, and λ is the regulariza-

tion parameter. No specific regularization is necessary for

the threshold parameters as they are automatically adjusted

according to the score βx>.

Solving for the parameters Ω = {ϕ, θ} directly is pos-

sible, however, by noticing that the copula parameters θ

are independent of the node potentials in the NCL, we can

alternate between optimization of the marginals ϕ and the

copula association θ. In this way, we detangle learning of

the marginal model parameters from the joint copula pa-

rameters. Consequently, we reduce chances of falling into

a local minimum due to the large number of parameters

to be learned simultaneously. To this end, we propose a

block-descent two-step optimization. We briefly describe

the learning strategy.

Algorithm 1 Copula Ordinal Regression Learning

Input: Training data D = {(xi, yi)}
N
i=1

Output: Model parameters Ω = {', ✓}

Initialization:

8(r, s) 2 E ! ✓rs = sign(corr(yr, ys))

8r 2 V ! 'r = argmin
ϕ0

−
N2AUrP

i=1
lnPr(yri | xi, '

0)+λr k'0k2

repeat

✓-step: 8(r, s) 2 E ! ✓rs = argmin
θ0

−
NP

i=1
lnPr(yri , y

s
i | xi, ✓

0)

'-step: 8r 2 V ! 'r = argmin
ϕ0

−
N2AUrP

i=1
NCLi + λr k'0k2

until convergence of NCL (Eq. 10)

Initially, we form an independence model by setting

E = ; that treats each AU independently. After learning

the parameters of the ordinal marginals {ϕ}, we either con-

sider a fully connected graph (COR-Full) or apply Glasso

optimization to infer the sparse graph, i.e., to identify the

pairs of AUs that we later model with the copula functions

(COR-L). During the θ-step, we cycle through E and inde-

pendently optimize the parameters of the bivariate copula

function for each pair (r, s) 2 E. Note that this can be
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(a) DISFA (b) Shoulder-Pain

Figure 2: Distribution of the AU intensity levels.

performed efficiently using parallel estimation of the asso-

ciation parameters θrs. Given the newly estimated copula

parameters, in the ϕ-step, we minimize the objective func-

tion in Eq.12 w.r.t. the parameters of the ordinal marginals,

i.e., ϕ. Specifically, we optimize the marginal parameters

of each AU (ϕq) by using the unary and edge potentials

where the target AU is present. We do so in parallel for

all AUs. After the ϕ-step, we refine the association param-

eters θ. We continue iterating between these two steps until

convergence of the NCL objective function. In our exper-

iments, the algorithm converged in less than 5 iterations.

The advantage of the proposed learning approach over di-

rect optimization is two-fold: (i) the estimation of the as-

sociation and marginal parameters can be parallelized, thus

leading to the computational complexity similar to that of

marginal models. (ii) In the ϕ-step, we tune the regulariza-

tion parameter λ separately for each AU, using the balanced

intensity levels for that AU (i.e., a subset of N training ex-

amples where the number of 0 intensity levels is balanced

with the intensity 1). Note that in the case of the joint opti-

mization, a single λ need be used, since cross-validation of

AU-specific λ is infeasible. This process is summarized in

Alg.1.

Inference. The inference of test data in undirected graphi-

cal models is in general np-hard problem due to the need to

evaluate all possible label configurations. Because of this,

we resort to one of the most popular approximate decoders

based on the message-passing and dual decomposition algo-

rithms. Specifically, we employed the AD3 decomposition

algorithm [4] where the original np-hard problem is divided

into a set of subproblems which are solved independently

using local message-passing, and their solutions are then

combined to compute a global update. In our experiments,

this algorithm achieved a near-real time joint decoding of

10+ target AUs in the inference step.

3. Experiments

Data. We evaluate the proposed model on two bench-

mark datasets: UNBC-MacMaster Shoulder Pain Expres-

sion Archive (PAIN) [18] and Denver Intensity of Sponta-

neous Facial Actions (DISFA) [22]. The PAIN dataset con-

tains video recordings of 25 patients suffering from chronic

shoulder pain while performing a range of arm motion exer-

cises, while DISFA contains video recordings of 27 subjects

while watching YouTube videos. Each frame is coded in

terms of the AU intensity on a six-point ordinal scale. For

the experiments presented here, we used all 12 AUs from

DISFA, and 10 AUs from PAIN (see the AU numbers in

Fig. 3). Since these data contain predominantly expression-

less faces (i.e., 0 intensity level), the image frames with at

least two active AUs (intensity levels > 1) were used. Also,

because the intensity of the target AUs are extremely imbal-

anced in these data, we merged levels 5 and 6 as for some

AUs as only few examples of the highest intensity levels

were present. The resulting distribution of the used inten-

sity levels is depicted in Fig. 2.

