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Abstract

Video object segmentation is challenging due to fast

moving objects, deforming shapes, and cluttered back-

grounds. Optical flow can be used to propagate an ob-

ject segmentation over time but, unfortunately, flow is often

inaccurate, particularly around object boundaries. Such

boundaries are precisely where we want our segmentation

to be accurate. To obtain accurate segmentation across

time, we propose an efficient algorithm that considers video

segmentation and optical flow estimation simultaneously.

For video segmentation, we formulate a principled, multi-

scale, spatio-temporal objective function that uses optical

flow to propagate information between frames. For opti-

cal flow estimation, particularly at object boundaries, we

compute the flow independently in the segmented regions

and recompose the results. We call the process object

flow and demonstrate the effectiveness of jointly optimiz-

ing optical flow and video segmentation using an iterative

scheme. Experiments on the SegTrack v2 and Youtube-

Objects datasets show that the proposed algorithm per-

forms favorably against the other state-of-the-art methods.

1. Introduction

Our goal is to segment video sequences, classifying each

pixel as corresponding to a foreground object or the back-

ground in every frame. Critical to solving this task is the

integration of information over time to maintain a con-

sistent segmentation across the entire video. Numerous

methods have been proposed to enforce temporal consis-

tency in videos by tracking pixels, superpixels or object

proposals [5, 10, 12, 19, 26, 35, 38, 40]. Another line of

research formulates this problem with a graphical model

and propagates the foreground regions throughout an im-

age sequence [1, 11, 14, 35, 36]. In addition, several algo-

rithms [18, 19, 21, 24, 45] focus on object-level segmen-

tations that favor temporal consistency. Such object-level

methods, however, may not be accurate on the pixel level,

generating inaccurate object boundaries.

Optical flow estimation has been extensively studied

[2, 6, 30] and it is widely used for video segmentation and

(a) frame t− 1 (b) frame t

(c) initial optical flow (d) updated optical flow

Figure 1. Object flow. (a)-(b) two consecutive frames. (c) optical

flow computed by [30] from frame t − 1 to t. (d) optical flow

that is updated using the segmentation marked by the red contour.

The motions within the object are more consistent and the motion

boundaries are more precise compared with the initial flow.

related problems [8, 13, 23, 42]. For instance, graph-based

video segmentation methods [14, 35] use optical flow in

the formulation of pairwise potentials that ensure frame-to-

frame segmentation consistency. However, estimated opti-

cal flow may contain significant errors, particularly due to

large displacements or occlusions [6, 9, 29, 39]. To com-

pute accurate optical flow fields, it is common to segment

images or extract edges to preserve motion details around

object boundaries [3, 43, 44, 47]. However, most methods

do not consider both flow estimation and video segmenta-

tion together.

In contrast, we estimate object segmentation and opti-

cal flow synergistically such that the combination improves

both. Figure 1 summarizes the main ideas of this work.

If the segmentation of the object is known, optical flow

within the same object should be smooth but flow across the

boundary need not be smooth. Similarly if an object moves

differently from the background, then the motion boundary

will correspond to the object boundary. Hence, accurate op-

tical flow facilitates detecting precise object boundaries and
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vice versa.

This notion, of course, is not entirely new, but few meth-

ods have tried to integrate video segmentation and flow es-

timation. Specifically, in this paper, we address the above

problems by considering object segmentation and optical

flow simultaneously, and propose an efficient algorithm,

which we refer as object flow. For the segmentation model,

we construct a multi-level graphical model that consists of

pixels and superpixels, where each of these play different

roles for segmentation. On the superpixel level, each su-

perpixel is likely to contain pixels from the foreground and

background as the object boundary may not be clear. On the

pixel level, each pixel is less informative although it can be

used for more accurate estimation of motion and segmenta-

tion. With the combination of these two levels, the details

around the object boundary can be better identified by ex-

ploiting both statistics contained in superpixels and details

on the pixel level. Furthermore, we generate superpixels by

utilizing supervoxels [13, 42] between two frames to exploit

temporal information in addition to the use of optical flow.

After obtaining the segmentation results, we apply the fore-

ground and background information to re-estimate optical

flow (Figure 1), and then iteratively use the updated optical

flow to re-segment the object region.

