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Abstract

Recently, skeleton-based human action recognition has

been receiving significant attention from various research

communities due to the availability of depth sensors and

real-time depth-based 3D skeleton estimation algorithms.

In this work, we use rolling maps for recognizing human

actions from 3D skeletal data. The rolling map is a well-

defined mathematical concept that has not been explored

much by the vision community. First, we represent each

skeleton using the relative 3D rotations between various

body parts. Since 3D rotations are members of the special

orthogonal group SO3, our skeletal representation becomes

a point in the Lie group SO3 × . . . × SO3, which is also a

Riemannian manifold. Then, using this representation, we

model human actions as curves in this Lie group. Since

classification of curves in this non-Euclidean space is a dif-

ficult task, we unwrap the action curves onto the Lie algebra

so3 × . . .× so3 (which is a vector space) by combining the

logarithm map with rolling maps, and perform classifica-

tion in the Lie algebra. Experimental results on three action

datasets show that the proposed approach performs equally

well or better when compared to state-of-the-art.

1. Introduction

Human action recognition has been an active area of re-

search for the past several decades due to its wide range of

applications. Though a significant amount of work has been

done over the past few decades, recognizing human actions

from RGB videos still remains as a challenging problem due

to various nuisance factors like illumination changes, varia-

tions in view-point, occlusions and background clutter.

In the recent past, there has been an increased interest in

skeleton-based human action recognition approaches due to

the availability of cost-effective depth sensors and real-time

depth-based skeleton estimation algorithms [27]. These ap-

proaches consider the human body as an articulated system

of connected rigid segments, and describe human motion

using the temporal evolution of the spatial configuration of

these segments.

Lie group��3 ×⋯× ��3
Lie algebra

Figure 1: Unwrapping an action sequence onto the Lie algebra by

rolling the Lie group SO3 × . . .× SO3.

Existing skeleton-based action recognition approaches

can be broadly divided into two main categories: joint-based

approaches and body part-based approaches. Joint-based

approaches consider human skeleton as a set of points, and

represent it using features like joint positions [7, 8, 12, 15,

20, 25], pairwise relative joint positions [33, 34, 35, 38],

joint orientations in a fixed coordinate system [21, 23, 31,

36], etc. On the other hand, part-based approaches consider

human skeleton as a set of connected rigid segments, and

represent it with features like joint angles [17, 18, 30], bio-

inspired 3D features [5], individual part locations [37], rel-

ative 3D geometry between parts [32], etc.

Noting that for human action recognition, the relative

3D geometry between various body parts provides a more

meaningful description than their absolute locations, [32]

used the relative 3D geometry between all pairs of body

parts to represent the human skeleton. Specifically, the rela-

tive 3D geometry between each pair of body parts was rep-

resented as a point in the special Euclidean group SE3 using

the full 3D rigid body transformation required to take one

body part to the position and orientation of the other. Using

this representation, human actions were modeled as curves

in the Lie group SE3 × . . . × SE3, where × denotes the

direct product between Lie groups. Since this Lie group is a

non-Euclidean manifold, action curves were mapped from

the Lie group to its Lie algebra using the logarithm map,

and action recognition was performed in the Lie algebra.

Instead of mapping to the Lie algebra, [1] obtained a lower-

dimensional representation for curves in SE3 × . . .× SE3,

by first representing them using the recently-proposed

transported square-root vector field [29], and then perform-

ing manifold functional principal component analysis.
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Since the scale/size of the skeleton varies from subject to

subject, it is very important to normalize the skeletal data.

In [32], the authors chose one of the skeletons from the

training set as reference and normalized all the other skele-

tons (without changing the joint angles) such that their body

part lengths are equal to the corresponding part lengths in

the reference skeleton. Interestingly, while the translations

between various body parts change with this normalization,

the 3D rotations do not change. Hence, instead of explicitly

normalizing the skeletal data to handle scale variations, in

this work, we obtain a scale-invariant skeletal represen-

tation by using only the rotations to describe the relative

3D geometry between body parts. Apart from making the

skeletal representation scale-invariant, using only the rota-

tions also reduces the feature dimensionality by half (com-

pared to [32]) thereby speeding up the action recognition

pipeline. As shown later in the experiments section, this

rotation-based representation performs equally well when

compared to the full rigid body transformation-based repre-

sentation of [32].

