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Abstract

We propose a novel end-to-end trainable deep network

architecture for image denoising based on a Gaussian Con-

ditional Random Field (GCRF) model. In contrast to the

existing discriminative denoising methods that train a sep-

arate model for each individual noise level, the proposed

deep network explicitly models the input noise variance and

hence is capable of handling a range of noise levels. Our

deep network, which we refer to as deep GCRF network,

consists of two sub-networks: (i) a parameter generation

network that generates the pairwise potential parameters

based on the noisy input image, and (ii) an inference net-

work whose layers perform the computations involved in

an iterative GCRF inference procedure. We train two deep

GCRF networks (each network operates over a range of

noise levels: one for low input noise levels and one for

high input noise levels) discriminatively by maximizing the

peak signal-to-noise ratio measure. Experiments on Berke-

ley segmentation and PASCALVOC datasets show that the

proposed approach produces results on par with the state-

of-the-art without training a separate network for each in-

dividual noise level.

1. Introduction

In the recent past, deep networks have been successfully

used in various image processing and computer vision ap-

plications [3, 12, 34]. Their success can be attributed to sev-

eral factors such as their ability to represent complex input-

output relationships, feed-forward nature of their inference

(no need to solve an optimization problem during run time),

availability of large training datasets, etc. One of the pos-

itive aspects of deep networks is that fairly general archi-

tectures composed of fully-connected or convolutional lay-

ers have been shown to work reasonably well across a wide

range of applications. However, these general architectures

do not use problem domain knowledge which could be very

helpful in some of the applications.

For example, in the case of image denoising, it has

been recently shown that conventional multilayer percep-

trons (MLP) are not very good at handling multiple levels

of input noise [3]. When a single multilayer perceptron was

trained to handle multiple input noise levels (by providing

the noise variance as an additional input to the network),

it produced inferior results compared to the state-of-the-art

BM3D [6] approach. In contrast to this, the EPLL frame-

work of [40], which is a model-based approach, has been

shown to work well across a range of noise levels. These

results suggest that we should work towards bringing deep

networks and model-based approaches together. Motivated

by this, in this work, we propose a new deep network archi-

tecture for image denoising based on a Gaussian conditional

random field model. The proposed network explicitly mod-

els the input noise variance and hence is capable of handling

a range of noise levels.

Gaussian Markov Random Fields (GMRFs) [29] are

popular models for various structured inference tasks such

as denoising, inpainting, super-resolution and depth estima-

tion, as they model continuous quantities and can be effi-

ciently solved using linear algebra routines. However, the

performance of a GMRF model depends on the choice of

pairwise potential functions. For example, in the case of

image denoising, if the potential functions for neighboring

pixels are homogeneous (i.e., identical everywhere), then

the GMRF model can result in blurred edges and over-

smoothed images. Therefore, to improve the performance

of a GMRF model, the pairwise potential function param-

eters should be chosen according to the image being pro-

cessed. A GMRF model that uses data-dependent potential

function parameters is referred to as Gaussian Conditional

Random Field (GCRF) [35].

Image denoising using a GCRF model consists of two

steps: a parameter selection step in which the potential

function parameters are chosen based on the input image,

and an inference step in which energy minimization is per-

formed for the chosen parameters. In this work, we pro-

pose a novel model-based deep network architecture, which

we refer to as deep GCRF network, by converting both the
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Figure 1: The proposed deep GCRF network: Parameter generation network (PgNet) followed by inference network (InfNet). The PgNets

in dotted boxes are the additional parameter generation networks introduced after each HQS iteration.

parameter selection and inference steps into feed-forward

networks.

The proposed deep GCRF network consists of two sub-

networks: a parameter generation network (PgNet) that

generates appropriate potential function parameters based

on the input image, and an inference network (InfNet) that

performs energy minimization using the potential function

parameters generated by PgNet. Since directly generating

the potential function parameters for an entire image is very

difficult (as the number of pixels could be very large), we

construct a full-image pairwise potential function indirectly

by combining potential functions defined on image patches.

If we use d × d patches, then our construction defines a

graphical model in which each pixel is connected to its

(2d − 1) × (2d − 1) spatial neighbors. This construction

is motivated by the recent EPLL framework of [40]. Our

PgNet directly operates on each d × d input image patch

and chooses appropriate parameters for the corresponding

potential function.