We evaluate the proposed object flow algorithm on the

SegTrack v2 [19] and Youtube-Objects [25] datasets. We

work in the standard paradigm of tracking that assumes an

initialization of the object segmentation in the first frame,

which could come from simple user input [27] . We quanti-

tatively compare our segmentation accuracy to other state-

of-the-art results and show improvements to the estimated

optical flow. With the updated optical flow using the seg-

mentation, we show that the iterative procedure improves

both segmentation and optical flow results in terms of vi-

sual quality and accuracy.

The contributions of this work are as follows. First,

we propose a multi-level spatial-temporal graphical model

for video object segmentation and demonstrate that it per-

forms better than single-level models. Second, we show that

the segmentation results can be used to refine the optical

flow, and vice versa, in the proposed object flow algorithm.

Third, we demonstrate that our joint model of segmentation

and optical flow can be efficiently computed by iterative op-

timization.

2. Related Work and Problem Context

Segment-based Tracking. Several segment-based track-

ing methods [12, 19, 38, 40] have been developed. A

Hough voting based algorithm [12] performs online track-

ing and generates segmentation using GrabCut [27]. Wang

et al. [38] propose a discriminative appearance model based

on superpixels to distinguish the target object from the

background. A recent part-based method tracks object seg-

ments [40] with the assumption that the number of parts

and superpixels are known in advance. As these approaches

only consider superpixels that are generated independently

in each frame, they do not explicitly exploit temporal infor-

mation among regions.

Li et al. [19] track object-level region proposals in con-

secutive frames. However, it is computationally expen-

sive to compute region proposals and the generated object

boundaries are not accurate. Lalos et al. [17] also propose

an algorithm called object flow but the goals are signifi-

cantly different from ours in that they focus on estimating

displacements of objects. In addition, this method neither

addresses generic flow estimation nor integrates segmenta-

tion and flow.

Graph-based Models. One approach to segment objects in

videos is to propagate foreground labels [1, 14, 35, 36] be-

tween frames based on graphical models. Graphical models

for video segmentation typically use unary terms that are

determined by the foreground appearance, motions or lo-

cations, and pairwise terms that encode spatial and tempo-

ral smoothnesses. These methods typically use optical flow

to maintain temporal links, but they are likely to fail when

the flow is inaccurate. In addition, graphical models can

be used for refining segments [18, 24]. Lee et al. [18] use

ranked object proposals and select key segments for shape

matching. Similar to the issues mentioned in [19], it is com-

putationally expensive to generate proposals and they are

likely to contain foreground and background pixels.

Layered Models. Video segmentation and motion estima-

tion are closely related. Layered models [7, 15, 16, 34,

37, 46] jointly optimize for segmentation and optical flow.

These models can be extended to the temporal domain with

more than two frames [31]. Early methods focus only on

motion information but more recent formulations combine

image and motion information in segmenting the scene into

layers [32, 41]. Most layered methods use complicated and

computationally expensive inference, thereby limiting their

applications.

In this paper, we propose an efficient algorithm that

jointly updates object segmentation and optical flow models

using an iterative scheme. The optical flow helps identify

temporal connections throughout the video, and the seg-

mentation improves the optical flow estimation at motion

boundaries.

3. Video Object Segmentation

In this section, we first explain how we construct the ob-

ject segmentation model. Given the initialization in the first

frame, we aim to propagate the foreground label through-

out the entire video. Note that, in contrast to unsuper-

vised methods [18, 19], that rely on motion and object pro-

posals and process the entire video offline in batch mode,
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Figure 2. Overview of the proposed model. For segmentation, we

consider a multi-level spatial-temporal model. Red circles denote

pixels, which belong to the superpixel marked by the turquoise cir-

cles. The black and the red lines denote the spatial and temporal

relationships, respectively. The relationships between the pixels

and the superpixel are denoted by the turquoise lines. After ob-

taining the object mask, Mt, we use this mask to re-estimate the

optical flow, and update both models iteratively.

the proposed algorithm is able to track and segment ob-

jects for online applications. Before assigning each pixel

a label, we search the possible locations for the object in

each frame to reduce the background noise. A multi-level

spatial-temporal graphical model is then applied to the es-

timated object regions. In this stage, unary and pairwise

terms for superpixels are introduced by the supervoxel to

better ensure temporal consistency. Figure 2 shows the pro-

posed multi-level segmentation model.

