
Predicting When Saliency Maps are Accurate and Eye Fixations Consistent

Anna Volokitin1 Michael Gygli1 Xavier Boix2,3

1 Computer Vision Laboratory, ETH Zurich, Switzerland
2 Department of Electrical and Computer Engineering, National University of Singapore

3 CBMM, Massachusetts Institute of Technology, Cambridge, MA

Abstract

Many computational models of visual attention use im-

age features and machine learning techniques to predict

eye fixation locations as saliency maps. Recently, the suc-

cess of Deep Convolutional Neural Networks (DCNNs) for

object recognition has opened a new avenue for computa-

tional models of visual attention due to the tight link be-

tween visual attention and object recognition. In this pa-

per, we show that using features from DCNNs for object

recognition we can make predictions that enrich the infor-

mation provided by saliency models. Namely, we can esti-

mate the reliability of a saliency model from the raw image,

which serves as a meta-saliency measure that may be used

to select the best saliency algorithm for an image. Analo-

gously, the consistency of the eye fixations among subjects,

i.e. the agreement between the eye fixation locations of dif-

ferent subjects, can also be predicted and used by a designer

to assess whether subjects reach a consensus about salient

image locations.

1. Introduction

Gaze shifting allocates computational resources by se-

lecting a subset of the visual input to be processed, c.f . [33].

Computational models of visual attention provide a reduc-

tionist view on the principles guiding attention. These

models are used both to articulate new hypotheses and to

challenge the existing ones. Machine learning techniques

that can make predictions directly from the image have

facilitated the study of visual attention in natural images.

Also, these models have found numerous applications in vi-

sual design, image compression, and some computer vision

tasks such as object tracking.

Many computational models of attention predict the im-

age location of eye fixations, which is represented with

the so called saliency map. The seminal paper by Koch

and Ullman introduced the first computational model for

saliency prediction [21]. This model is rooted in the fea-

ture integration theory, that pioneered the characterisation

of many of the behavioural and physiological observed phe-

nomena of visual attention [32]. Since then, a rich vari-

ety of models have been introduced to extract the saliency

map, e.g. [11, 14, 17, 18, 35].

Some authors stressed the need to predict properties of

the eye fixations beyond the saliency map to study different

phenomena of visual attention and to allow for new appli-

cations, e.g. [15, 24, 27]. Since visual attention is strongly

linked to object recognition, the advent of near-human per-

forming object recognition techniques based on DCNNs

opens a new set of possibilities for models of visual atten-

tion. In this paper, we analyze two ways to augment the eye

fixation location information delivered by saliency models

by using features extracted from DCNNs trained for object

recognition.

Firstly, inspired by machine learning techniques that pro-

vide an estimate of their own accuracy, we show that the

accuracy of a saliency model for a given image can be pre-

dicted directly from image features. Our results show that

whether predicting the location of the human eye fixations

is possible depends on the object categories present in the

image.

Secondly, we show that the consistency of eye fixation

locations among subjects can also be predicted from fea-

tures based on object recognition. In Fig. 1 we show im-

ages with different degrees of consistency among subjects,

that illustrate that eye fixation consistency varies depending

on the image. There is a plethora of results in the literature

showing that consistency varies depending on the group the

subjects belong to. There are marked differences between

subjects with autism spectrum disorders and those with-

out [6, 20], between subjects from different cultures [5],

and between fast and slow readers [19]. Yet, the causes

of eye fixation inconsistencies among individual subjects

rather than for groups may be difficult to explain in natural

images, especially because natural images are not designed

to isolate a specific effect.

The model we introduce to predict the eye fixation con-

sistency substantially improves the performance of a previ-

ous attempt [24], and it shows that the eye fixation consis-
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Figure 1: Fixations from individual subjects. (a) the raw image, (b) averaged fixation map, (c) - (e) individual fixations from

subjects. The top row shows an image where fixations are highly consistent, and the bottom shows one where the fixations

are inconsistent.

tency depends on the object categories present in the image.

Also, we show that current saliency models and our eye fix-

ation consistency model describe complementary aspects of

viewing behaviour, and should be used in conjunction for a

more complete characterisation of viewing patterns.

Finally, our results reveal that, like memorability [13]

and interestingness [10], eye fixation consistency is an at-

tribute of natural images that can be predicted.