Since 3D rotations are members of the special orthogo-

nal group SO3, our representation becomes a point in the

Lie group SO3 × . . . × SO3, which is also a Riemannian

manifold. A similar SO3-based representation was also

used in [21, 31] to represent human skeletons. However,

while [21, 31] used only the joint orientations, our skeletal

representation includes the 3D rotations between all pairs

of body parts. The special orthogonal group was also used

earlier for video-based action recognition in [14], where

a video sequence was considered as a 3D tensor and the

orthogonal matrices obtained by using high-order singular

value decomposition were considered as points in SO(3).

Classification of curves in the Lie group SO3×. . .×SO3

is a non-trivial task due to the non-Euclidean nature of the

underlying space. Similar to [32], we can overcome this

difficulty by mapping the action curves from the Lie group

SO3 × . . .× SO3 to its Lie algebra so3 × . . .× so3, which

is the tangent space at the identity element, using the log-

arithm map. 1 But, flattening the Lie group using the log-

arithm map at a single point P introduces distortions due

to which curves that are nearby in the Lie group can move

away from each other in the Lie algebra (especially when

they are not close to the point P ). Figure 2 (left) illustrates

this pictorially using the example of a sphere. Here, the lon-

gitudinal curves moves away from each other when mapped

to the tangent space at P using the logarithm map. Note that

though we use a sphere for illustration in Figure 2, the man-

ifold of interest here is SO3 × . . .× SO3.

To reduce the distortions introduced by flattening the Lie

group using the logarithm map at a single point, we combine

the logarithm map with rolling maps [9, 11, 24] in this work.

1Instead of identity element and Lie algebra, one can use Karcher mean

of training data and the tangent space at the Karcher mean.

Figure 2: Left: Logarithm map at point P , Right: Unwrapping

(via the logarithm map) while rolling along the nominal curve.

Rolling maps can be used to flatten the Lie group SO3 ×
. . . × SO3 by unwrapping the action curves onto its Lie

algebra using the logarithm map while rolling. Figure 2

(right) illustrates the effect of unwrapping (via the logarithm

map) while rolling using the example of a sphere. When

rolled along the middle longitudinal curve, referred to as

the nominal curve in the figure, the other curves that are

close to the nominal curve on the sphere remain close to it

even after unwrapping onto the tangent space at P .

Though rolling map is a mathematically well-defined

concept, it has not been explored much by the computer vi-

sion community. Recently, Caseiro et al. [4] introduced the

rolling map to the vision community by using it for classi-

fication of manifold features. In [4], the Grassmann mani-

fold was first rolled as a rigid body over the tangent space

at identity, and the data samples were unwrapped onto this

tangent space. Then, classification was performed in this

tangent space. Rolling maps have also been used for inter-

polation on SO3 [10, 26] and Grassmann manifold [3].

In this work, we first compute a nominal curve for each

action category in SO3× . . .×SO3, and warp all the action

curves to these nominal curves using dynamic time warping

(DTW). This helps us to handle the rate variations. Then,

we roll SO3 ×. . .×SO3 (by rolling each SO3 individually)

over its Lie algebra so3×. . .×so3 along the nominal curves,

and unwrap all the action curves (via the logarithm map)

onto the Lie algebra while rolling. The main advantage of

unwrapping while rolling is that the distances between the

action curves and the nominal curves are preserved while

mapping the curves from the Lie group to the Lie algebra.

Finally, we perform classification in the Lie algebra using

a support vector machine (SVM). Our experimental results

show that flattening by unwrapping while rolling improves

the recognition performance when compared to flattening

by using the logarithm map at a single point.

In most of the prior works that used rolling maps, the

rolling curve was chosen as a geodesic curve [4, 10, 26].

But, in this work, we are interested in rolling SO3 along

the nominal action curves, which are usually non-geodesic.

While [4, 10, 11, 26] provide closed form expressions for

the rolling map when the rolling curve is a geodesic, they

do not explain how to compute the rolling map in closed

form when the rolling curve is non-geodesic. In this work,

we show how to obtain a piecewise smooth rolling map for

a given (discrete) non-geodesic rolling curve in SO3.
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Contributions:

• We combine the logarithm and rolling maps to flatten the

special orthogonal group SO3 for performing human ac-

tion recognition from 3D skeletal data. The rolling map is

a mathematically well-defined concept that has not been

explored much by the vision community. To the best of

our knowledge, it was never used in the context of human

action recognition.

• Most existing works on rolling maps use a geodesic curve

as the rolling curve. They do not provide closed form

expressions for the rolling map in the case of a non-

geodesic rolling curve. In this work, we show how to

compute a piecewise smooth rolling map corresponding

to a given (discrete) non-geodesic rolling curve in SO3.