Object Location. Instead of using the segmentation model

on the entire image, we first estimate the object location to

reduce the computational load and the effect of background

noise. We design a scoring function for each pixel based on

color and location:

St(x
t
i) = At(x

t
i) + Lt(x

t
i,Mt−1), (1)

where At is the color score on the pixel xt
i computed by

a Gaussian Mixture Model (GMM), and Lt is the location

score measured by the Euclidean distance transform of the

binary object maskMt−1 in the previous frame.

Since we do not know the exact object location or shape

in the current frame, we assume that the object does not

move abruptly. Therefore, we generate the rough object

mask in the current frame t using the segmentation mask

Mt−1 in the previous frame translated by the average op-

tical flow vector within the mask. We then use and expand

this coarse mask on a local search region that is s times the

size of the object maskMt−1 (s is from 2 to 3 depending

on the object size in this work). This mask ensures that most

of the pixels within the object are covered. After obtaining

the local search region, we use the distance transform on

Figure 3. Estimated object location Rt. Given the object mask

Mt−1 marked as the red contour, we search for a local region in

the current frame t and compute the foreground scores based on

color and location. The estimated foreground region is used for

label assignment.

this expanded mask to compute location scores. Similarly,

we also consider color scores based on this local region.

Figure 3 illustrates one example of the combination of two

scores. A threshold is then applied to select the object loca-

tion Rt for further determining label assignment.

Graphical Model. After the object region for label as-

signment is selected, we utilize a spatial-temporal graphi-

cal model to assign each pixel with a foreground or back-

ground label. We define an energy function in a Conditional

Random Field (CRF) form for the pixel xt
i ∈ X with label

∈ {0, 1}:

Epix(X) = Ūt(X,Mt−1) + γs
1

∑

(i,j,t)∈Et

V̄t(x
t
i, x

t
j)

+ γt
1

∑

(i,j,t)∈Et

W̄t(x
t−1
i , xt

j), (2)

where Ūt is the unary potential for the cost to be foreground

or background, and V̄t and W̄t are pairwise potentials for

spatial and temporal smoothnesses with weights γs
1 and γt

1,

respectively. Both of the pairwise terms are defined as

in [24]. Note that we only consider Et within the region

Rt generated in the object location estimation step.

For the unary term in (2), we consider appearance and

location energies defined by Ūt(X,Mt−1)=

α1

∑

(i,t)∈Rt

Φ̄a(x
t
i) + β1

∑

(i,t)∈Rt

Φ̄l(x
t
i,Mt−1), (3)

where Φ̄a is the appearance term, and Φ̄l is the location

term defined similar to the one in (1). The difference is that

for the nodes in the previous frame, we can simply compute

the distance transform of the object mask Mt−1. For the

appearance term, we construct the color GMM in the first

frame, and an online SVM model with CNN features [20]

updated every frame. The weight α1 consists of αcol
1 and

αcnn
1 for the color and CNN features, respectively. By min-

imizing (2), we obtain labels within Rt and thus the object

maskMt, and then continue to propagate to the next frame.

Multi-level Model. Although the model based on pixels

can achieve fine-grained segmentation, pixels are usually

sensitive to noise when optical flow is not accurately es-

timated. On the other hand, an alternative way is to use

3901



larger segments such as superpixels that contain more infor-

mation by considering every pixel in the neighborhood (i.e.,

spatial support). However, superpixels may not contain the

entire object or may have imprecise object boundaries due

to occlusion or motion blur (See Figure 4). Therefore, we

construct a multi-level graphical model including pixels and

superpixels to ensure boundary as well as temporal consis-

tency.

In this model, the energy terms for both pixels and su-

perpixels have unary and pairwise potentials, and a pairwise

term is used for the connection where pixels belong to a su-

perpixel (See Figure 2). In addition, since optical flow may

not be estimated correctly due to large displacement, we use

supervoxels [13] between two frames to generate coherent

superpixels and enhance temporal consistency.