2. Eye Fixation and Saliency Maps

In this section, we introduce the datasets we use and

review how to build the eye fixation and saliency maps. This

will serve as the basis for the rest of the paper.

Datasets We use the MIT [17] dataset, which includes

1003 images with everyday indoor and outdoor scenes. All

images are presented to 15 subjects for 3 seconds. This

dataset is one of the standard benchmarks to evaluate the

prediction of eye fixation locations in natural images. To

show the generality of our conclusions, we also report re-

sults on the PASCAL saliency dataset [26]. This dataset

uses the 850 natural images of the validation set of the PAS-

CAL VOC 2010 segmentation challenge [8], with the eye-

fixations during 2 seconds of 8 different subjects.

Eye Fixation Maps An eye fixation map is constructed

for each subject by taking the set of locations where the

eyes are fixated for a certain period of time (convention-

ally taken to be 50ms). The fixation map is a probability

distribution over salient locations in an image, and ideally

would be computed by taking an average over infinite sub-

jects. In practice, the eye fixation map is computed by sum-

ming eye fixation maps of the individual subjects (which

are binary images, with ones at fixation locations and ze-

roes elsewhere). The result is smoothed with a Gaussian of

width dependent on the eye tracking set up (1 degree of vi-

sual angle in the MIT dataset, and σ = 0.03× image width

in the PASCAL dataset). Finally, the map is normalised to

sum to one.

Saliency Maps A saliency map is the prediction of the

eye fixation map by an algorithm. We use seven state-

of-the-art models to predict the saliency maps: Boolean

Map based Saliency (BMS) [37], Adaptive Whitening

Saliency Model (AWS) [9], Graph-based Visual Saliency

(GBVS) [11], Attention based on Information Maxi-

mization (AIM) [3], Saliency using Natural Statistics

(SUN) [38], the original saliency model developed by Itti et

al. (IttiKoch) [14], and a new DCNN-based model called

SALICON [12]. We use the standard procedure (with code

from [16]) to optimise these saliency maps for the MIT

dataset. For a complete review of these algorithms, we re-

fer the reader to the thorough analysis of Borji et al. [2] and

Judd et al. [16].

3. Enriching Saliency Maps

In this section we introduce the two estimates we use

to add to a saliency map: the estimate of the saliency map

accuracy, and the consistency of the eye fixations among

subjects. We introduce the computational model to predict

them in section 4.

3.1. Predicting the Saliency Map Accuracy

We explore whether the saliency model accuracy can be

predicted by features extracted directly from the image, i.e.

before computing the saliency map. This prediction de-

pends on the algorithm for saliency prediction, and also, it

depends on the metric used to evaluate the accuracy of the

saliency map.
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Metric of the Saliency Map Accuracy Since there is no

consensus among researchers about which metric best cap-

tures the accuracy of the saliency map (c.f . [30]), we follow

the lead of [16] and report 3 metrics. Now we briefly define

the metrics used in this paper, and refer the reader to [30]

for a more complete treatment. Under all of these metrics

a higher score indicates better performance. Below, MF is

the map of eye fixation map (ground truth) and MS is the

(predicted) saliency map:

- Similarity (Sim). The similarity metric is also known as

the histogram intersection metric, and it is defined as S =∑
x min(MF (x),MS(x)).

- Cross Correlation (CC). This metric quantifies to what ex-

tent there is a linear relationship between the two maps. It

is defined: CC = cov(MF ,MS)/(σMF
σMS

), where σM is

the standard deviation of the map M .

-Shuffled Area under the Curve (sAUC). The saliency map is

treated as a binary classifier to separate positive from neg-

ative samples at various intensity thresholds. It is called

shuffled because the points of the saliency map are sampled

from fixations on other images to discount the effect of cen-

ter bias. This metric can take values between 0.5 and 1.

Although the previous two metrics are symmetric, meaning

the two maps are interchangeable, this one is not.

Applications Our goal is to predict the evaluation metrics

of a saliency model we just introduced, for a given image.

Providing such estimate of the saliency model accuracy may

be used to select the best saliency algorithm for a specific

image. Additionally, the accuracy estimate could be used

as a meta-saliency measure that indicates the quality of the

saliency map to the user.