Features. We used the geometric facial features in our ex-

periments, as in [13]. Namely, we used the locations of 49

out of 66 fiducial facial points (provided by the database

creators) extracted from facial images in each dataset, us-

ing the 2D Active Appearance Model (2D-AAM) [21]. We

removed the points from the chin line, as these do not af-

fect the estimation of target AUs. We then registered the

49 facial points to a reference face (average points in each

dataset) using an affine transformation. To reduce the di-

mensionality of the features, we applied PCA, retaining

97% of the energy. This resulted in approximately 20 di-

mensional feature vectors.

Evaluation metrics. Since the goal is AU intensity esti-

mation, to measure the performance of the compared ap-

proaches we use Pearson correlation coefficient (CORR).

CORR is commonly used to measure the linear associa-

tion between predicted and actual labels, but it ignores their

scale. For this reason, we also report the Mean Squard Er-

ror (MSE), which is commonly used to measure regression

and ordinal classification performance [14, 26]. It also en-

codes how inconsistent the classifier is in regard to the rela-

tive order of the classes, which is important when doing the

intensity estimation. We also report Intra-class Correlation

(ICC(3,1)), which is commonly used in behavioral sciences

to measure agreement between annotators (in our case, the

AU intensity labels and model predictions).

Evaluation procedure. We compare the performance of

the proposed COR model learned in three setting: (i) COR-

Full - using the fully connected graph (thus, modeling all

pairs of AUs), (ii) COR-LD - using the sparse lasso graph

of AU pairs. Both COR-Full and COR-LD are optimized

using the direct optimization of the model parameters. (iii)

COR-LIT - is the COR model with sparse lasso graph and

proposed two-step learning approach. The learned sparse-

lasso graphs are depicted in Fig. 3. We also compare these

approaches to the standard ordinal regression (SOR) model

[1], which uses the same marginal distribution as in the node

potentials of our COR models. We also report results ob-
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Figure 3: The global AU relations depicted in terms of correlation coefficients. The negative corr is depicted in red, and

positive corr in blue, while their magnitude is proportional to the thickness of the line. Note that glasso removes the majority

of AU pairs from the precision matrix, preserving only the strongest partial correlations. These are later modeled in the

proposed COR-L model using the copula functions. The values of the learned association parameters θ (using COR-LIT) in

most cases resemble the correlations of target pairs encoded in S, as expected.

tained using the multiple Logistic Regression (MLR) [1]

model - which ignores the class ordering and learns a sepa-

rate projection β for each label. We also include the results

attained by commonly used methods for AU intensity es-

timation, i.e., Support Vector Machines (SVM). SVM was

used as the baseline on DISFA[22] and PAIN [18] datasets,

by treating each of the intensity levels as a separate class.

We apply the RBF kernel for SVM and optimize all hyper-

parameters by a grid search as in the rest of the methods by

searching over the range
{

10±4, 10±3, ..., 0
 

, and select-

ing the one that perform best on a validation set (20% of

data not overlapping with test data). Note that these mod-

els support only a single output, therefore we train a sep-

arate model per AU. Finally, we compare our approach to

the state-of-the-art for the target task - Latent Trees (LT-all)

[13]. The authors of LT provided their source code, so all

comparisons were performed in the same settings. In all

our experiments, we applied a 5-fold cross validation pro-

cedure, with each fold containing data of different subjects.

Table 1 shows the comparative results for different ap-

proaches evaluated on the DISFA and PAIN datasets. We

make several observations: on average, both SVM and SOR

achieve similar results, with the latter outperforming SVM

in MSE, as expected. Also, SOR largely outperforms its

non-ordinal counterpart, MLR, across all three measures.