The multi-level model is formulated by

Eseg = λ1Epix(X) + λ2Esup(Y ) + λ3Epair(X,Y ), (4)

where Epix(X) is the model based on pixels in (2);

Esup(Y ) is the energy function based on superpixels ytm ∈
Y ; Epair(X,Y ) is the pairwise term between pixels and

superpixels; and λi is the weight. We define Esup(Y ) as:

Esup(Y ) = Ût(Y ) + γ2
∑

(m,n,t)∈Et

V̂t(y
t
m, ytn), (5)

where Ût is the unary potential for labeling a superpixel as

foreground or background, and V̂t is the spatial smoothness

within the region Rt. Note that it is not necessary to model

the temporal smoothness in (5) since we design a term for

the supervoxel and optical flow in the unary term (explained

in detail below). The unary term Ût is defined in a way

similar to (3):

Ût(Y ) = α2

∑

(m,t)∈Rt

Φ̂a(y
t
m) + β2

∑

(m,t)∈Rt

Φ̂l(y
t
m), (6)

where Φ̂a is the color term defined as the mean color like-

lihood over all pixels within the superpixel, and a location

term Φ̂l measures the consistency between the optical flow

and the supervoxels. The location term is defined as:

Φ̂l(y) = flow(y)× obj(y), (7)

where flow(y) is defined by the percentage of pixels in y

that are successfully transferred to the next time instant. A

successful transfer means that a pixel xt−1
i transfers from a

superpixel yt−1
m to a superpixel ytn via optical flow, and yt−1

m

and ytn belong to the same supervoxel. In addition, obj(y)
computes the percentage of pixels within the superpixel be-

longing to the segmentation maskM.

The value of the first term in (7) is high if the super-

voxel and optical flow mostly agree with each other. The

pixel: 75.8 superpixel: 82.9 multi-level: 85.5

Figure 4. Segmentation results at different levels with overlap ra-

tios with respect to the ground truth mask. On the pixel or super-

pixel level, both results are not complete. The results on the pixel

level miss part of the leg, while the results on the superpixel level

include part of the bike. The multi-level segmentation approach

exploits results from both levels for higher accuracy.

second term basically measures the likelihood that a super-

pixel is part of the object. Note that, to compute obj(y) for

superpixel nodes in the current frame t, since the object lo-

cation is unknown, we use the approximate object mask as

described in the step for estimating the object location.

Epair(X,Y ) models the relationship between superpix-

els and pixels, encouraging pixels inside the superpixel to

have the same label. This pairwise term is defined by

Epair(x
t
i, y

t
m) =

{

1− |(p(xt
i)− p(ytm))| if lx 6= ly

0 else,

where p is the foreground color probability computed by a

color GMM, and lx and ly are the labels for the pixel and

superpixel. This energy computes the penalty of assigning

different labels to pixel x and superpixel y. The subtraction

of probabilities indicates how similar x and y are, and the

absolute value is from 0 to 1. That is, if the color of the pixel

is similar to the mean color of the superpixel, it is likely

to have the same label and should have a higher penalty if

assigning to different labels.

Overall, to propagate foreground labels, we estimate the

object location guided by the optical flow, and utilize a

multi-level model to assign the label to each pixel. On

the pixel level, optical flow is used to maintain temporal

smoothness, whereas for the superpixel, the model mea-

sures the consistency between supervoxels and optical flow,

and propagates the location information to the next frame.

4. Object Flow

In the previous section, we address video segmentation

by utilizing a multi-level spatial-temporal graphical model

with the use of optical flow and supervoxels. The ensu-

ing question is how to use the segmentation results to help

the estimation of optical flow and vice versa? Since flow

vectors within the same object are likely to be similar, we

propose to estimate them on the object level. The updated

optical flow can then be used again to improve object seg-

mentation. The problem is formulated jointly as follows.
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Algorithm 1 Object Flow

Initialize: u,v by minimizing (8)

while not converged do

u
p ← u,vp ← v

Segmentation

Compute energy terms for (4) using u
p,vp

minimize (4) by graph cuts and obtainM
Mp ←M

Optical Flow

if large displacement then

minimize (9) usingMp and obtain u,v

u
p ← u,vp ← v

end if

M←Mp,u← u
p,v← v

p

end while

Optical Flow with Segmentation. We minimize the clas-

sical robust optical flow objective function [30],

E(u,v;R) =
∑

i,j∈R

{ρD(It−1(i, j)− It(i+ ui,j , j + vi,j))

+λ[ρS(ui,j − ui+1,j) + ρS(ui,j − ui,j+1)

+ρS(vi,j − vi+1,j) + ρS(vi,j − vi+1,j)]},
(8)

where u and v are the horizontal and vertical components

of the optical flow from image It−1 to It, and ρD and ρS
are robust data and spatial penalty functions.