3.2. Predicting the Eye Fixations Consistency

The second estimate we provide to enrich the saliency

map is the eye fixation consistency among subjects, i.e. the

amount of inter-subject variability in viewing the image. To

do this, we first measure the true eye fixation consistency

given the eye fixations of individual subjects, adapting a

procedure used in [31], which we introduce next.

Metric of the Eye Fixation Consistency The eye fixation

consistency metric tests whether the fixation map computed

from a subset of subjects can predict the fixation map com-

puted from the rest of the subjects. Let O be the set of all

subjects (e.g. 15 in MIT dataset), and H be the subset of K
subjects held out for testing. We compute two eye fixation

maps: MH from H, and MO\H from O \H (the remaining

15 − K subjects). We define the consistency score to be

the score of MH in predicting MO\H using any of the stan-

dard metrics for evaluating saliency prediction algorithms

(introduced previously in section 3.1). To be consistent in

our evaluation of consistency, MH is treated as the saliency

map, and MO\H as the eye fixation map, as it is computed

from more subjects than MH.

In the experiments we analyse several properties of this

metric of the eye fixation consistency, such as the depen-

dency on the number of subjects, K, and that the metric is

independent on the subjects chosen to build the eye fixation

map MO\H and MH. The results show that our metric can

generalise to different subjects, but that we need to evalu-

ate different values of K and ways to compare the saliency

maps (e.g. Sim, sAUC and CC) because the results highly

depend on these parameters.

A possible alternative to the metric we use is the Shan-

non entropy of the eye fixation map. In fact, the Shannon

entropy has been used as an alternative consistency measure

in [17]. This measure makes the assumptions that inconsis-

tent viewing patterns will yield a flat fixation map, while

consistent ones will yield a map with sharp peaks. The en-

tropy is high in the first case, and low in the second. There

are a few cases where these assumptions do not hold. The

eye fixation map might have several sharp peaks, and thus

low entropy, but the subjects can be inconsistent by each

only looking at a subset of the peaks. This is the kind of

viewing behaviour sometimes exhibited on natural images

with several salient regions (e.g. in Fig. 6 in the image in

the bottom right, there is a person standing near the edge of

the image that not all subjects notice). Thus, the entropy is

not equivalent to consistency. In the experiments, we cor-

roborate this point by showing that the entropy of the eye

fixation maps and the consistency measure we use are cor-

related but up to a certain extent.

Applications We aim at estimating the eye fixation con-

sistency among subjects from the raw image, by predict-

ing the value of the aforementioned eye fixation consistency

metric. The prediction of the eye fixation consistency can

be used to enrich the information provided by the saliency

map, because current saliency models have no measure of

the consistency of the eye fixations of the subjects, and in

this sense are incomplete. The reader may object that since

the entropy of the eye fixation map is related to the consis-

tency, it could be that the entropy of the saliency map is also

related to the eye fixation consistency. Then saliency mod-

els would already provide an estimate of the consistency

through the entropy of the saliency map. Our results discard

this hypothesis by showing that the entropy of the saliency

maps are uncorrelated with the eye fixation consistency.

Applications that make use of saliency maps, such as vi-

sual design, could incorporate eye fixation consistency in-

formation to create designs with a greater consensus of fix-

ations in the location of the designer’s choice. Since adver-

tisement needs to have maximal effect in minimal time, it is

desirable to have viewers consistently attending to specific

locations.
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Also, as mentioned in the introduction, some groups in

the population have distinct viewing patterns. To better

study these phenomena in the laboratory, it might be advan-

tageous to use images in which the individual viewing pat-

tern variability is controlled for. Thus, our computational

model could be used to determine a priori which images

naturally produce very variable viewing patterns in all sub-

jects, to deliberately include or exclude such images in the

dataset.

4. Computational Model

To predict both accuracy and consistency we train a re-

gressor between the features extracted from the image and

the response variable. The features and learner are the same

same for both applications. We use a Support Vector Re-

gressor [34] with the χ2 kernel. We introduce several im-

age features to test the hypothesis that the saliency accuracy

and consistency can be predicted from the spatial distribu-

tion and the categories of the objects in the image. The

splits are done taking randomly 60% of images for training

and the rest for testing. The learning parameters are set with

a 10 fold cross-validation using LIBSVM to determine the

cost C (range 2−4 to 26) and ǫ (2−8 to 2−1) of the ǫ-SVR.