Though the energy minimizer can be obtained in closed

form for GCRF, it involves solving a linear system with

number of variables equal to the number of image pixels

(usually of the order of 106). Solving such a large linear

system could be computationally prohibitive, especially for

dense graphs (each pixel is connected to 224 neighbors

when 8 × 8 image patches are used). Hence, in this work,

we use an iterative optimization approach based on Half

Quadratic Splitting (HQS) [11, 19, 36, 40] for designing our

inference network. Recently, this approach has been shown

to work very well for image restoration tasks even with very

few (5-6) iterations [40]. Our inference network consists of

a new type of layer, which we refer to as HQS layer, that

performs the computations involved in a HQS iteration.

Combining the parameter generation and inference net-

works, we get our deep GCRF network shown in Figure 1.

Note that using appropriate pairwise potential functions is

crucial for the success of GCRF. Since PgNet operates on

the noisy input image, it becomes increasingly difficult to

generate good potential function parameters as the image

noise increases. To address this issue, we introduce an ad-

ditional PgNet after each HQS iteration as shown in dotted

boxes in Figure 1. Since we train this deep GCRF network

discriminatively in an end-to-end fashion, even if the first

PgNet fails to generate good potential function parameters,

the later PgNets can learn to generate appropriate parame-

ters based on partially restored images.

Contributions:

• We propose a new end-to-end trainable deep network

architecture for image denoising based on a GCRF

model. In contrast to the existing discriminative de-

noising methods that train a separate model for each

individual noise level, the proposed network explicitly

models the input noise variance and hence is capable

of handling a range of noise levels.

• We propose a differentiable parameter generation net-

work that generates the GCRF pairwise potential pa-

rameters based on the noisy input image.

• We unroll a half quadratic splitting-based iterative

GCRF inference procedure into a deep network and

train it jointly with our parameter generation network.

• We show that the proposed approach produces results

on par with the state-of-the-art without training a sep-

arate network for each individual noise level

2. Related Work

Gaussian CRF: GCRFs were first introduced in [35] by

modeling the parameters of the conditional distribution of

output given input as a function of the input image. The pre-

cision matrix associated with each image patch was mod-

eled as a linear combination of twelve derivative filter-based

matrices. The combination weights were chosen as a para-

metric function of the responses of the input image to a set

of oriented edge and bar filters, and the parameters were

learned using discriminative training. This GCRF model

was extended to Regression Tree Fields (RTFs) in [18],

where regression trees were used for selecting the param-

eters of Gaussians defined over image patches. These re-

gression trees used responses of the input image to various

hand-chosen filters for selecting an appropriate leaf node for

each image patch. This RTF-based model was trained by it-

eratively growing the regression trees and optimizing the
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Gaussian parameters at leaf nodes. Recently, a cascade of

RTFs [30] has also been used for image restoration tasks. In

contrast to the RTF-based approaches, all the components

of our network are differentiable, and hence it can be trained

end-to-end using standard gradient-based techniques.

Recently, [31] proposed a cascade of shrinkage fields for

image restoration tasks. They learned a separate filter bank

and shrinkage function for each stage of their cascade using

discriminative training. Though this model can also be seen

as a cascade of GCRFs, the filter banks and shrinkage func-

tions used in the cascade do not depend on the noisy input

image during test time. In contrast to this, the pairwise po-

tential functions used in our GCRF model are generated by

our PgNets based on the noisy input image.

Our work is also related to the EPLL framework of [40],

which decomposed the full-image Gaussian model into

patch-based Gaussians, and used HQS iterations for GCRF

inference. Following are the main differences between

EPLL and this work: (i) We propose a new deep network

architecture which combines HQS iterations with a differ-

entiable parameter generation network. (ii) While EPLL

chooses the potential parameters for each image patch as

one of the K possible matrices, we construct each poten-

tial parameter matrix as a convex combination of K base

matrices. (iii) While EPLL learns the K possible poten-

tial parameter matrices in a generative fashion by fitting a

Gaussian Mixture Model (GMM) to clean image patches,

we learn the K base matrices in a discriminative fashion by

end-to-end training of our deep network. As shown later in

the experiments section, our discriminative model clearly

outperforms the generatively trained EPLL.