We further consider the object mask M obtained from

the segmentation step. One can consider this as a binary

assignment of pixels to layers in a layered flow model. Here

we use it to decompose the flow problem into two separate

estimations,

Eflow(ufg,vfg,ubg,vbg) =

E(ufg,vfg; fg)+E(ubg,vbg; bg), (9)

where fg and bg are local regions that are slightly larger

than the foreground and background regions. This step

ensures that the optical flow estimation is less affected

by the background noise but still takes partial back-

ground regions into account. The final optical flow can

be merged by applying the segmentation mask. That is,

u = M · ufg + (1 −M) · ubg , which are obtained from

E(ufg,vfg; fg) and E(ubg,vbg; bg), respectively.

Joint Formulation. To formulate the joint problem for seg-

mentation and optical flow, we combine (4) and (9) as:

min
M,u,v

Etotal = Eseg + Eflow. (10)

Note that in Eseg , we use optical flow in (2) and (5), and the

estimated object location. In Eflow, we use the segmenta-

tion mask obtained by Eseg to decide the foreground and

background local regions.

We optimize (10) by iteratively updating the two mod-

els once the segmentation or optical flow energy converges.

First, we initialize and fix the optical flow to minimize Eseg

using graph cuts [4]. We then optimize the optical flow by

fixing the segmentation mask M, and minimizing Eflow

using the Classic+NL method [30].

Optimization Details. The main steps of the optimization

procedure for (10) are summarized in Algorithm 1. We

make a few assumptions to expedite the process. First, we

find that for many frames, optical flow can be obtained ac-

curately without the need to re-estimate. For instance, this

is true when the object is stationary or moves slightly. In

addition, we observe that if the consistency between super-

voxels and optical flow is low, it is a good indication that

the object moves by a large displacement. Thus, we design

a strategy that only re-estimates the optical flow if the value

of flow(y) in (7) is less than a threshold. This speeds up

the process significantly while maintaining good accuracy.

Second, since our goal is to find a stable object mask

M, instead of using the energy Eseg to decide the conver-

gence status during the update of the segmentation model,

we measure the difference of object mask solutionsM. If

the overlap ratio ofM is larger than a value (e.g. 95%), it

should be a stable solution. In our experiments, the entire

optimization process for (10) converges within five itera-

tions, and converges in two iterations for most frames from

our experiments.

5. Experimental Results

Implementation Details. To evaluate the proposed algo-

rithm, we first construct the foreground and background

color GMMs in the RGB space from the first frame, and set

K to 5 for each GMM. For learning the online SVM model,

we extract hierarchical CNN features [20] combining the

first 5 convolutional layers from a pre-trained VGG net [28]

into 1472 dimensional vectors. We use the method [13]

to generate supervoxels and convert them to superpixels in

each frame. For parameters in the graphical model, we use

αcol
1 = 1, αcnn

1 = 3, β1 = 2, γs
1 = 3 and γt

1 = 0.2 on

the pixel level. On the superpixel level, parameters are set

as α2 = 1, β2 = 1 and γ2 = 2. For (4), we set λ1 =
1, λ2 = 15 and λ3 = 5. Since one superpixel contains nu-

merous pixels, we use larger weight for λ2 on the superpixel

level as otherwise the superpixel energy is easily absorbed

to have the same label as the pixels (a similar issue holds

for λ3). All these parameters are fixed in the experiments.

The MATLAB code will be made available at https:

//sites.google.com/site/yihsuantsai/.

SegTrack v2 Dataset. We first evaluate the proposed al-

gorithm on the SegTrack v2 dataset [19] which consists of

14 videos with 24 objects and 947 annotated frames. The
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Figure 5. Example results for segmentation on the SegTrack v2 (first row) and Youtube-Objects (second and third rows) datasets. The

output on the pixel level of our multi-level model is indicated as the red contour. The results show that our method is able to track and

segment (multiple) objects under challenges such as occlusions, fast movements, deformed shapes and cluttered backgrounds. Best viewed

in color with enlarged images.

Table 1. Segmentation results on the SegTrack v2 dataset with the

overlap ratio. Note that “-” indicates that the method fails to track

an object and is excluded in measuring accuracy.