Deep Convolutional Neural Networks To capture the

spatial distribution and category of the objects in the im-

age, we use features taken from the layers of a DCNN. A

DCNN is a feedforward neural network with constrained

connections between layers, that take the form of con-

volutions or spatial pooling, besides other possible non-

linearities, e.g. [25, 22, 29]. We use the DCNN called

AlexNet [22] with trained parameters in ImageNet, which

achieved striking results in the task of object recognition.

It consists of eight layers, the last three of which are fully

connected.

Let yl be a two-dimensional matrix that contains the re-

sponses of the neurons of the DCNN at the layer l. yl has

size sl × dl, that varies depending on the layer. The first

dimension of the table indexes the spatial location of the

center of the neuron’s receptive field, and the second di-

mension indexes the patterns to which the neuron is tuned.

The response of a neuron, yl[i][j], has a high response when

pattern j is present at location i. Neural responses at higher

layers in the network encode more meaningful semantic

representations than at lower layers [36], but the spatial res-

olution at the last layers is lower than at the first layers.

The neural responses from the top of each layer yl are

used as features.

Spatial Distribution of Objects We introduce two differ-

ent features to capture the spatial distribution of the objects

without describing their object categories. The first feature

is based on the DCNNs previously introduced. We take the

neural responses in a layer, yl, and convert them into a fea-

ture that has one response for each location that corresponds

to the presence of a pattern or object detected by the CNN

(it has dimensions sl × 1). To do so, we discard informa-

tion about which pattern is present at a certain location and

simply take the highest response among the patterns. Thus,

the image feature is fl[i] = maxj yl[i][j]. This corresponds

to max pooling over the pattern responses.

A second feature we introduce is based on the objectness,

or the likelihood that a region of an image contains an object

of any class [1]. Objectness is based on detecting properties

that are general for any object, such as the closedness of

boundaries. We use the code provided by [4] to generate

bounding boxes ranked by the probability that they contain

an object. We take the top 500 boxes to create a heatmap.

The intensity of each pixel in this heatmap is proportional

to the number of times it has been included in an objectness

proposal1. We divide the heatmap into sub-regions at four

different levels of resolution and evaluate the L2 energy in

each sub-region, creating a spatial pyramid [23]. This fea-

ture gives an indication of how objects are located in the

image. We call this feature PyrObj.

Object Categories For each not fully connected layer of

the DCNN, we construct a feature with only semantic in-

formation analogously to the feature with only spatial in-

formation. This image feature is fl[j] = maxi yl[i][j], and

is of dimension 1 × dl. This corresponds to max pooling

over space. The last layers of the DCNN already capture

object categories, as they transform the neural responses to

object classification scores that contain little to no informa-

tion about the location of the objects in the image.

Gist of the scene This descriptor of length 512, intro-

duced by [28], gives a representation of the structure of real

world scenes where local object information is discarded.

Scenes belonging to the same semantic categories (such as

streets, highways and coasts) have similar GIST descriptors.

5. Experiments

We now report results on the MIT benchmark [17] and

PASCAL saliency dataset [26] (introduced in section 2).

5.1. Predicting the Saliency Map Accuracy

Performance of the Predictor of the Saliency Map Ac-

curacy Fig. 2 shows the results for predicting saliency

1This heatmap, when normalised, was also evaluated as a saliency map.

Interestingly, it achieved results close to the Judd et al. model [16] on AUC

and NSS metrics (objectness heatmap achieves AUC = 0.83, NSS = 1.23;

Judd model achieves AUC = 0.81, NSS = 1.18). This could be explained

by the fact that objects predict fixations better than low level features [7].
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Figure 2: Evaluation of the Prediction of the Saliency Accuracy. The correlation between the predicted accuracy and the true

accuracy of the saliency map is evaluated using different input features (including each of the 7 layers of the DCNN). The

metric used to evaluate the accuracy of the saliency map is (a) sAUC, (b) CC, and (c) Sim. The trend has the same shape for

all methods.

model accuracy for the different features we have intro-

duced. We report the Spearman correlation between the true

and predicted values. The results show that the PyrObj ob-

jectness feature can partially describe the object distribution

and performs similarly to the spatial features of the DCNN.