Denoising: Image denoising is one of the oldest problems

in image processing and various denoising algorithms have

been proposed over the past several years. Some of the most

popular algorithms include wavelet shrinkage [33], fields

of experts [28], Gaussian scale mixtures [26], BM3D [6],

non-linear diffusion process-based approaches [5, 15, 25],

sparse coding-based approaches [7, 8, 9, 22], weighted

nuclear norm minimization (WNNM) [14], and non-local

Bayesian denoising [20]. Among these, BM3D is currently

the most widely-used state-of-the-art denoising approach.

It is a well-engineered algorithm that combines non-local

patch statistics with collaborative filtering.

Denoising with neural networks: Recently, various deep

neural network-based approaches have also been proposed

for image denoising [1, 3, 17, 37, 38]. While [17] used

a convolutional neural network (CNN), [3, 38] used mul-

tilayer perceptrons, and [1, 37] used stacked sparse de-

noising autoencoders (SSDA). Among these MLP [3] has

been shown to work very well outperforming the BM3D

approach. However, none of these deep networks explicitly

model the input noise variance, and hence are not good at

handling multiple noise levels. In all these works, a differ-

ent network was trained for each noise level.

Unfolding inference as a deep network: The proposed

approach is also related to a class of algorithms that learn

model parameters discriminatively by back-propagating the

gradient through a fixed number of inference steps. In [2],

the fields of experts [28] MRF model was discriminatively

trained for image denoising by unfolding a fixed number of

gradient descent inference steps. In [27], message-passing

inference machines were trained for structured prediction

tasks by considering the belief propagation-based inference

of a discrete graphical model as a sequence of predictors.

In [13], a feed-forward sparse code predictor was trained

by unfolding a coordinate descent based sparse coding in-

ference algorithm. In [32, 39], deep CNNs and discrete

graphical models were jointly trained by unfolding the dis-

crete mean-field inference. In [16], a new kind of non-

negative deep network was introduced by deep unfolding

of non-negative factorization model. Recently, [5] revisited

the classical non-linear diffusion process [24] by model-

ing it using several parameterized linear filters and influ-

ential functions. The parameters of this diffusion process

were learned discriminatively by back-propagating the gra-

dient through a fixed number of diffusion process itera-

tions. Though this diffusion process-based approach has

been shown to work well for the task of image denoising,

it uses a separate model for each noise level.

In this work, we design our inference network using

HQS-based inference of a Gaussian CRF model, resulting

in a different network architecture compared to the above

unfolding works. In addition to this inference network, our

deep GCRF network also consists of other sub-networks

used for modeling the GCRF pairwise potentials.

Notations: We use bold face capital letters to denote ma-

trices and bold face small letters to denote vectors. We use

vec(A), A⊤ and A−1 to denote the column vector repre-

sentation, transpose and inverse of a matrix A, respectively.

A � 0 means A is symmetric and positive semidefinite.

3. Gaussian Conditional Random Field

Let X be the given (noisy) input image and Y be the

(clean) output image that needs to be inferred. Let X(i, j)
and Y(i, j) represent the pixel (i, j) in images X and Y,

respectively. In this work, we model the conditional prob-

ability density p(Y|X) as a Gaussian distribution given by

p (Y|X) ∝ exp {−E (Y|X)}, where

E (Y|X) =
1

2σ2

∑

ij

[Y(i, j)−X(i, j)]
2

}

:= Ed (Y|X)

+
1

2
vec(Y)⊤Q(X)vec(Y)

}

:= Ep (Y|X) .

(1)
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Here, σ2 is the input noise variance and Q(X) � 0 are the

input-dependent parameters of the quadratic pairwise po-

tential function Ep (Y|X) defined over the image Y. Note

that if the pairwise potential parameters Q are constant, then

this model can be interpreted as a generative model with Ed

as the data term, Ep as the prior term and p(Y|X) as the

posterior. Hence, our GCRF is a discriminative model in-

spired by a generative Gaussian model.

3.1. Patch­based pairwise potential functions

Directly choosing the (positive semi-definite) pairwise

potential parameters Q(X) for an entire image Y is very

challenging since the number of pixels in an image could be

of the order of 106. Hence, motivated by [40], we construct

the (full-image) pairwise potential function Ep by combin-

ing patch-based pairwise potential functions.