Sequence/Object [40] [19] [18] [13] [12] [38] Ours

Online?
√ √ √ √

Unsupervised?
√ √ √

Girl 83.7 89.2 87.7 31.9 53.6 52.4 87.9

Birdfall 77.5 62.5 49.0 57.4 56.0 32.5 57.4

Parachute 94.4 93.4 96.3 69.1 85.6 69.9 94.5

Cheetah-Deer 63.1 37.3 44.5 18.8 46.1 33.1 33.8

Cheetah-Cheetah 35.3 40.9 11.7 24.4 47.4 14.0 70.4

Monkeydog-Monkey 82.2 71.3 74.3 68.3 61.0 22.1 54.4

Monkeydog-Dog 21.1 18.9 4.9 18.8 18.9 10.2 53.3

Penguin-#1 92.7 51.5 12.6 72.0 54.5 20.8 93.9

Penguin-#2 91.8 76.5 11.3 80.7 67.0 20.8 87.1

Penguin-#3 91.9 75.2 11.3 75.2 7.6 10.3 89.3

Penguin-#4 90.3 57.8 7.7 80.6 54.3 13.0 88.6

Penguin-#5 76.3 66.7 4.2 62.7 29.6 18.9 80.9

Penguin-#6 88.7 50.2 8.5 75.5 2.1 32.3 85.6

Drifting-#1 67.3 74.8 63.7 55.2 62.6 43.5 84.3

Drifting-#2 63.7 60.6 30.1 27.2 21.8 11.6 39.0

Hummingbird-#1 58.3 54.4 46.3 13.7 11.8 28.8 69.0

Hummingbird-#2 50.7 72.3 74.0 25.2 - 45.9 72.9

BMX-Person 88.9 85.4 87.4 39.2 2.0 27.9 88.0

BMX-Bike 5.7 24.9 38.6 32.5 - 6.0 7.0

Frog 61.9 72.3 0.0 67.1 14.5 45.2 81.4

Worm 76.5 82.8 84.4 34.7 36.8 27.4 89.6

Soldier 81.1 83.8 66.6 66.5 70.7 43.0 86.4

Monkey 86.0 84.8 79.0 61.9 73.1 61.7 88.6

Bird of Paradise 93.0 94.0 92.2 86.8 5.1 44.3 95.2

Mean per Object 71.8 65.9 45.3 51.8 40.1 30.7 74.1

Mean per Sequence 72.2 71.2 57.3 50.8 41.0 37.0 75.3

dataset includes different challenging sequences with large

appearance change, occlusion, motion blur, complex defor-

mation and interaction between objects. For videos contain-

ing multiple objects, since instance-level annotations are

provided, each object can be segmented in turn, treating

each as a problem of segmenting that object from the back-

ground. We first present segmentation results and demon-

strate the effectiveness of the multi-level model.

Table 1 shows segmentation accuracy of the proposed al-

gorithm and the state-of-the-art methods including tracking

and graph based approaches [12, 13, 18, 19, 38, 40]. Note

that our model can generate labeled results on both pixel

and superpixel levels, and we present the pixel level fine-

grained segmentation results. We use the intersection-over-

union (overlap) ratio for evaluation as it has been shown

that the pixel error metric used in the SegTrack dataset is

sensitive to object size [19] and is less informative.

Overall, the proposed algorithm achieves favorable re-

sults in most sequences especially for non-rigid objects

(Hummingbird, Worm, Soldier). These sequences usu-

ally contain large deformation due to fast motions or com-

plex cluttered backgrounds. The superpixel-based tracking

methods [38, 40] do not perform well on these sequences

since superpixels may not preserve object boundaries well.

The Hough-based tracking method [12] only uses pixels,

which may result in noisy temporal links. In the proposed

spatial-temporal multi-level model, we consider both pixels

and superpixels in the tracking and segmentation to main-

tain object boundaries as well as temporal consistency.

For the Penguin and Frog sequences, the object appear-

ance is similar to the background with slow motions. The

off-line methods [18, 19] that generate object proposals

from all frames, are likely to have large segmentation errors

due to wrong association or incomplete regions that con-

tain foreground and background pixels. In contrast, the pro-

posed algorithm performs well in these sequences with ob-

jects surrounded by other objects or background with simi-

lar appearance. In the location term (7), our model consid-

ers consistency between supervoxels and optical flow, and

this helps maintain temporal consistency. We present qual-

itative segmentation results in Figure 5 and show more re-

sults in the supplementary material.
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Table 2. Segmentation results using multi-level and single-level

models on the SegTrack v2 dataset with the overlap ratio. Note

that there are results on both pixel and superpixel levels using the

multi-level model.

