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Abstract

In this paper, we present a real-time salient object detec-

tion system based on the minimum spanning tree. Due to the

fact that background regions are typically connected to the

image boundaries, salient objects can be extracted by com-

puting the distances to the boundaries. However, measuring

the image boundary connectivity efficiently is a challenging

problem. Existing methods either rely on superpixel repre-

sentation to reduce the processing units or approximate the

distance transform. Instead, we propose an exact and iter-

ation free solution on a minimum spanning tree. The min-

imum spanning tree representation of an image inherently

reveals the object geometry information in a scene. Mean-

while, it largely reduces the search space of shortest paths,

resulting an efficient and high quality distance transform

algorithm. We further introduce a boundary dissimilarity

measure to compliment the shortage of distance transform

for salient object detection. Extensive evaluations show that

the proposed algorithm achieves the leading performance

compared to the state-of-the-art methods in terms of effi-

ciency and accuracy.

1. Introduction

The goal of salient object detection is to identify the most

important objects in a scene. Recently, it has attracted much

attention [15, 19, 5, 10, 25, 11, 4] for its wide range of ap-

plications such as image retargeting [16, 7], object recogni-

tion [22] and image segmentation [9], to name a few. As a

preprocessing step, a desirable saliency detection algorithm

should be computational efficient for practical usage.

In general, previous works can be categorized into

bottom-up or top-down methods. Top-down methods [8,

29] are task-driven and usually require supervised learning

with high-level information. Bottom-up methods [1, 26, 5,

28, 12] are usually based on low-level features such as color,

gradient or contrast. Most saliency detection methods are
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bottom-up models owing to the task-free nature and supe-

rior computational efficiency over top-down approach.

The background and connectivity priors proposed by

Wei et al. [26] have been shown to be effective in bottom-

up salient object detection. The background prior assumes

the image boundaries are mostly background. The connec-

tivity prior describes the fact that background regions are

usually large and homogeneous so that pixels in the back-

ground can be easily connected to each other. In [26], the

boundary patches are set as the background seeds and the

saliency of a patch is defined as the shortest-path geodesic

distance towards the background seeds.

Many recent approaches [28, 12, 35, 21, 34] achieve

state-of-the-art results by extending the background and

connectivity priors. In [35], Zhu et al. also utilize the

geodesic distance and take the spatial layout of image

patches into consideration for a more robust boundary mea-

surement. Yang et al. [28] compute the saliency value of a

region according to its relevance to boundary patches by

manifold ranking. Jiang et al. [12] formulate the prob-

lem as absorbing Markov chain on an image graph model.

The boundary nodes are chosen as the absorbing nodes in

a Markov chain and the absorbed time is used to measure

saliency. In [21], they propose a saliency optimization ap-

proach based on Cellular Automata. They also leverage

the background prior to compute a global color distinction

map as well as a spatial distance map. These two maps

are integrated into a simple background-based map for ini-

tialization. To achieve feasible complexity, all the above

methods rely on superpixel abstraction to reduce the pro-

cessing units. However, the over-segmentation step usually

becomes the processing bottleneck and restricted this type

of methods from real-time applications. Lately, Zhang et

al. [34] use the minimum barrier distance (MBD) [24, 6]

for salient object detection. They show that minimum bar-

rier distance is superior to geodesic distance in several nu-

merical evaluation. Instead of processing with superpixels,

they demonstrate an efficient pixel-wise raster-scanning al-

gorithm to compute the approximated MBD transform.

We also tackle the problem from the distance trans-
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form perspective. Unlike previous works [26, 34] which

compute the distance on an image, we instead measure

the distance between pixels on a minimum spanning tree

(MST) [3, 30, 31]. This tree representation of an image

offers us two main advantages over measuring distance in

pixel/superpixel level: (i) We show that the minimum span-

ning tree representation largely reduce the candidate paths

from any starting node to the target seeds so that it can ef-

fectively benefit the computational efficiency of the distance

transform procedure. Specifically, when the minimum bar-

rier distance is used as the distance metric, it takes only 6

comparisons and 2 subtractions per pixel regardless of the

number of candidate paths and the number of target seeds.