In general, Gist performs better than PyrObj, on par with the

best spatial feature. Interestingly, we see that the semantic

feature is much more informative for predicting consistency

than the spatial feature, which suggests that semantic infor-

mation has a greater contribution to predicting saliency map

accuracy than information about the distribution of the ob-

jects.

Also, we can observe that some of the differences be-

tween the performance of the features are due to over-

fitting. Features with fewer dimensions (highest layers, or

features with only semantic or spatial information) achieve

better generalisation than features with more dimensions,

until saturation (and under-fitting), and this point depends

on the metric (predicting CC suffers less over-fitting than

sAUC). In fact, the performance decreases significantly

(< 0.10) when training using a concatenation of neural ac-

tivations from all layers.

Finally, note that the best performing feature is the whole

layer of the DCNN, achieving a ρ of above 0.4 for all met-

rics. To show that this performance is also obtained in other

datasets, we evaluate our model on the PASCAL dataset and

summarise our results in Table 1. The accuracy prediction

of the saliency models performs similarly or better on PAS-

CAL dataset, with a maximum correlation of 0.80 vs 0.52
on MIT. This results show that our method provides a use-

ful prediction to automatically assess the quality of saliency.

Also, when this prediction is used to select the best algo-

rithm for saliency prediction per image, we find a (modest)

absolute improvement of about 1%.

Fig. 3 shows some examples of images for which

MIT PASCAL

sAUC CC Sim sAUC CC Sim

SALICON 0.39 0.52 0.49 0.33 0.52 0.49

BMS 0.44 0.43 0.42 0.38 0.62 0.72

GBVS 0.46 0.39 0.43 0.53 0.64 0.61

AIM 0.50 0.36 0.43 0.44 0.72 0.62

AWS 0.48 0.41 0.42 0.41 0.72 0.70

SUN 0.51 0.39 0.45 0.48 0.80 0.71

IttiKoch 0.52 0.43 0.42 0.50 0.62 0.57

Table 1: Evaluation of the Prediction of the Saliency Ac-

curacy. Spearman correlation between the predicted accu-

racy of the saliency map using layer 5 of the DCNN and the

ground truth accuracy.

Consistency Entropy Fixation Map

sAUC CC Sim sAUC CC Sim

SALICON 0.63 0.44 −0.10 −0.55 −0.52 −0.04

BMS 0.34 −0.19 0.81 −0.50 0.26 0.94

GBVS 0.27 −0.24 0.81 −0.46 0.31 0.94

AIM 0.32 −0.31 0.82 −0.49 0.40 0.95

AWS 0.32 −0.25 0.82 −0.49 0.34 0.95

SUN 0.18 −0.33 0.83 −0.41 0.45 0.95

IttiKoch 0.22 −0.29 0.82 −0.41 0.37 0.94

Table 2: Does the Accuracy of the Saliency Map Predict the

Eye Fixation Consistency? Spearman correlation between

the accuracy of the saliency map and (left) the consistency

(K = 7 and S = 15, with the same metric consistency

and accuracy evaluation), and (right) with the entropy of

the fixation map.

saliency model accuracy is high and low vs predictable and

unpredictable.

Does the Accuracy of the Saliency Map Predict the Eye

Fixation Consistency? Now that we have shown that the

accuracy of the saliency map can be predicted from our

model, the reader may ask whether we really need a dif-
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Figure 3: Qualitative results. We show images that have accurate and inaccurate AWS saliency maps (under the cross-

correlation metric). gt is the ground truth which corresponds to the cross-correlation score of the saliency map, ps is the

predicted score. Scores are predicted by the whole fifth layer feature. Both scores and predictions scaled between 0 and 1.

The images are place in a row: original, fixation map, saliency map.

ferent model to predict the eye fixation consistency. If the

tasks were similar enough there would be no need to intro-

duce two different models. In [16], Judd et al. qualitatively

analyse the consistency of the eye fixations and the saliency

map accuracy, and suggest that there maybe be a relation-

ship, but it depends on the evaluation metric. We extend

this result by directly evaluating the Spearman correlation

between the accuracy of the saliency map and eye fixation

consistency. This is shown in Table 2 for all methods. All

the correlations are low for sAUC and CC metrics (around

0.2− 0.3), and high for Sim (around 0.82)2.