Compared to the state-of-the-art LT method, the indepen-

dent output models achieve similar or better average perfor-

mance in the evaluation setting. However, this method out-

performs the afore-mentioned methods in MSE, despite the

fact that it ignores the ordinal scale of target labels. Such

performance of LT has also been observed by the authors

[13], who showed that their approach shows significant im-

provements on highly noisy features due to its generative

part. However, this robustness has not been obtained in

our experiments on the target data. Compared to the pro-

posed approaches, the COR models outperform the com-

pared models on average. This is particularly evident in the

ICC scores, where the average difference is 3% for COR-

Full, and 6% for the COR-LIT. Similar trend can be ob-

served in CORR measure, while in MSE this difference

is less pronounced. Overall, we notice that the joint in-

ference by the proposed models consistently outperforms

marginal inference by the COR models, as expected. We

attribute this to modeling of the AU dependencies through

the copula functions. Next, we observe that both COR-LD

& COR-LIT outperform (on average) COR-Full across all

three measures, with COR-LIT performing the best. This is

expected as both lasso-based models are less prone to over-

fitting, in contrast to the COR-FULL model. This also sig-

nals that only the partial correlations revealed by the sparse

lasso are sufficient to improve the joint inference. On the

other hand, comparing the COR-LIT & COR-LD, there is a

slight difference on average. However, looking into CORR

of AU6 & 9 in DISFA, and AU9 in PAIN, we see that the

COR-LIT performs significantly better on these particular

AUs. We found that this was due to its ability to tune the

regularization parameters specifically for these two AUs,

which, in the direct inference, is infeasible. In Fig. 4, we

further demonstrate the benefit of joint inference over using

the marginal (SOR) models for the target task. As can be
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Table 1: The intensity estimation results on the DISFA & PAIN datasets for different AUs.

Dataset DISFA PAIN

IC
C

(3
,1

)

FAU 1 2 4 5 6 9 12 15 17 20 25 26 avg. 4 6 7 9 10 12 20 25 26 43 avg.

COR-LIT 0.38 0.61 0.37 0.65 0.55 0.39 0.58 0.15 0.22 0.16 0.86 0.53 0.46 0.34 0.45 0.42 0.45 0.32 0.41 0.00 0.29 0.07 0.54 0.33

COR-LD 0.38 0.61 0.37 0.65 0.51 0.38 0.58 0.15 0.21 0.16 0.86 0.53 0.45 0.34 0.46 0.41 0.38 0.32 0.41 0.00 0.29 0.07 0.54 0.32

COR-Full 0.29 0.62 0.27 0.69 0.51 0.28 0.54 0.13 0.21 0.15 0.87 0.54 0.43 0.35 0.38 0.42 0.11 0.33 0.39 0.03 0.28 0.09 0.52 0.29

SOR 0.24 0.54 0.29 0.59 0.53 0.27 0.49 0.18 0.14 0.17 0.79 0.51 0.39 0.31 0.39 0.36 0.01 0.24 0.38 0.03 0.17 0.00 0.46 0.24

SVM 0.29 0.47 0.31 0.61 0.48 0.31 0.49 0.22 0.08 0.19 0.85 0.49 0.40 0.30 0.39 0.39 0.18 0.22 0.32 0.00 0.24 0.04 0.42 0.25

MLR 0.28 0.45 0.30 0.54 0.45 0.30 0.44 0.16 0.06 0.21 0.71 0.45 0.36 0.14 0.36 0.38 0.09 0.18 0.24 0.08 0.24 0.04 0.45 0.22

LT [13] 0.29 0.44 0.26 0.33 0.64 0.23 0.52 0.21 0.21 0.13 0.88 0.30 0.37 0.29 0.34 0.29 0.11 0.39 0.33 0.03 0.39 0.07 0.49 0.27

C
O

R
R

COR-LIT 0.48 0.63 0.41 0.70 0.66 0.48 0.61 0.18 0.23 0.19 0.87 0.56 0.49 0.43 0.47 0.48 0.47 0.34 0.48 0.00 0.32 0.12 0.58 0.37

COR-LD 0.45 0.63 0.41 0.70 0.53 0.40 0.61 0.18 0.23 0.19 0.87 0.56 0.48 0.43 0.47 0.48 0.44 0.34 0.48 0.00 0.32 0.12 0.58 0.37

COR-Full 0.32 0.63 0.33 0.71 0.53 0.32 0.57 0.15 0.21 0.21 0.88 0.57 0.45 0.43 0.40 0.47 0.14 0.34 0.44 0.08 0.28 0.14 0.54 0.33