(ii) The structure-aware property of the minimum spanning

tree allows the distance measure on a tree able to distin-

guish objects in a scene. The proposed salient object detec-

tion method achieves superior results to the state-of-the-art

methods. In the meanwhile, the proposed method takes only

24.6 ms using a single thread CPU for a 300 × 400 image

(including the construction of MST) which offers an ideal

choice for real-time oriented applications.

2. Minimum Spanning Tree for an Image

The effectiveness of minimum spanning tree (MST)

based image representation has been demonstrated in

cost aggregation for stereo matching [30, 31] and edge-

preserving filtering [3]. In this section, we briefly review

the MST representation as a preliminary knowledge to the

proposed method.

By treating an image I as a standard 4-connected, undi-

rected graph (planar graph) with nodes being all the im-

age pixels, and the edges between adjacent pixels be-

ing weighted by color/intensity differences (absolute gra-

dients), a minimum spanning tree can be constructed by

sequentially removing edges with large weights (Kruskal’s

algorithm [13]), leaving the remaining edges connecting

through all pixels as a tree. More specifically, let s and r

be a pair of adjacent pixels, the weight between s and r is

ω(s, r) = ω(r, s) = |I(s)− I(r)|.1 (1)

Figure 1 shows a toy example of 4 × 5 pixels. During the

tree construction, if two adjacent pixels have large gradient,

the edge between these two pixels is likely to be removed

and the path to traverse one pixel to another will be long

as shown in Figure 1(c). As a result, the distance on the

MST will be large for these two pixels. On the contrary, if

two pixels are similar in appearance, they are likely to be

connected on the MST and the distance will be short.

For tree construction, Bao et al. [3] present a linear time

approach tailored for 8-bit images (which may have multi-

ple channels) based on Prim’s algorithm [20]. It takes about

1For color images, the maximum value computed separately from three

channels is used as the weight.

Figure 1: A toy example showing the construction of a min-

imum spanning tree for an image. (a) A planar graph in

which nodes are image pixels and edges are weighted by

color/intensity differences between adjacent pixels. (b) The

MST is constructed by sequentially removing edges with

large weights. (c) The distance of the two red pixels is de-

fined on the tree path (the dashed line).

0.07 seconds to build a MST using single thread on a mod-

ern CPU for a 1-megapixel image. We adopt the same algo-

rithm and it takes in average 5.86 ms in MST construction

for a 300× 400 image.

3. Distance Transform with a Minimum Span-

ning Tree

Previously, the geodesic distance (GD) and the barrier

distance (BD) are used for salient object detection. In this

section, we present a novel distance transform based on the

MST representation of an image. The proposed algorithm

is able to apply to both kinds of distance metrics.

3.1. Basic Definition

The goal of distance transform is to compute a distance

map D with respect to a set of seed nodes2 S. Again,

the input image I is treated as a planar graph. Let π =
{π(0), ..., π(k)} denote a path on the graph. π(i) and

π(i + 1) are adjacent pixels on image I . Given a distance

metric f(π), the distance transform of a node v is

D(v) = min
π∈ΠS,v

f(π), (2)

where ΠS,v denotes the set of all paths connecting v and a

seed in S. In general, the distance measure of two nodes u

and v has the following properties

f(u → v) = f(v → u) (3)

f(u → v) >= 0 (4)

In [26, 35], the geodesic distance is used for salient ob-

ject detection. The geodesic distance accumulates the dis-

tance of all traversed pixel pairs on a path. Formally, the

geodesic distance metric fGD(π) is defined as

fGD(π) =
k−1
∑

i=0

|I(π(i+ 1))− I(π(i))|. (5)