Let xij and yij be d2 × 1 column vectors representing

the d × d patches centered on pixel (i, j) in images X and

Y, respectively. Let x̄ij = Gxij and ȳij = Gyij be the

mean-subtracted versions of vectors xij and yij , respec-

tively, where G = I − 1
d211

⊤ is the mean subtraction ma-

trix. Here, 1 is the d2×1 vector of ones and I is the d2×d2

identity matrix. Let

V (ȳij |x̄ij) =
1

2
ȳ⊤
ij (Σij(x̄ij))

−1
ȳij , Σij(x̄ij) � 0, (2)

be a quadratic pairwise potential function defined on patch

ȳij , with Σij(x̄ij) being the corresponding (input) data-

dependent parameters. Combining the patch-based potential

functions at all the pixels, we get the following full-image

pairwise potential function:

Ep (Y|X) =
1

d2

∑

ij

V (ȳij |x̄ij)

=
1

2d2

∑

ij

y⊤
ijG

⊤ (Σij(x̄ij))
−1

Gyij .

(3)

Note that since we are using all d × d image patches, each

pixel appears in d2 patches that are centered on its d × d
neighbor pixels. In every patch, each pixel interacts with

all the d2 pixels in that patch. This effectively defines a

graphical model of neighborhood size (2d− 1)× (2d− 1)
on image Y.

3.2. Inference

Given the (input) data-dependent parameters {Σij(x̄ij)}
of the pairwise potential function Ep (Y|X), the Gaussian

CRF inference solves the following optimization problem:

Y∗ = argmin
Y

∑

ij

{

d2

σ2 [Y(i, j)−X(i, j)]
2

+ y⊤
ijG

⊤ (Σij(x̄ij))
−1

Gyij

}

.

(4)

Note that the optimization problem (4) is an unconstrained

quadratic program and hence can be solved in closed form.

However, the closed form solution for Y requires solving a

linear system of equations with number of variables equal

to the number of image pixels. Since solving such linear

systems could be computationally prohibitive for large im-

ages, in this work, we use a half quadratic splitting-based

iterative optimization method, that has been recently used

in [40] for solving the above optimization problem. This

approach allows for efficient optimization by introducing

auxiliary variables.

Let zij be an auxiliary variable corresponding to the

patch yij . In half quadratic splitting method, the cost func-

tion in (4) is modified to

J(Y, {zij}, β) =
∑

ij











d2

σ2 [Y(i, j)−X(i, j)]
2

+ β‖yij − zij‖
2
2

+ z⊤ijG
⊤ (Σij(x̄ij))

−1
Gzij











.

(5)

Note that as β → ∞, the patches {yij} are restricted to

be equal to the auxiliary variables {zij}, and the solutions

of (4) and (5) converge. For a fixed value of β, the cost

function J can be minimized by alternatively optimizing for

Y and {zij}. If we fix Y, then the optimal zij is given by

f(yij) = argmin
zij

{

z⊤ijG
⊤ (Σij(x̄ij))

−1
Gzij

+ β‖yij − zij‖
2
2

}

=
(

G⊤ (Σij(x̄ij))
−1

G+ βI
)−1

βyij

=
(

I−G⊤
(

βΣij(x̄ij) +GG⊤
)−1

G
)

yij .

(6)

The last equality in (6) follows from Woodbury matrix iden-

tity. If we fix {zij}, then the optimal Y(i, j) is given by

g({zij}) = argmin
Y(i,j)







d2

σ2 [Y(i, j)−X(i, j)]
2

+ β
∑⌈ d−1

2
⌉

p,q=−⌊ d−1

2
⌋
[Y(i, j)− zpq(i, j)]

2







=
X(i, j)

1 + βσ2
+

βσ2

(1 + βσ2)d2

⌈ d−1

2
⌉

∑

p,q=−⌊ d−1

2
⌋

zpq(i, j),

(7)

where ⌊ ⌋, ⌈ ⌉ are the floor and ceil operators, respectively,

and zpq(i, j) is the intensity value of pixel (i, j) according

to the auxiliary patch zpq .

In half quadratic splitting approach, the optimization

steps (6) and (7) are repeated while increasing the value of

β in each iteration. This iterative approach has been shown

to work well in [40] for image restorations tasks even with

few (5-6) iterations.
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Figure 2: Parameter generation network: Mean subtracted patches x̄ij extracted from the input image X are used to compute the combi-

nation weights {γk
ij}, which are used for generating the pairwise potential parameters {Σij}.