• We reduce the dimensionality of skeletal representation

by half compared to the se3-based representation of [32]

by using only 3D rotations to describe the relative

geometry between various body parts. We show that

this scale-invariant rotation-only representation performs

equally well when compared to the full rigid body

transformation-based representation of [32].

Organization: Section 2 provides the relevant background

information on various groups used in this paper and

section 3 introduces the rolling map. Section 4 presents the

rolling and unwrapping operations for SO3 and section 5

presents the proposed human action recognition approach.

Section 6 presents the experimental results and section 7

concludes the paper.

Notations: We use R to denote the set of real numbers and

In to denote the n × n identity matrix. The determinant,

trace, transpose, inverse and Frobenius norm of a matrix

A are denoted by |A|, trace(A), A⊤, A−1 and ‖A‖Fr re-

spectively. The tangent space to a manifold M at a point

p is denoted using TpM and its orthogonal complement is

denoted using (TpM)⊥. We use × to represent the direct

product between Lie groups.

2. Relevant Background - Groups

In this section, we briefly discuss the groups SOn, SEn,

SO2
n and SO2

nR
n2

, which will be used in later sections.

SOn: The special orthogonal group SOn is a matrix Lie

group formed by the set of all n × n matrices R satisfying

the following constraints: R⊤R = RR⊤ = In, |R| = 1.

The elements of SOn act on points in Rn via matrix-vector

multiplication:

SOn ◦ Rn → Rn, R ◦ p = Rp. (1)

The tangent space TR0
SOn at R0 ∈ SOn is the vector

space spanned by the set of all n × n matrices A such that

A = ΩR0 for some skew-symmetric matrix Ω. The tangent

space at In ∈ SOn is called the Lie algebra of SOn and

is denoted by son. The special orthogonal group forms a

Riemannian manifold with the inner product in each tangent

space given by the Frobenius inner product:

〈A1, A2〉R0
= trace(A⊤

1 A2), A1, A2 ∈ TR0
SOn. (2)

Under this Riemannian metric, the exponential and loga-

rithm maps at R0 ∈ SOn are given by

expSOn
(R0, A) = eAR⊤

0 R0, A ∈ TR0
SOn,

logSOn
(R0, R1) = log(R1R

⊤

0 )R0, R1 ∈ SOn,
(3)

where e and log denote the usual matrix exponential and

logarithm. The geodesic curve from R0 to R1 is given by

et log(R1R
⊤

0 )R0, t ∈ [0, 1], and the geodesic distance be-

tween R0 and R1 is given by ‖ logSOn
(R0, R1)‖Fr.

Interpolation on SOn: Given R1, . . . , Rn ∈ SOn at time

instances t1, . . . , tn respectively, the following curve ζ(t)
defines a piecewise geodesic curve that passes through Ri

at time instance ti.

ζ(t) = expSOn

(

Ri,
t− ti

ti+1 − ti
Ai

)

for t ∈ [ti, ti+1], (4)

where Ai = logSOn
(Ri, Ri+1) for i = 1, 2, . . . , n− 1.

SEn: The special Euclidean group SEn is a matrix Lie

group formed by the set of all (n + 1) × (n + 1) matrices

of the form E(R, ~d) =

[

R ~d

0 1

]

, R ∈ SOn, ~d ∈ Rn.

The elements of SEn represent rigid body motions in an

n-dimensional Euclidean space. The matrix R represents

the rotation and the vector ~d represents the translation. The

action of SEn on Rn is defined by:

SEn ◦ Rn → Rn, (R, ~d) ◦ p = Rp+ ~d. (5)

The tangent space at In ∈ SEn is called the Lie algebra

of SEn and is denoted by sen. The Lie exponential and

logarithm maps between SEn and sen are given by

LexpSEn
(B) = eB , B ∈ sen,

LlogSEn
(E) = log(E), E ∈ SEn.

(6)

For both SOn and SEn, the group multiplication and

inversion are the usual matrix multiplication and inversion.

The group identity element is the n× n identity matrix In.