2We use node and pixel interchangeably when we discuss the graph or

the image. They are the same in this paper since the proposed algorithm is

a pixel-wise algorithm.
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In [34], the minimum barrier distance [24, 6] is used for

salient object detection. The barrier distance metric fBD(π)
is defined as

fBD(π) =
k

max
i=0

I(π(i))−
k

min
i=0

I(π(i)). (6)

The barrier distance is shown to be more robust than

geodesic distance for salient object detection [34]. How-

ever, finding the exact minimum barrier distance (MBD) has

high complexity of O(mn log n) [6], where n is the num-

ber of pixels in the image and m is the number of distinct

values the image contains. Zhang et al. [34] proposed an

iterative raster scanning approach to approximate the MBD

transform instead of exhaustive search by Dijkstra-like al-

gorithms.

3.2. The Proposed Distance Transform

Instead of searching the shortest distance on the image,

we propose to find the shortest path on a minimum span-

ning tree. The proposed MST-based distance transform is

an exact solution for distance defined on the tree. It consists

of two passes: bottom-up traversal and top-down traversal.

Figure 2 gives a simple illustration using geodesic distance.

The counterpart using barrier distance is similar. Given a

set of seed nodes S, we initialize the distance values of seed

nodes to 0 and all other nodes to ∞ as shown in Figure 2(a).

Figure 2(b) and (c) demonstrate the bottom-up traversal and

the top-down traversal respectively.

For the bottom-up pass, we start from the leaf nodes and

update the distance values of their parent nodes by

D(p) = min{D(p), f(πv ∪ p)}, (7)

where p denotes the parent node of v, πv denotes the cur-

rent optimal path connecting v to its nearest seed node and

πv ∪ p denotes the same path plus one step further to reach

its parent p. As the nearest seed node to p can come from

its bottom or from its top, Eq. 7 tests the possible solution

from the bottom. If p has multiple child nodes, Eq. 7 will

be evaluated for each child node and the minimum distance

is stored. One example is shown in the root node of Fig-

ure 2(b). In short, the updating process is conducted in

bread first search (BFS) order in each node. The bottom-

up traversal continues until it reaches the root node.

The top-down pass is similar while starting from the root

node. For each node, we visit its child nodes and update

their distance values by

D(v) = min{D(v), f(πp ∪ v)}. (8)

Note that Eq. 8 not only tests for the possible solution from

the top, but also propagate potentially better solutions from

other branches. One can see the illustration in Figure 2(b).

After the bottom-up pass, many nodes still have ∞ distance

Figure 2: A simple illustration of the proposed two-pass

distance transform algorithm. For simplicity, let all edge

weights be 1 and assume the geodesic distance is used. (a)

Initially, the distance values of seed nodes are set to 0 and ∞
for others. (b) Bottom-up updating. The updated distance is

labeled in yellow. (c) Top-down updating.

from seed nodes. The nearest seed node to a certain node

may locate at the top or at the branches splitting from the

nodes above it. After the bottom-up pass, a splitting node

is expected to record the optimal distance value from one

of its branches. And in the top-down pass, the optimal so-

lution will be propagated down to other branches as shown

in Figure 2(c). This is why we conduct the bottom-up pass

first.

We can learn more rules with this simple illustration.

First, the distance of node v1 is uniquely determined by

seed node v2. This is based on the fact that traveling across

the seed node has the chance to increase the distance for

both GD and BD. Therefore v2 is the optimal seed node

for v1. For GD, traveling one step further add one more

absolute gradient term to its distance computation so the

updated distance is non-decreasing. For BD, we track the

maximum and minimum values for each node. Traversing

one more node may update the maximum or minimum val-

ues and thus increase the barrier value, so the final distance

is also non-decreasing. It implies another observation that

travelling across seed nodes or updating the distance of seed

nodes would not give better results and thus is unnecessary.

Finally, we summarize the rules as follows:

1. Performing the bottom-up traversal and then the top-

down traversal results in the optimal distance transform.

2. If a seed node is the only seed node and is located at

the root node of a sub-tree, then the distance transform of

the nodes on the sub-tree is uniquely determined by this

seed node. The corresponding distance transform will be

obtained in the top-down pass.