Yet, SALICON shows the opposite trend, as the rest

of models have added blur for optimal performance, while

SALICON remains peaky. If we use the entropy of the fixa-

tion map as a consistency metric (Table 2, right) we see the

same situation. Thus, in general, a different model is needed

to predict the eye fixation consistency independently on the

metric used for the accuracy.

5.2. Predicting the Eye Fixations Consistency

Analysis of the Metric of the Eye Fixation Consistency

Recall that the metric we use to evaluate the eye fixation

consistency, tests whether the fixation map computed from

a subset of subjects (MH) is similar the fixation map com-

puted from the rest of the subjects (MO\H). Eye fixation

consistency may vary depending on the number of subjects

2The Sim metric tends to assign higher scores when the eye fixation

maps are relatively flat, independently of the saliency map. Recall that

the Sim metric calculates intersection distance, i.e. the sum for all pixels

of the minimum value between the saliency and eye fixation maps. If the

eye fixation map is flat (inconsistent eye fixations), most pixel values ≈

1

num pixels
, while if the map has peaks (consistent eye fixations), the most

pixel values (and the minimum) are 0. As a result, a flat (inconsistent) eye

fixation map is likelier to have higher Sim than other eye fixation maps.

in H, i.e. K. For low values of K, consistency is lower than

for high values of K because the individual characteristics

of each subject have not been averaged with other subjects.

In the limiting case of having infinite subjects, increasing K
will eventually lead to the consistency score saturating. In

fact, in many works on saliency prediction, the value of the

evaluation metric at K → ∞ is used as an upper bound

of the achievable prediction score. Thus, to characterise

consistency, we need to report results using different num-

bers of subjects. We test K up to a value equal to half of

the number of subjects in the dataset, as when |O \ H| be-

comes small, MO\H does not represent the totality of the

users well anymore. Besides K, consistency also depends

on the subjects used to compute MH, which may introduce

some bias specific to the group of subjects H. To remove

this variability, we evaluate the consistency multiple times

with different H, and average the consistency scores. Let

S be the number of different H sets used to compute the

average. In Fig. 4a, we show the mean consistency score

as a function of K, and we see that it increases because

H becomes more representative as more subjects are added

to it. Then, Fig. 4b shows that our metric is not depen-

dent on the particular subject in each group. To show this,

we check that the consistency scores do not vary when we

choose different subjects in H. We compute the average

consistency two times for different groups H, and then, we

compute the Spearman correlation between these two con-

sistency scores. This procedure is repeated ten times and

the results averaged. Thus, Fig. 4b shows the average cor-

relation between two measures of the eye fixation consis-

tency for different subjects in H (for different K, and dif-

ferent number of groups averaged to obtain the consistency

score, S). We can see that for any K, when S is sufficiently

549



Num observers heldout (K)
0 1 2 3 4 5 6 7 8

s
A

U
C

 s
c
o

re

0.68

0.69

0.7

0.71

0.72

0.73

0.74

0.75

0.76

0.77
sAUC score vs K

S = 15

Number of Groups for Average (S)
0 2 4 6 8 10 12 14 16

C
o
rr

e
la

tio
n

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1
Two Group Correlation, sAUC

K = 1
K = 3
K = 5
K = 7

sAUC consistency K=7 S=15
0.55 0.6 0.65 0.7 0.75 0.8 0.85 0.9 0.95

E
n

tr
o

p
y
 F

ix
m

a
p

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5
Entropy Fixmap vs sAUC Consistency

Correlation = -0.86155

(a) (b) (c)

Figure 4: Analysis of the Metric of the Eye Fixation Consistency. (a) Consistency metric as the average of the sAUC score

between the eye fixation maps of two groups of subjects of K and 15−K subjects, respectively. (b) Correlation between two

consistency metrics evaluated with different subjects. (c) Correlation between entropy of the eye fixation map and consistency

of the eye fixations. The trends are similar for Sim and CC consistency.

large to average the possible individual characteristics of

the groups of subjects (S > 10), the correlation becomes

about 0.95, i.e. almost the maximum possible correlation.

This shows that the consistency score does not depend on

the subjects in H when S is sufficiently large.