Figure 3: Inference network uses the pairwise potential parameters {Σij(x̄ij)} generated by the PgNet and performs T HQS iterations.

4. Deep Gaussian CRF network

As mentioned earlier, the proposed deep GCRF network

consists of the following two components:

• Parameter generation network: This network takes

the noisy image X as input and generates the parameters

{Σij(x̄ij)} of pairwise potential function Ep (Y|X).

• Inference network: This network performs Gaussian

CRF inference using the pairwise potential parameters

{Σij(x̄ij)}} given by the parameter generation network.

4.1. Parameter generation network

We model the pairwise potential parameters {Σij} as

convex combinations of K symmetric positive semidefinite

matrices Ψ1, . . . ,ΨK :

Σij =
∑

k

γk
ijΨk, γ

k
ij ≥ 0,

∑

k

γk
ij = 1. (8)

The combination weights {γk
ij} are computed from the

mean-subtracted input image patches {x̄ij} using the fol-

lowing two layer selection network:

Layer 1 - Quadratic layer : For k = 1, 2, . . . ,K

skij = −
1

2
x̄⊤
ij

(

Wk + σ2I
)−1

x̄ij + bk.
(9)

Layer 2 - Softmax layer : For k = 1, 2, . . . ,K

γk
ij = es

k
ij/

K
∑

p=1

es
p

ij .
(10)

Figure 2 shows the overall parameter generation network

which includes a patch extraction layer, a selection network

and a combination layer. Here, {(Wk � 0,Ψk � 0, bk)}
are the network parameters, and σ2 is the noise variance.

Our choice of the above quadratic selection function is

motivated by the following two reasons: (i) Since the selec-

tion network operates on mean-subtracted patches, it should

be symmetric, i.e., both x̄ and −x̄ should have the same

combination weights {γk}. To achieve this, we compute

each sk as a quadratic function of x̄. (ii) Since we are

computing the combination weights using the noisy image

patches, the selection network should be robust to input

noise. To achieve this, we include the input noise variance

σ2 in the computation of {sk}. We choose the particular

form
(

Wk + σ2I
)−1

because in this case, we can (roughly)

interpret the computation of {sk} as evaluating Gaussian

log likelihoods. If we interpret {Wk} as covariance matri-

ces associated with clean image patches, then {Wk + σ2I}
can be interpreted as covariance matrices associated with

noisy image patches.

4.2. Inference network

We use the half quadratic splitting method described in

Section 3.2 to create our inference network. Each layer of

the inference network, also referred to as a HQS layer, im-

plements one half quadratic splitting iteration. Each HQS

layer consists of the following two sub-layers:

• Patch inference layer (PI): This layer uses the current

image estimate Yt and computes the auxiliary patches

{zij} using f(yij) given in (6).

• Image formation layer (IF): This layer uses the auxil-

iary patches {zij} given by the PI layer and computes the

next image estimate Yt+1 using g({zij}) given in (7).

Let {β1, β2, . . . , βT } be the β schedule for half quadratic

splitting. Then, our inference network consists of T HQS

layers as shown in Figure 3. Here, X is the input image with

noise variance σ2, and {Σij(x̄ij)} are the (data-dependent)

pairwise potential parameters generated by the PgNet.
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Remark: Since our inference network implements a fixed

number of HQS iterations, its output may not be optimal

for (4). However, since we train our parameter generation

and inference networks jointly in a discriminative fashion,

the PgNet will learn to generate appropriate pairwise poten-

tial parameters such that the output after a fixed number of

HQS iterations would be close to the desired output.

4.3. GCRF network

Combining the above parameter generation and infer-

ence networks, we get our full Gaussian CRF network with

parameters {(Wk � 0,Ψk � 0, bk)}. Note that this GCRF

network has various new types of layers that use quadratic

functions, matrix inversions and multiplicative interactions,

which are quite different from the computations used in

standard deep networks.