Methods Pixel Pixel Superpixel Superpixel

multi-level only multi-level only

Mean per Object 74.1 69.6 65.6 50.3

Table 3. Segmentation results on the Youtube-Objects dataset with

the overlap ratio.

Category [22] [14] [36] [12] [24] [23] Ours

aeroplane 89.0 86.3 79.9 73.6 70.9 13.7 89.9

bird 81.6 81.0 78.4 56.1 70.6 12.2 84.2

boat 74.2 68.6 60.1 57.8 42.5 10.8 74.0

car 70.9 69.4 64.4 33.9 65.2 23.7 80.9

cat 67.7 58.9 50.4 30.5 52.1 18.6 68.3

cow 79.1 68.6 65.7 41.8 44.5 16.3 79.8

dog 70.3 61.8 54.2 36.8 65.3 18.0 76.6

horse 67.8 54.0 50.8 44.3 53.5 11.5 72.6

motorbike 61.5 60.9 58.3 48.9 44.2 10.6 73.7

train 78.2 66.3 62.4 39.2 29.6 19.6 76.3

Mean 74.0 67.6 62.5 46.3 53.8 15.5 77.6

To evaluate the proposed multi-level model that inte-

grates both levels, we compare to our model using only pix-

els or superpixels in Table 2. The information contained on

these two levels complement each other as the one based

on the superpixel level maintains local region consistency,

while the one based on the pixel level refines incomplete ob-

ject contours (See Figure 4). Specifically, the location term

in (7) enhances temporal information such that the model

can handle cases including fast movements and background

noise in sequences. In addition, the proposed multi-level

model with superpixels performs better than that using only

superpixels, which demonstrates that the refinement with

the pixel level information is critical for obtaining good per-

formance especially in sequences that contain unclear ob-

ject boundaries. We also note that our single-level models

already perform comparably to the state-of-the-art methods.

Youtube-Objects Dataset. The Youtube-Objects dataset

[25] contains 1407 videos with 10 object categories, and the

length of the sequences is up to 400 frames. We evaluate the

proposed algorithm in a subset of 126 videos with more than

20000 frames, where the pixel-wise annotations in every 10
frames are provided by Jain and Grauman [14]. Table 3

shows the segmentation results of the proposed algorithm

and other state-of-the-art methods1. For tracking-based or

foreground propagation algorithms [12, 14, 22, 23, 36],

ground truth annotations in the first frame are used as ini-

tializations to propagate segmentation masks. For multiple

1We evaluate the code of [40] released by the authors. However, the

algorithm requires different parameter settings for challenging sequences.

We discuss and report results in the supplementary material.

objects in videos, the proposed algorithm is able to propa-

gate multiple object segmentations at the same time. Note

that there are no instance-level annotations provided.

Overall, the proposed algorithm performs well in terms

of overlap ratio, especially in 8 out of 10 categories. Com-

pared to optical flow based methods [22, 36], the proposed

algorithm performs well on fast moving objects such as car

and motorbike as the optical flow errors are reduced. Al-

though the recent method [14] utilizes long-term supervox-

els to enhance the temporal connection, the segmentation

results contain noisy object boundaries as only superpix-

els are used. In contrast, the proposed algorithm considers

visual information at multiple levels and delineates bound-

aries well especially on non-rigid objects (dog, horse, cow).

We show qualitative results in Figure 5. More results are

presented in the supplementary material.

Optical Flow. We demonstrate the effectiveness of itera-

tively optimizing two models for updated optical flow and

segmentation results (See Algorithm 1) on the SegTrack v2

dataset. Here, we only consider sequences with large dis-

placements in which the flow is re-estimated. First, we mea-

sure the quality of updated optical flow. As the optical flow

ground truth is not available, we warp the object segmenta-

tion ground truth from frame t to frame t − 1 using optical

flow with the bicubic interpolation. We then compute the

overlap ratio between the warped and ground truth masks.

Since we focus on optical flow of the object, this metric

measures consistency for flow directions and whether they

connect to the same objects between two frames.

Table 4 shows results compared to two other optical

flow methods [6, 30] and the layered model [32]. The up-

dated results improve the optical flow estimation [30] con-

sistently in all the sequences, especially for fast moving

objects (Girl, Drifting, BMX). This validates our approach

since the method [30] is used to compute the initial flow.