Finally, we check the agreement between the consistency

metric we use, and the metric based on the entropy of the

eye fixation map used in previous works [17]. Recall from

section 3.2, that the entropy may not capture some cases of

inconsistency of eye fixations, because the assumptions that

inconsistent viewing patterns will yield a flat fixation map,

while consistent ones will yield a map with sharp peaks may

not always hold (e.g. an eye fixation map with few peaks

but each subject only looks at a subset of these peaks). To

show this point, we plot our consistency metric against the

entropy of the eye fixation map in Fig. 4c (using K = 7,

S = 15, and the Sim metric for consistency). We can see

that the correlation is negative because the entropy mea-

sures inconsistency rather than consistency. Although the

correlation is quite high, about 0.85, we see that the entropy

does not fully capture the consistency of eye fixations.

Performance of the Predictor of the Eye Fixation Con-

sistency We now evaluate the performance of the predic-

tion of the eye fixation consistency. We report the Spearman

correlation between the true and predicted values in Fig. 5.

The same features perform well as in the accuracy predic-

tion task, although the correlation values are higher in this

task, achieving a ρ of around 0.5. Subsequent layers out-

perform the preceding ones, except of the last prob layer,

which performs slightly worse. This could happen because

the prob layer has lost all spatial information.

The previous work that also used machine learning to

predict the eye fixation consistency [24], reports a Pearson

correlation of 0.27 on a set of 27 images they have selected

at hand, which shows the challenge of this task. Our results

substantially improve over previous work, mainly because

we use features based on object recognition. Our results

Consistency Entropy

sAUC CC Sim Fixation Map

SALICON −0.48 −0.42 −0.44 0.48

BMS 0.09 0.18 0.16 −0.15

GBVS −0.04 0.06 0.03 −0.01

AIM 0.02 0.09 0.10 −0.10

AWS 0.07 0.15 0.15 −0.14

SUN −0.05 0.01 −0.01 0.00

IttiKoch 0.15 0.23 0.25 −0.22

Table 3: Is the Eye Fixation Consistency Predicted by the

Entropy of the Saliency Map? Correlation between the en-

tropy of the saliency map and (left) the eye fixation consis-

tency (K = 7 and S = 15, with the same metric consis-

tency and accuracy evaluation), and (right) entropy of the

fixation map.

reveal that the eye fixation consistency among subjects is

an attribute of natural images that can be predicted.

In Fig. 6, we present images that are consistent and in-

consistent vs predictable and unpredictable. We see several

examples of the consistency being at odds with the entropy.

Is the Eye Fixation Consistency Predicted by the En-

tropy of the Saliency Map? Finally, to make sure that

the prediction of the eye fixation consistency enriches the

information of the saliency map, we check whether eye fix-

ation consistency information is already encoded in saliency

maps. Recall that we showed that the entropy of the eye fix-

ation map is correlated with eye fixation consistency. Thus,

if the saliency map predicts eye fixation consistency, this

would be encoded in the entropy of the saliency map. In

Table 3, we report the correlation between the entropy of

the saliency map and the consistency of the fixations based

on the three metrics. All methods had a weak correlation

(≤ 0.25), except SALICON. We suggest that the leading

performance of SALICON on benchmarks is due to it en-

coding consistency much better than other methods. Note

that our computational model can also enrich the saliency

map of SALICON, as our computational model predicts the
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Figure 5: Evaluation of the Prediction of the Eye Fixations Consistency. The correlation between the predicted consistency

of the eye fixation and the true consistency is evaluated using different input features (including each of the 7 layers of the

DCNN). The metric used to evaluate the consistency uses K = 7 subjects and S = 15 groups and is based on: (a) sAUC, (b)

CC, and (c) Sim. The results show a similar trend with different values of K
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Figure 6: Qualitative results. We show images that have consistent and inconsistent viewing patterns. gt is ground truth

which corresponds to the eye fixation consistency measure, ps is the predicted score.

consistency more accurately than SALICON.

6. Conclusions

We used machine learning techniques and automatic fea-

ture extraction to predict the accuracy of saliency maps and

the eye fixation consistency among subjects in natural im-

ages. This was possible due to the good performance of DC-

NNs for object recognition, since eye fixations locations are

strongly related to the object categories. Our results showed

that saliency models can be enriched with the two predic-

tions made from our model, because saliency models them-

selves do not capture eye fixation consistency among sub-

jects, and their accuracy has not been estimated for a given

image. Also, we observed that the eye fixation consistency

among subjects is an attribute of natural images that can be

predicted from object categories. We expect that all these

results allow for numerous applications in computer vision

and visual design.
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