Additional PgNets: Note that using appropriate pairwise

potential functions is crucial for the success of GCRF. Since

the parameter generation network operates on the noisy in-

put image X, it is very difficult to generate good parameters

at high noise levels (even after incorporating the noise vari-

ance σ2 into the selection network). To overcome this issue,

we introduce an additional PgNet after each HQS iteration

(shown with dotted boxes in Figure 1). The rationale behind

adding these additional PgNets is that even if the first PgNet

fails to generate good parameters, the later PgNets could

generate appropriate parameters using the partially restored

images. Our final deep GCRF network consists of T PgNets

and T HQS layers as shown in Figure 1.

Training: We train the proposed deep GCRF network end-

to-end in a discriminative fashion by maximizing the aver-

age PSNR measure. We use standard back-propagation to

compute the gradient of the network parameters. Please re-

fer to the appendix for relevant derivative formulas. Note

that we have a constrained optimization problem here be-

cause of the symmetry and positive semi-definiteness con-

straints on the network parameters {Wk} and {Ψk}. We

convert this constrained problem into an unconstrained one

by parametrizing Wk and Ψk as Wk = PkP
⊤
k ,Ψk =

RkR
⊤
k , where Pk and Rk are lower triangular matrices,

and use limited memory BFGS [21] for optimization.

5. Experiments

In this section, we use the proposed deep GCRF network

for image denoising. We trained our network using a

dataset of 400 images (200 images from BSD300 [23]

training set and 200 images from PASCALVOC 2012 [10]

dataset), and evaluated it using a dataset of 300 images

(100 images from BSD300 [23] test set and 200 images

from PASCALVOC 2012 [10] dataset). For our experi-

ments, we used white Gaussian noise of various standard

deviations. For realistic evaluation, all the images were

quantized to [0-255] range after adding the noise. The

noisy and clean images used for training and testing can

be downloaded from http://ravitejav.weebly.

com/gcrfdenosing.html. We use the standard PSNR

measure for quantitative evaluation.

Though we use Gaussian noise, due to quantization (clip-

ping to 0-255 range), the noise characteristics deviate from

being a Gaussian as the noise variance increases. To cope up

with this variation in noise characteristics, we trained two

different networks, one for low input noise levels (σ ≤ 25,

noise reasonably close to a Gaussian after quantization) and

one for high input noise levels (25 < σ < 60, noise far from

being a Gaussian after quantization) 1. For training the low

noise network, we used σ = [8, 13, 18, 25] and for training

the high noise network, we used σ = [30, 35, 40, 50]. Note

that both the networks were trained to handle a range of in-

put noise levels. For testing, we varied the σ from 10 to 60

in intervals of 5.

We performed experiments with two patch sizes (5 × 5
and 8 × 8) 2, and the number of matrices Ψk was chosen

as 200. Following [40], we used six HQS iterations with

β values given by 1
σ2 [1, 4, 8, 16, 32, 64]

3. To avoid overfit-

ting, we regularized the network, by sharing the parameters

{Wk,Ψk} across all PgNets. We initialized the network

parameters using the parameters of a GMM learned on clean

image patches.

Table 1 compares the proposed deep GCRF network with

various image denoising approaches on 300 test images.

Here, DGCRF5 and DGCRF8 refer to the deep GCRF net-

works that use 5×5 and 8×8 patches, respectively. For each

noise level, the top two PSNR values are shown in bold-

face style. Note that the CSF [31] and MLP [3] approaches

train a different model for each noise level. Hence, for

these approaches, we report the results only for those noise

levels for which the corresponding authors have provided

their trained models. As we can see, the proposed deep

GCRF network clearly outperforms the ClusteringSR [7],

EPLL [40], BM3D [6], NL-Bayes [20], NCSR [8] and CSF

approaches on all noise levels, and the WNNM [14] ap-

proach on all noise levels except σ = 10 (where it per-

forms equally well). Specifically, it produces significant

improvement in the PSNR compared to the ClusteringSR

(0.29 - 1.24 dB), EPLL (0.24 - 1.18 dB), BM3D (0.18 -

0.83 dB), NL-Bayes (0.10 - 1.27 dB), NCSR (0.11 - 1.07

dB) and WNNM (upto 1.0 dB) approaches. The CSF ap-

proach of [31], which also uses GCRFs, performs poorly

(0.24 dB for σ = 25) compared to our deep network.

1When we tried training a single network for all noise levels, our train-

ing was mainly focusing on high noise data.
2We did not go beyond 8 × 8 due to memory and computation issues.