SO
2

n
= SOn × SOn : The group SO2

n is the direct product

of two special orthogonal groups. It is the set of all matrix

pairs (U, V ), where U, V ∈ SOn. The group multiplication

and inversion operations are defined as

(U2, V2) ⋆ (U1, V1) = (U2U1, V2V1),

(U, V )−1 = (U⊤, V ⊤),
(7)
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and the group identity element is given by (In, In). The

group SO2
n acts on Rn×n via

SO2
n ◦ Rn×n → Rn×n, (U, V ) ◦ Z = UZV ⊤. (8)

SO
2

n
R

n
2

: The group SO2
nR

n2

is the set of all matrix

triplets (U, V,X), where U, V ∈ SOn and X ∈ Rn×n. The

group multiplication and inversion operations are defined as

(U2, V2, X2)⋆(U1, V1, X1) = (U2U1, V2V1, U2X1V
⊤

2 +X2),

(U, V,X)−1 = (U⊤, V ⊤,−U⊤XV ), (9)

and the group identity element is given by (In, In, 0). The

group SO2
nR

n2

acts on Rn×n via

SO2
nR

n2

◦ Rn×n → Rn×n

(U, V,X) ◦ Z = UZV ⊤ +X.
(10)

3. Rolling Motion

For two m-dimensional Riemannian manifolds M and

M̄, both embedded in the same ambient Euclidean space

Rn (n ≥ m), the rolling motion describes how M rolls

over M̄ as a rigid body without slip and twist. A classical

example of such a motion is the rolling of 2-dimensional

sphere over the tangent plane at a point.

The curve {α(t) ∈ M ⊂ Rn : t ∈ [0, T ]} along which

the manifold M rolls is called the rolling curve and the

curve {ᾱ(t) ∈ M̄ ⊂ Rn : t ∈ [0, T ]}, where the rolling

curve touches the manifold M̄ while rolling, is called the

development curve of α on M̄.

Definition 1: [11, 24] A rolling map describing how M
rolls over M̄, without slip and twist, along a smooth rolling

curve α : [0, T ] → M, is a smooth map

h : [0, T ] → SEn, t → h(t) = (R(t), ~d(t)), (11)

satisfying the following conditions:

• Rolling conditions

ᾱ(t) := h(t) ◦ α(t) ∈ M̄,

Th(t)◦α(t)(h(t) ◦M) = Tᾱ(t)M̄,
(12)

• No-slip conditions

(ḣ(t) ◦ h(t)−1) ◦ ᾱ(t) = 0, (13)

• No-twist conditions

(ḣ(t) ◦ h(t)−1) ◦ Tᾱ(t)M̄ ⊂ (Tᾱ(t)M̄)⊥,

(ḣ(t) ◦ h(t)−1) ◦ (Tᾱ(t)M̄)⊥ ⊂ Tᾱ(t)M̄,
(14)

where for a point x ∈ Rn and a vector η ∈ Rn (i.e., there

exists a curve y : (−ǫ, ǫ) → Rn such that ẏ(0) = η), the

operations ḣ(t)◦x, (ḣ(t)◦h(t)−1)◦x and (ḣ(t)◦h(t)−1)◦η
are defined as

ḣ(t) ◦ x :=
d

ds
(h(s) ◦ x)|s=t, (15)

(ḣ(t) ◦ h(t)−1) ◦ x :=
d

ds
((h(s) ◦ h(t)−1) ◦ x)|s=t,

(ḣ(t) ◦ h(t)−1) ◦ η :=
d

ds
((ḣ(t) ◦ h(t)−1) ◦ y(s))|s=t.

Remark: Given any piecewise smooth development or

rolling curve, the above definition ensures the existence and

uniqueness of the corresponding rolling map [11, 24].

4. Rolling Special Orthogonal Group

In this work, we are interested in rolling SO3 over the

tangent plane TR0SO3 at a point R0 ∈ SO3. Note that both

SO3 and TR0SO3 are 3-dimensional manifolds embedded

in the 9-dimensional Euclidean space R3×3. Hence, we can

describe the rolling of SO3 using a curve h(t) ∈ SE9.

However, in [11], it has been shown that for rolling SO3

over a tangent plane, the rotational and translational com-

ponents of the original special Euclidean group SE9 turn

out to be SO2
3 and R3×3 respectively. Therefore, the rolling

map can be represented using a curve c(t) ∈ SO2
3R

9.

Theorem 1 - Rolling maps for SO3:

Let {Ω(t) ∈ so3 | t ∈ [0, T ]} be any continuous curve. Let

c(t) = (U(t), V (t), X(t)) ∈ SO2
3R

9 be the solution of

Ẋ(t) = Ω(t)R0, U̇(t) = −
1

2
Ω(t)U(t),

V̇ (t) =
1

2
R⊤

0 Ω(t)R0V (t),

(16)

satisfying c(0) = (I3, I3, 0). Then, the action of c(t) on

SO3 ⊂ R3×3 results in rolling of SO3 over the tangent

plane TR0SO3 with the rolling and development curves

given by

α(t) = U(t)⊤R0V (t) ∈ SO3,

ᾱ(t) = c(t) ◦ α(t) = R0 +X(t) ∈ TR0
SO3.