3. During traversal, we can ignore the updating steps in

Eq. 7 and Eq. 8 for seed nodes.
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Figure 3: An overview of our MST-based saliency detection framework.

3.3. Complexity Analysis

We estimate the operation count by considering the case

that every node performs bottom-up updating in Eq. 7 and

top-down updating in Eq. 8 once. In practice, the root node

has no parent and the leaf nodes have no child. Moreover,

we can ignore the seed nodes in the updating steps, so the

estimated operation count is in fact a loose upper bound.

If the geodesic distance is adopted, both Eq. 7 and Eq. 8

require one comparison operation and one addition opera-

tion. In total, 2 addition operations and 2 comparison oper-

ations are required.

If the barrier distance is adopted, we track the maximum

and the minimum values for each node. Each time when a

new node is visited, 3 comparison operations are required

for bottom-up or top-down pass, including one comparison

for the maximum, one for the minimum and one for com-

paring the optimal distance. Extra subtraction operation is

required to compute the barrier distance. As a result, in total

6 comparisons and 2 subtraction operations are required for

the minimum barrier distance.

As a result, the distance transform with a MST has con-

stant complexity for each pixel regardless of the distance

metric used. With the linear time construction algorithm

described in [3], the overall distance transform is also linear

in the number of pixels.

4. Salient Object Detection

We describe our salient object detection system in this

section. Despite of the distance transform presented in pre-

vious section, we introduce another simple yet useful auxil-

iary map based on appearance similarity measure to compli-

ment the shortage of measuring the boundary connectivity.

We further utilize the off-the-shelf MST to apply tree fil-

tering [3] to smooth the map. Finally, we also describe the

post-processing in this section. The overall salient object

detection system is summarized in Figure 3.

4.1. Measuring the Boundary Connectivity

We set all pixels along the image boundary as a set of

seed nodes to exploit the background and connectivity pri-

ors for salient object detection. We have tested our MST-

based distance transform using both GD and BD. When

computing the GD transform, we also account for the inter-

nal edge weight clipping step similar to [26]. We compute

the average edge weight of all remaining edges on the MST

as the clipping threshold. The barrier distance is not based

on accumulation so it does not contain this step.

Example results of our MST-based distance transform

using GD or BD are shown in Figure 4. As one can see,

the BD transform is more robust to texture and has the abil-

ity to capture the geometry information better. Thus the BD
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Figure 4: Distance transform result. Boundary pixels are

set as seed nodes. From left to right: input images, distance

transform using GD, distance transform using BD. The re-

sults using BD is usually more robust than GD.

transform is more favoured in salient object detection and

we adopt the BD transform in our final experimental results.

4.2. Boundary Color Dissimilarity Measure

The distance map alone sometimes can not produce sat-

isfying results when the background has many cluttered

and isolated regions or the salient object touches the image

boundary. To compliment the shortage of distance trans-

form, we introduce another auxiliary map computed by

pixel-wise color similarity measure to improve the saliency

detection quality.

Again, we assume most image boundary pixels are back-

ground. First of all, boundary pixels are clustered into K

groups by their color values in Lab color space. We have

found that 3 clusters is enough and set K = 3 for all evalu-

ation. The boundary size between 10 − 30 pixels produces

similar results. We simply set boundary size = 10 pixels.

Let nk be the number of pixels in each group after cluster-

ing. For each group, we compute the mean color µk and

covariance matrix Ck. Then, the pixel-wise color dissimi-

larity map of boundary group k is computed using the Ma-

halanobis distance:

Sk(i) =
√

(I(i)− µk)C
−1

k (I(i)− µk)T . (9)

Sk is normalized and the final boundary color dissimilar-

ity map S is obtained by weighted sum of Sk maps.