We believe that bigger patches could further improve the performance.
3Optimizing the β values using a validation set may further improve

our performance.
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Test σ 10 15 20 25 30 35 40 45 50 55 60

ClusteringSR [7] 33.27 30.97 29.41 28.22 27.25 26.30 25.56 24.89 24.28 23.72 23.21

EPLL [40] 33.32 31.06 29.52 28.34 27.36 26.52 25.76 25.08 24.44 23.84 23.27

BM3D [6] 33.38 31.09 29.53 28.36 27.42 26.64 25.92 25.19 24.63 24.11 23.62

NL-Bayes [20] 33.46 31.11 29.63 28.41 27.42 26.57 25.76 25.05 24.39 23.77 23.18

NCSR [8] 33.45 31.20 29.56 28.39 27.45 26.32 25.59 24.94 24.35 23.85 23.38

WNNM [14] 33.57 31.28 29.70 28.50 27.51 26.67 25.92 25.22 24.60 24.01 23.45

CSF [31] - - - 28.43 - - - - - - -

MLP [3] 33.43 - - 28.68 - 27.13 - - 25.33 - -

DGCRF5 33.53 31.29 29.76 28.58 27.68 26.95 26.30 25.73 25.23 24.76 24.33

DGCRF8 33.56 31.35 29.84 28.67 27.80 27.08 26.44 25.88 25.38 24.90 24.45

Table 1: Comparison of various denoising approaches on 300 test images.

Figure 4: Sensitivity analysis of the MLP and the proposed ap-

proach. The noise levels for which MLP was trained are indicated

using a circular marker.

When compared with MLP[3], which is the state-of-the-

art deep networks-based denoising approach, we perform

better for σ = [10, 50], worse for σ = 35, and equally well

for σ = 25. However, note that while [3] uses a different

MLP for each specific noise level, we trained only two net-

works, each of which can handle a range of noise levels.

In fact, our single low noise network is able to outperform

the MLP trained for σ = 10 and perform as good as the

MLP trained for σ = 25. This ability to handle a range

of noise levels is one of the major benefits of the proposed

deep network. Note that though we did not use the noise

levels σ = 10, 15, 20, 45 during training, our networks per-

forms very well for these σ. This shows that our networks

are able to handle a range of noise levels rather than just

fitting to the training σ. Also, our high noise network per-

forms well for σ = 55 and 60 even though these values

are out of its training range. This shows that the proposed

model-based deep network can also generalize reasonably

well for out-of-range noise levels.

We acknowledge that the comparisons in Table 1 may

be biased since some of the competing methods are not de-

signed for denoising quantized images. However, we be-

lieve that, for the denoising problem, using quantized im-

ages is a more realistic experimental setting than using un-

quantized images. Please refer to Table 2 for additional re-

sults on a benchmark dataset under the unquantized setting.

To analyze the sensitivity of the non-model based MLP

approach to the deviation from training noise, we evalu-

ated it on noise levels that are slightly (±5) different from

the training σ. The authors of [3] trained separate MLPs

for σ = 10, 25, 35, 50 and 65. As reported in [3], train-

ing a single MLP to handle multiple noise levels gave in-

ferior results. Figure 4 shows the improvement of the

MLP approach over BM3D in terms of PSNR. For each

noise level, we used the best performing model among

σ = 10, 25, 35, 50, 65. As we can see, while the MLP ap-

proach does very well for the exact noise levels for which

it was trained, it performs poorly if the test σ deviates from

the training σ even by 5 units. This is a major limitation of

the MLP approach since training a separate model for each

individual noise level is not practical. In contrast to this, the

proposed approach is able to cover a wide range of noise

levels just using two networks.

Please note that the purpose of Figure 4 is not to com-

pare the performance of our approach with MLP on noise

levels that were not used in MLP training, which would be

an unfair comparison. The only purpose of this figure is to

show that, although very powerful, a network trained for a

specific noise level is very sensitive.

Apart from our test set of 300 images, we also evaluated

our low noise DGCRF8 network on a smaller dataset of 68

images [28] which has been used in various existing works.

Tables 2 and 3 compare the proposed deep GCRF network

with various approaches on this dataset under the unquan-

tized and quantized settings, respectively. For each noise

level, the top two PSNR values are shown in boldface style.