Figure 6 illustrates the optical flow results. Compared to

the other three methods, the updated optical flow exhibits

clearer object boundaries. It shows the importance of com-

puting optical flow on local object regions. In contrast, the

results from [6] are usually oversmoothed around the object

boundaries, and the layered model [32] generates incom-

plete flows inside objects.

In addition, we use the normalized interpolation error

(NE) as described in [2] for evaluation. Similarly, the

ground truth of the colored object is warped by the optical

flow from frame t to t − 1. The average NE of the updated

optical flow is better than [30], but slightly worse than [6].

It can be attributed to the fact that the oversmoothed optical

flow in [6] usually generates more complete warped images

after interpolation; this is favored by the NE metric.

Second, by using the updated optical flow, we re-

estimate object segmentations and measure overlap ratios.

The updated segmentation results are improved for all the
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Segmentation Ours Sun [30] Brox [6] Segmentation Ours Sun [30] Sun [32]

Figure 6. Results for updated optical flow on the SegTrack v2 dataset. We present our updated optical flow compared to the initial flow [30],

and the other two methods, Brox [6] on the left and Sun [32] on the right. Our results contain object boundaries guided by the segmented

object marked with the red contour. Note that in the same sequence with multiple objects, the updated optical flow varies depending on the

segmentation. Best viewed in color with enlarged images.

Table 4. Intersection-over-union ratio for warped images by inter-

polation and updated optical flow on the SegTrack v2 dataset. The

last row shows the average of normalized interpolation error. The

performance is evaluated on frames with sigificant motion.

Sequence/Object Ours Sun [30] Brox [6] Sun [32]

Girl 64.6 56.1 63.2 64.6

Parachute 86.8 84.9 83.2 83.3

MonkeyDog-Monkey 70.8 70.0 67.4 69.0

MonkeyDog-Dog 69.0 69.0 68.9 75.0

Drifting-#1 89.5 86.6 91.3 82.5

Drifting-#2 87.3 82.5 87.7 79.8

Hummingbird-#1 55.2 52.2 52.6 51.3

Hummingbird-#2 71.1 70.6 68.7 65.5

Worm 73.3 71.1 69.8 91.1

Monkey 77.4 76.3 80.9 70.5

Soldier 84.5 83.5 80.8 82.7

Bird of Paradise 94.4 87.9 88.3 89.7

BMX-Person 80.0 77.4 75.0 72.2

BMX-Bike 38.4 33.9 37.5 38.3

Mean 74.5 71.6 72.5 72.5

Average NE 0.36 0.38 0.32 0.37

sequences, and the average overlap ratio is increased from

72.9% to 75.1% in sequences that rely on the optical flow.

The improvement varies in different sequences since the

segmentation model also takes other cues such as appear-

ance and location into account. For instance, the improve-

ment of overlap ratio is limited in the Bird of Paradise and

Parachute sequences since the objects move steadily. On

the other hand, for objects with noisy cluttered backgrounds

(Drifting-#2) or with similar appearance to the background

regions (Worm), the overlap ratios are improved by 2.4%
and 2.9% respectively. More results and comparisons are

provided in the supplementary material.

Runtime Performance. Our MATLAB implementation of

object flow takes 3 to 20 seconds per frame on the SegTrack

v2 dataset depending on the object size, and on average it

takes 12.2 seconds per frame. In contrast, the state-of-the-

art method [40] takes 59.6 seconds per frame on average.

Note that all the timings are measured on the same com-

puter with 3.60 GHz Intel i7 CPU and 32 GB memory, and

exclude the time to compute optical flow as each method

uses different algorithms. We use the MATLAB imple-

mentation of [30] to generate optical flow fields (around 30

seconds per frame) and it could be replaced by faster algo-

rithms [33, 41].

6. Concluding Remarks

In this paper, we present a novel algorithm for joint op-

timization of segmentation and optical flow in videos, and

show that the problem can be efficiently solved. For seg-

mentation, a multi-level model containing pixels and super-

pixels is utilized to track objects. We show that both lev-

els complement each other and maintain object boundaries

and temporal consistency throughout the video. Using the

segmentation, we modify the optical flow estimation to be

performed within local foreground and background regions,

resulting in more accurate optical flow, particularly around

object boundaries. We show that our method performs fa-

vorably against state-of-the-art methods on two datasets,

and both the segmentation and optical flow results are im-

proved by iteratively updating both models.
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