(17)

Proof: Please refer to [11] for the proof.

The above theorem says that every continuous curve Ω(t) in

the Lie algebra of SO3 defines a rolling map c(t) through

the set of differential equations (16).

Rolling along a geodesic: If Ω(t) = Ω = log(R1R
⊤
0 ),

then the solution to (16) is given by

U(t) = e−
1
2 tΩ, V (t) = R⊤

0 e
1
2 tΩR0, X(t) = tΩR0. (18)
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Figure 3: Unwrapping the blue curve onto a tangent space while

rolling along the red curve.

In this case, the rolling curve

α(t) = U(t)⊤R0V (t) = etΩR0 = et log(R1R
⊤

0 )R0 (19)

is the geodesic from R0 to R1, and the development curve

is given by ᾱ(t) = R0 + tΩR0.

4.1. Rolling along a non­geodesic curve

Note that Theorem 1 starts with a curve Ω(t) ∈ so3 and

explains how to obtain the corresponding rolling map c(t)
and rolling curve α(t). It doesn’t say anything about how to

compute the rolling map c(t) starting from a rolling curve

α(t). But, in this work, we are interested in rolling SO3

along specific α(t), which are the nominal action curves

obtained using DTW. If the rolling curve α(t) is a geodesic,

then the corresponding rolling map c(t) can be computed

using (18). But, the nominal action curves along which we

want to roll are usually non-geodesic.

Let {R0, R1, . . . , RT } be the discrete representation of

the curve along which we want to roll SO3. In Theorem

2, we show how to obtain a piecewise smooth rolling map

c(t) such that the corresponding rolling curve α(t) passes

through Rt at time instance t for t = 0, 1, . . . , T .

Theorem 2: Let {R0, R1, . . . , RT } be the given (discrete)

rolling curve. Let Ω1,Ω2, . . . ,ΩT be T skew-symmetric

matrices defined recursively using

Ωn = log
(

e−
Ω
n−1
2 . . . e−

Ω1
2 RnR

⊤

o e−
Ω1
2 e−

Ω
n−1
2

)

. (20)

Let c(t) = (U(t), V (t), X(t)) be a curve defined as

U(t) = e−
(t−n+1)Ωn

2 e−
Ω
n−1
2 . . . e−

Ω1
2 ,

V (t) = R⊤

0 e
(t−n+1)Ωn

2 e
Ω
n−1
2 . . . e

Ω1
2 R0,

X(t) =

n−1
∑

i=1

ΩiR0 + (t− n+ 1)ΩnR0,

t ∈ [n− 1, n], n = 1, 2, . . . , T.

(21)

Then, the action of c(t) ∈ SO2
3R

9 on SO3 results in rolling

of SO3 over the tangent plane TR0
SO3 with a rolling curve

α(t) that satisfies

α(n) = Rn, for n = 1, 2, . . . , T. (22)

Proof: Let {Ω(t) ∈ so3 | t ∈ [0, T ]} be a curve defined as

Ω(t) = 6Ωn

(

(t− n+ 1)− (t− n+ 1)2
)

,

t ∈ [n− 1, n], n = 1, 2, . . . , T.
(23)

For this Ω(t), the solution for differential equations (16)

is given by (21). Hence by Theorem 1, the action of c(t)
on SO3 results in rolling of SO3 over the tangent space

TR0
SO3 with the rolling curve given by

α(t) = U(t)⊤R0V (t)

= e
Ω1
2 . . . e

Ω
n−1
2 e(t−n+1)Ωne

Ω
n−1
2 . . . e

Ω1
2 R0,

t ∈ [n− 1, n], n = 1, 2, . . . , T. (24)

which satisfies

α(n) = e
Ω1
2 . . . e

Ω
n−1
2 eΩne

Ω
n−1
2 . . . e

Ω1
2 R0 = Rn,

for n = 0, 1, . . . , T.
(25)

�

4.2. Unwrapping while rolling

Rolling maps can be used to flatten SO3 by unwrapping

the action curves (while rolling) onto the tangent space at

a point using the logarithm map. Figure 3 illustrates this

pictorially. In this figure, the blue curve is unwrapped onto

a tangent space while rolling along the red curve.