As we can see, the proposed approach outperforms all the

other approaches except RTF5 [30] and MLP [3] under the

quantized setting, and TRD [5] under the unquantized set-

ting. However, note that while we use a single network

for both σ = 15 and σ = 25, the MLP, TRD and RTF5

approaches trained their models specifically for individual

noise levels.
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Test σ ARF LLSC EPLL opt-MRF ClusteringSR NCSR BM3D MLP WNNM CSF RTF5 TRD DGCRF8

[2] [22] [40] [4] [7] [8] [6] [3] [14] [31] [30] [5]

15 30.70 31.27 31.19 31.18 31.08 31.19 31.08 - 31.37 31.24 - 31.43 31.43

25 28.20 28.70 28.68 28.66 28.59 28.61 28.56 28.85 28.83 28.72 28.75 28.95 28.89

Table 2: Comparison of various denoising approaches on 68 images (dataset of [28]) under the unquantized setting.

Test σ LLSC EPLL opt-MRF ClusteringSR NCSR BM3D NL-Bayes MLP WNNM CSF RTF5 DGCRF8

[22] [40] [4] [7] [8] [6] [20] [3] [14] [31] [30]

15 31.09 31.11 31.06 30.93 31.13 31.03 31.06 - 31.20 - - 31.36

25 28.24 28.46 28.40 28.26 28.41 28.38 28.43 28.77 28.48 28.53 28.74 28.73

Table 3: Comparison of various denoising approaches on 68 images (dataset of [28]) under the quantized setting.

Training time: We trained each DGCRF8 network for three

weeks (around 250 limited memory BFGS iterations).

Denoising time: The proposed DGCRF8 network takes

4.4s for a 321×481 image on an NVIDIA Titan GPU using

a MATLAB implementation.

6. Conclusions

In this work, we proposed a new end-to-end trainable

deep network architecture for image denoising based on a

Gaussian CRF model. The proposed network consists of

a parameter generation network that generates appropriate

potential function parameters based on the input image, and

an inference network that performs approximate Gaussian

CRF inference. Unlike the existing discriminative denois-

ing approaches that train a separate model for each individ-

ual noise level, the proposed network can handle a range

of noise levels as it explicitly models the input noise vari-

ance. We achieved results on par with the state-of-the-art by

training two deep GCRF networks, one for low input noise

levels and one for high input noise levels. In the future, we

plan to use this network for other full-image inference tasks

like super-resolution, depth estimation, etc.

Appendix

In this appendix, we show how to back-propagate the

loss derivatives through the layers of our deep GCRF net-

work. Please refer to the supplementary material for de-

tailed derivations. Let L be the final loss function.

Backpropagation through the combination layer: Given

the derivatives dL/dΣij of the loss function L with respect

to the pairwise potential parameters Σij , we can compute

the derivatives of L with respect to the combination weights

γk
ij and the matrices Ψk using

dL

dγk
ij

= trace

(

Ψ⊤
k

dL

dΣij

)

,
dL

dΨk

=
∑

ij

γk
ij

dL

dΣij

. (11)

Backpropagation through the quadratic layer: Given the

derivatives dL/dskij of the loss function L with respect to

the quadratic layer output skij , we can compute the deriva-

tives of L with respect to the selection network parameters

(Wk, bk) and the input patches x̄ij using:

dL

dWk

=
(

Wk + σ2I
)−1





∑

ij

dL

dskij

x̄ijx̄
⊤
ij

2





(

Wk + σ2I
)−1

dL

dbk
=

∑

ij

dL

dskij
,

dL

dx̄ij

= −
∑

k

dL

dskij

(

Wk + σ2I
)−1

x̄ij .

(12)

Backpropagation through the patch inference layer:

Given the derivatives dL/dzij of the loss function L with

respect to the output of a patch inference layer, we can com-

pute the derivatives of L with respect to its input patches yij

and the pairwise potential parameters Σij using

dL

dyij

=
(

I−G⊤(βΣij +G)−1G
) dL

dzij
,

dL

dΣij

= β (βΣij +G)
−1

G
dL

dzij
y⊤
ijG

⊤ (βΣij +G)
−1

.

(13)

We skip the derivative formulas for other computations

such as softmax, extracting mean-subtracted patches from

an image, averaging in the image formation layer, etc., as

they are standard operations.
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