SOR 0.27 0.61 0.33 0.69 0.51 0.23 0.54 0.14 0.14 0.17 0.89 0.56 0.42 0.36 0.41 0.43 0.03 0.27 0.40 0.03 0.17 0.02 0.49 0.26

SVM 0.32 0.51 0.36 0.62 0.50 0.29 0.50 0.22 0.09 0.21 0.85 0.50 0.41 0.30 0.39 0.41 0.19 0.23 0.33 0.00 0.23 0.04 0.45 0.26

MLR 0.31 0.51 0.35 0.58 0.49 0.30 0.50 0.18 0.07 0.24 0.74 0.45 0.39 0.15 0.37 0.43 0.09 0.20 0.24 0.08 0.23 0.08 0.47 0.23

LT [13] 0.33 0.46 0.38 0.41 0.66 0.23 0.56 0.35 0.14 0.12 0.89 0.29 0.40 0.31 0.43 0.32 0.12 0.40 0.33 0.03 0.39 0.09 0.49 0.29

M
S

E

COR-LIT 1.74 1.09 1.78 0.58 0.68 0.68 0.43 0.87 1.08 1.44 0.73 1.03 1.01 0.52 2.57 1.51 0.26 0.14 2.18 0.32 1.43 1.88 0.14 1.10

COR-LD 1.68 1.09 2.19 0.58 0.70 0.68 0.43 1.07 1.08 1.69 0.73 1.13 1.09 0.71 2.57 1.62 0.31 0.21 2.18 0.38 1.73 1.88 0.14 1.17

COR-Full 2.10 1.26 2.14 0.54 0.88 1.00 0.53 0.92 1.06 1.90 0.49 1.01 1.15 0.72 2.74 1.52 0.42 0.24 2.46 0.38 1.89 1.83 0.15 1.24

SOR 2.24 1.37 2.19 0.30 0.98 1.00 0.50 0.98 1.05 1.69 0.47 0.94 1.14 0.84 2.80 1.53 0.47 0.29 2.85 0.38 1.95 1.87 0.17 1.31

SVM 2.26 1.54 2.32 0.44 1.09 0.96 0.54 0.98 1.06 1.65 0.60 0.98 1.20 0.94 2.74 1.70 0.47 0.40 2.78 0.38 1.79 1.87 0.17 1.32

MLR 1.96 1.51 2.45 0.55 1.05 0.97 0.71 0.98 1.06 1.66 1.02 1.53 1.29 1.03 2.76 1.87 0.47 0.43 2.98 0.38 1.84 1.87 0.17 1.38

LT [13] 2.28 1.61 1.61 0.74 0.86 0.67 0.45 0.82 0.85 1.29 0.54 1.22 1.07 0.98 2.99 1.74 0.41 0.20 2.82 0.38 1.35 1.69 0.19 1.27

(a) (left) Co-occurrence of AU1 and AU2 intensity labels, (middle) co-

occurrence of their independent predictions, (right) co-occurrence of their

joint predictions.

(b) Intensity thresholds for (left) AU1 and (right) AU2. Note

that with the learned thresholds, the marginal model for AU1

can never correctly predict levels 1&3, which is overcome by

the joint inference in COR model.

Figure 4: Comparison between SOR and COR-LIT models on AU1&AU2 on the DISFA dataset.

seen, AU1 marginal model is incapable of predicting lev-

els 1&3, due to the highly imbalanced data. Yet, due to the

strong learned association between AU1&2 (see Fig.3), the

joint model overcomes this. Taken together, these results

show: (i) that it is important to account for dependencies

among the intensity levels of different AUs, (ii) that joint

ordinal modeling of AU intensity bridges the limitations of

the static nominal classifiers, originally designed for binary

classification. Additional qualitative results and a demo-

video demonstrating the performance of the proposed COR

model are provided in the supplementary material.

4. Conclusions

We proposed a novel Copula Ordinal Regression model

for joint modeling and estimation of intensities of AUs from

facial images. We showed that by endowing the model with

separate but coupled marginal and dependency components,

we can successfully capture correlations between different

facial features and co-occurrences of various AUs. This ap-

proach generalizes prior methods that rely on independent

models by using an efficient parametric and flexible rep-

resentation of the copula functions tied together through a

CRF model. The proposed model outperforms related inde-

pendent models and the state-of-the-art approach for joint

intensity estimation of AUs.
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