S =

∑K

k=1
nkSk

∑K

k=1
nk

. (10)

Since the map is computed in pixel-wise fashion, sometimes

it appears noisy due to image noise or image compression

artifact. We utilize the off-the-shelf MST data structure pre-

viously built for distance transform. The map is smoothed

using tree filtering [3]. Note that the MST data structure is

built once and can be used multiple times for distance trans-

form as well as tree filtering. It is our advantage over other

distance transform based methods.

Example results are shown in Figure 5. Note that even

when the foreground object touches the image boundary,

the proposed boundary color dissimilarity measure is able

to distinct the object from the background. This is due to the

boundary clustering step and weighted sum scheme. Even

the foreground touches the image border, usually the ma-

jority part of boundary pixels are still background. The

preliminary clustering step separates boundary pixels that

have distinctive color appearance. The potential foreground

pixel group is usually small, so after the weighted summa-

tion step, the final boundary dissimilarity map can still re-

veal the foregroundness of a scene.

4.3. Post­processing

The post-processing is similar to [34]. The distance map

D and the boundary dissimilarity map S are added together

to form an intermediate map M . This map accounts for the

object geometry information from the distance transform as

well as the global distinctiveness of appearance from the

boundary color dissimilarity map.

We further apply a pixel location dependent masking to

emphasize the photographic bias that photographers tend to

locate important objects ta the center of the image. Let the

image resolution be H × W . This mask is simply a two-

dimensional Gaussian fall-off with variance H
3

and W
3

re-

spectively. The masked intermediate map is further normal-

ized so that the maximum value is 1.

Finally, we apply an adaptive contrast enhancement with

the following sigmoid mapping:

g(x) =
1

1 + exp(−γ(x− τ))
, (11)

where τ is an adaptive threshold obtained using Otsu’s bi-

nary threshold method [18] and γ controls the overall sharp-

ness. We set γ = 20 in our experiments.
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Figure 5: Examples of color dissimilarity map. From left

to right: input images, boundary clustering results, color

dissimilarity maps against boundary group 1 − 3, and final

boundary dissimilarity maps.

5. Experimental Results

We evaluate the proposed method on three datasets. The

first one is the MSRA-1000 dataset [1], which contains

1000 images. The second one is the ECSSD dataset [23],

which also contains 1000 images. Moreover, it has many

semantically meaningful yet structurally complicated im-

ages. The last one is the PASCAL-S [14] dataset, which

contains 850 natural images with complex background. The

PASCAL-S dataset is designed to avoid the dataset design

bias and is the most challenging among these three datasets.

These datasets all have accurate human-labelled masks for

salient objects.

We compare our method with twelve classic or state-of-

the-art saliency detection algorithms. They are BL [25],

MB+ [34], SO [35], BMS [32], HS [27], RC [4], GC [5],

AMC [12], MR [28], GS [26], SF [19] and FT [1] meth-

ods. Among them, GS, SO, MB+ use distance transform

and BMS is closely related to the minimum barrier dis-

tance [33]. The saliency maps of different methods are pro-

vided by authors or obtained from available software. Note

that we use the implementation of SF provided by the author

of [35].

5.1. Processing Time Evaluation

We evaluate the processing time using a 3.6 GHz Core

i7-4790 CPU with 8GB memory to process color images

FT MB+ Ours GC RC MR GS AMC SF BMS HS SO
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Figure 6: The average time to process a 300 × 400 color

image.

of 300 × 400 resolution. FT, RC, GC and our method is

evaluated with C code. MB+ is evaluated using the soft-

ware provided by the author. And the rest use MATLAB

and C. For those methods using superpixel segmentation as

preprocessing, we use the default settings in the provided

code. They all use SLIC superpixel [2] in the implemen-

tation. The processing time of different methods is sorted

and shown in Figure 6. Note that we remove the processing

time of BL from the plot due to its higher order. It takes

11.784 seconds to process an image.

Our method achieves real-time detection (more than 30

FPS). It takes in average 24.6 ms to process an image. The

MST construction, tree filtering and distance transform pre-

sented in this paper all have complexity linear in the number

of pixels. As we discussed earlier, the MST is constructed

once and can be used for different purposes many times.