Let c(t) = (U(t), V (t), X(t)) ∈ SO2
3R

9 be the rolling

map corresponding to the rolling curve α(t) ∈ SO3. Let

ᾱ(t) ∈ Tα(0)SO3 be the development curve of α(t). Then,

unwrapping (using the logarithm map) of a curve β(t) ∈
SO3 while rolling along α(t) gives the following curve

β̄(t) ∈ Tα(0)SO3 [26]:

β̄(t) = logSO3
(α(0), c(t)oβ(t)− ᾱ(t) + α(0)) + ᾱ(t)

= logSO3

(

α(0), U(t)β(t)V (t)⊤
)

+ α(0) +X(t).
(26)

4.3. Advantage of unwrapping while rolling

The main motivation for using rolling maps in this work

is that flattening the SO3 by unwrapping (via the logarithm

map) the action curves while rolling is better than flattening

it by using the logarithm map at a single point.

Theorem 3: Let {α(t), β(t) ∈ SO3 : t ∈ [0, T ]} be

two curves. Let ᾱ(t), β̄(t) ∈ Tα(0)SO3 respectively be

the curves obtained by unwrapping (via the logarithm map)

α(t) and β(t) while rolling the SO3 over the tangent space

at α(0) along the curve α(t). Then, we have

dTα(0)SO3

(

β̄(t), ᾱ(t)
)

= dSO3
(β(t), α(t)) ∀t, (27)

where dSO3
represents the geodesic distance on SO3 and

dTα(0)SO3
represents the standard Euclidean distance in the

tangent space Tα(0)SO3.
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Proof: Let c(t) = (U(t), V (t), X(t)) ∈ SO2
3R

9 be the

rolling map corresponding to the rolling curve α(t). Then,

by (26) we have

β̄(t) = logSO3

(

α(0), U(t)β(t)V (t)⊤
)

+ α(0) +X(t).
(28)

Since α(t) is the rolling curve, ᾱ(t) = α(0) + X(t) from

Theorem 1. Hence, we have

dTα(0)SO3

(

β̄(t), ᾱ(t)
)

= ‖β̄(t)− ᾱ(t)‖Fr

= ‖ logSO3

(

α(0), U(t)β(t)V (t)⊤
)

‖Fr

= dSO3

(

α(0), U(t)β(t)V (t)⊤
)

= dSO3

(

U(t)⊤α(0)V (t), β(t)
)

= dSO3
(α(t), β(t)) .

(29)

Here, the second last equality follows from the fact that

dSO3
is bi-invariant [13]. �

As mentioned earlier, in this work, we first compute a

nominal curve for each action category, and warp all the ac-

tion curves to these nominal curves. Then, we roll the Lie

group along the nominal curves and unwrap all the action

curves onto the Lie algebra while rolling. As stated in Theo-

rem 3, the main advantage of flattening the action curves by

unwrapping while rolling is that the distances between the

action curves and the nominal curves are preserved. This

is not the case with flattening using the logarithm map at a

single point.

Alternative interpretation: The idea of unwrapping while

rolling along the nominal curve can also be interpreted

as the extension of the idea of tangent plane mapping at

Karcher mean from points to curves. When dealing with

points, Karcher mean is commonly used as the anchor point

for tangent plane projection. Since we are dealing with

curves rather than points in this work, the Karcher mean is

replaced by the mean curve. In the case of points, the log-

arithm map at Karcher mean is used to map the points to a

common tangent space. Since we are dealing with curves (a

curve can go through various points that are quite far apart),

using the logarithm map at a single point to flatten entire

curves is not a good idea because, as we move away from

the anchor point (which will happen in the case of curves),

the distortion due to the logarithm map increases. Instead,

it is better to use logarithm maps at multiple points spread

over the nominal curve. This is exactly what we are doing

while rolling and unwrapping.

5. Proposed Action Recognition Approach

Our 3D skeleton-based human action recognition system

consists of the following steps: (1) Skeletal representation,

(2) Nominal curve computation using DTW, (3) Rolling and

unwrapping, (4) Linear SVM classification.

Table 1: Algorithm for computing a nominal curve

Input: Curves γ1(t), . . . , γN (t) at t = 0, 1, . . . , T.

Maximum number of iterations max and threshold δ.

Output: Nominal curve γ(t) at t = 0, 1, . . . , T .

Initialization: γ(t) = γ1(t), iter = 0.

while iter < max

Warp each curve γi(t) to the nominal curve γ(t) using

DTW to get a warped curve γw

i (t).