For more detail, it takes 5.86 ms for MST construction us-

ing Prim’s algorithm, 1.12 ms for filtering a single channel

image and 1.75 ms for single channel MBD transform. With

low complexity, the proposed MST-based distance trans-

form along with other MST-based algorithms provides an

ideal tool for applications with speed requirement.

5.2. Quantitative and Qualitative Evaluations

We compute the precision and recall scores by binariz-

ing the saliency maps with a threshold sliding from 0 to 255

and compare the binary maps with ground truth maps. Usu-

ally, precision and recall are both important and therefore

F-measure is used as the overall performance measure:

Fβ =
(1 + β2) · precision · recall

β2 · precision+ recall
. (12)

We set β2 = 0.3 as suggested in [1] to emphasize the pre-

cision. Figure 7 shows the results in three datasets. In

our evaluation, no single method outperforms others in all

datasets. Nevertheless, one can still see that our method

achieves comparable results to the leading methods over all

thresholds.

As neither precision nor recall measure consider the

true negative saliency assignments, the mean absolute error

(MAE) is also introduced as a complementary. The MAE

score calculates the average difference between the saliency
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Figure 8: The mean absolute error (MAE) scores.
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Figure 9: The weighted-Fβ scores.

map M and the ground truth GT :

MAE =
1

H ×W

H×W
∑

i=1

|M(i)−GT (i)|. (13)

The MAE scores of compared methods are sorted and

shown in Figure 8. Our method has the lowest MAE scores

among all compared methods in all datasets.

We also evaluate all methods with the weighted Fβ-

measure proposed in [17]. The weighted Fβ-measure serves

as a more reliable metric than previously used metrics like

area under the curve (AUC), average precision (AP) or Fβ-

measure to evaluate foreground maps. We use the code and

default parameters provided by the author [17] to evaluate

saliency maps. The sorted results are shown in Figure 9.

Our method achieves the highest scores than all other com-

petitors in all datasets.

From above evaluation, the proposed method achieves

state-of-the-art in terms of efficiency and accuracy. Fig-

ure 10 shows some sample saliency maps from three

datasets for reference. Our model is able to detect salient

objects in the scene with complex or highly textured back-

ground.

5.3. Limitations

The background and connectivity priors work because

of the photographic biases that photographers tend to locate

important objects at the center of the image. If the salient

objects touch the image boundary, the proposed method

may produce bad results due to bad boundary connectiv-

ity measure. As shown in Fig. 11, the boundary color dis-

similarity measure is helpful to enhance the final results.
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Input GT Ours RC MB+ BL SO AMC BMS GC HS MR GS SF FT

Figure 10: Comparison of our saliency maps with other classic or state-of-the-art methods.

Figure 11: From left to right: input images, distance trans-

form results, boundary color dissimilarity measure, final re-

sults.

However, it still cannot fully handle such situation. This

limitation can be observed in other background prior based

methods as well.

6. Conclusion

In this paper, we present a novel distance transform

method using the minimum spanning tree representation of

an image. Instead of finding the shortest paths on the image

using Dijkstra-like algorithms, we compute distance on the

tree paths. The MST structure largely reduces the search

space of shortest paths. We show that the MST-based dis-

tance transform has constant complexity for each pixel us-

ing either geodesic distance or barrier distance (the overall

complexity is linear in the number of pixels). Together with

previously proposed linear time MST construction and tree

filtering. The family of MST-based algorithms is an ideal

choice for applications with real-time demand.

We apply the proposed distance transform to measure

boundary connectivity for salient object detection. The pro-

posed salient object detection is evaluated and compared

with state-of-the-art algorithms and achieves comparable or

better results in numerical evaluation. Moreover, the pro-

posed method runs at over 30 FPS. In summary, the pro-

posed method is an accurate and efficient algorithm with the

built-in MST structure being our powerful advantage over

other distance transform based algorithms.
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