Compute a new nominal γnew(t) using

γnew(t) = Karcher mean
(

{γw

i (t)}Ni=1

)

.

if
∑

T

t=0
dist (γnew(t), γ(t)) ≤ δ

break

end

γ(t) = γnew(t); iter = iter + 1;

end

Skeletal representation: In this work, we represent a 3D

human skeleton using the relative 3D rotations between all

pairs of body parts. Since 3D rotations are members of the

Lie group SO3, our skeletal representation becomes a point

in the Lie group SO3 × . . . × SO3. As mentioned earlier,

using only the relative 3D rotations makes the skeletal rep-

resentation scale-invariant and reduces the feature dimen-

sionality by half compared to [32].

Nominal curves: Using the above skeletal representation,

we represent human actions as curves in the Lie group

SO3 × . . . × SO3. During training, for each action cat-

egory, we compute a nominal curve using the algorithm

summarized in Table 1, and warp all the curves to this nom-

inal using DTW. This step helps in handling rate variations.

For DTW computations, we use the squared Euclidean dis-

tance in the Lie algebra. We also performed DTW using the

geodesic distance in SO3, but did not get any improvement

in the final classification results. Hence, for faster compu-

tations, we use the Lie algebra distance in this paper. Note

that in order to compute nominal curves, all the action

curves must have same number of samples. For this, we

use the interpolation algorithm presented in section 2 and

re-sample the curves in SO3 × . . .× SO3. Interpolation on

SO3 × . . .× SO3 is performed by simultaneously interpo-

lating on individual SO3.

We note that the recently proposed transported square-

root vector field [29] representation of curves, which is

an extension of the earlier square-root velocity representa-

tion [28] to Riemannian manifolds, provides a distance met-

ric that is invariant to temporal warping (i,.e., the distance

between two curve does not change if both curves undergo

the same temporal warping). Using this distance metric for

DTW and nominal curve computations could further im-

prove our performance.
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Figure 4: Proposed approach: The top row corresponds to the training phase and the bottom row corresponds to the test phase.

Rolling and unwrapping: In this step, we roll the Lie

group SO3 × . . .×SO3 over its lie algebra so3 × . . .× so3

(by rolling each SO3 individually over its Lie algebra)

along each nominal action curve, and unwrap all the action

curves onto the Lie algebra. The rolling map for a given

(discrete) rolling curve can be obtained using Theorem 2

and the unwrapping operation can be performed using (26).

Since a nominal action curve may not start from the identity

element (remember that Lie algebra is the tangent space at

the identity element), we first roll the Lie group from the

identity element to the starting point of the nominal curve

and then roll along the nominal curve.

SVM classification: In this step, we first convert each un-

wrapped action curve into a feature vector by concatenat-

ing all the temporal samples, and then classify these feature

vectors using a one-vs-all linear SVM classifier.

Figure 4 gives an overview of the proposed approach.

The top row shows all the steps involved in training and the

bottom row shows all the steps involved in testing.

6. Experiments

We evaluate the proposed human action recognition ap-

proach using three action datasets captured with Kinect sen-

sor: Florence3D-Action [22], MSRAction Pairs [19] and

G3D-Gaming [2]. The code used for our experiments can

be downloaded from http://ravitejav.weebly.

com/rolling.html

Florence3D-Action [22] dataset consists of nine different

daily actions like drink water, answer phone, read watch,

tight lace, etc. performed by 10 different subjects. Each

subject performed every action two or three times resulting

in a total of 215 action sequences. The 3D locations of 15

joints are provided with the dataset.

MSRAction Pairs [19] dataset consists of six action pairs

(12 actions in total) like pick up a box/put down a box, wear

a hat/take off a hat, etc. performed by 10 different subjects.

Each subject performed every action two or three times re-

sulting in a total of 353 action sequences. This dataset was

collected to analyze how the temporal order affects action

recognition. The 3D locations of 20 joints are provided with

the dataset.

G3D-Gaming [2] dataset consists of 20 different gaming

actions like golf swing, tennis serve, bowling, aim and fire

gun, etc. performed by 10 different subjects. Each subject

performed every action three or more times resulting in a

total of 663 action sequences. The 3D locations of 20 joints

are provided with the dataset.

Evaluation setting: We followed cross-subject test setting,

in which half of the subjects were used for training and the

other half were used for testing. All the results reported in

this paper were averaged over ten different random combi-

nations of training and test subjects.

Parameters: As explained in section 5, for each dataset, all

the action curves were re-sampled to have same length. The

reference length was chosen to be the maximum number

of samples in any curve in the dataset before re-sampling.

The value of SVM parameter C was chosen based on cross-

validation.

6.1. Unwrapping while rolling Vs logarithm map

In this work, we are using rolling and unwrapping for

flattening the Lie group SO3 × . . . × SO3. An alternative

way to flatten this Lie group is to map the action curves

to its Lie algebra using the logarithm map. Table 2 com-

pares the action recognition performance of both these ap-

proaches when a linear SVM classifier is used with the con-

catenated feature representation.

Note that the concatenated representation is nothing but

the vectorized version of unwrapped curves (without any

additional processing steps). Hence, the results obtained us-
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Table 2: Comparison (in terms of classification accuracy) between

using the logarithm map at a point and unwrapping while rolling.

Approach Florence3D [22] MSRPairs [19] G3D [2]

Logarithm
86.83 92.96 87.82

map at a point

Unwrapping
89.82 94.09 87.95

while rolling

ing this representation directly compare the effects of using

the logarithm map at a point and unwrapping while rolling.

As we can see from Table 2, unwrapping while rolling out-

performs the logarithm map by 3% on Florence3D dataset

and by 1.1% on MSRPairs dataset. On G3D dataset, both

rolling and logarithm map perform equally well. These re-

sults suggest that it is better to flatten SO3 by unwrapping

while rolling instead of using the logarithm map at a point.

6.2. Comparison with state­of­the­art

Note that while we use a simple classification scheme

in which the Lie algebra curves are first vectorized by con-

catenating the temporal samples and then classified using

a linear SVM classifier, existing state-of-the-art approaches

like [1, 32] use additional processing steps like Fourier tem-

poral pyramid representation (FTP) [32] (originally pro-

posed by [33]), principal geodesic analysis [1], etc. While

our simple approach does produce impressive results, it may

not be sufficient to achieve state-of-the-art results. Hence,

to compare with the state-of-the-art approaches, we incor-

porate the FTP representation proposed by [33] into our

classification scheme. Instead of using the simple concate-

nated representation, we represent each unwrapped Lie al-

gebra curve using the FTP representation, and then classify

them using a linear SVM classifier.

Table 3 compares the results of the proposed approach

with state-of-the-art (skeleton-based) results reported on

Florence3D, MSRPairs and G3D datasets. As we can see,

the proposed approach performs better or equally well when

compared to the recent state-of-the-art skeleton-based ap-

proaches. Note that since the focus of this work is on

skeleton-based action recognition, we use only skeleton-

based approaches for comparison. Though combining

skeletal features with depth-based features may improve the

accuracy, feature fusion is beyond the scope of this work.

7. Conclusion and Future Work

In this work, we used rolling maps for flattening SO3

to perform human action recognition from 3D skeletal data.

We represented each human skeleton as a point in the Lie

group SO3 × . . . × SO3 using the relative 3D rotations

between all pairs of body parts. Using this skeletal rep-

resentation, we represented human actions as curves in

SO3× . . .×SO3. For each action category, we computed a

Table 3: Comparison with state-of-the-art.

Florence3D dataset

Multi-Part Bag-of-Poses [22] 82.00

Motion trajectories [6] 87.04

Elastic Functional Coding [1] 89.67

Relative 3D geometry [32] 90.71

Proposed (concatenated representation) 89.82

Proposed (FTP representation) 91.40

MSRPairs dataset

Relative 3D geometry [32] 93.65

Proposed (concatenated representation) 94.09

Proposed (FTP representation) 94.67

G3D dataset

RBM + HMM [16] 86.40

Relative 3D geometry [32] 91.09

Proposed (concatenated representation) 87.95

Proposed (FTP representation) 90.94

nominal curve and warped all the action curves to this nom-

inal using DTW. Then, we rolled SO3 × . . . × SO3 over

its Lie algebra along the nominal curves and unwrapped all

the action curves onto the Lie algebra. Finally, we repre-

sented the unwrapped curves using either the concatenated

representation or the FTP representation and classified them

using a one-vs-all linear SVM classifier. By evaluating on

three action datasets, we showed that flattening SO3 by un-

wrapping while rolling performs better than flattening SO3

by using logarithm map a single point. The proposed ap-

proach also outperforms various state-of-the-art skeleton-

based action recognition approaches.

Note that in order to roll along the nominal curves, we

should be able to compute the rolling map corresponding to

a given non-geodesic rolling curve. In this work, we showed

how to compute a piecewise smooth rolling map such that

the rolling curve passes through a given set of points in SO3

at given instances of time.

The rolling map is a general concept that can be used

with any Riemannian manifold. Hence, as part of future

work, we plan to use rolling maps for classification of time

series data on other manifolds like Grassmann manifold and

the manifold of symmetric positive definite matrices.
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