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Abstract

Cascaded regression has recently become the method of

choice for solving non-linear least squares problems such

as deformable image alignment. Given a sizeable training

set, cascaded regression learns a set of generic rules that

are sequentially applied to minimise the least squares prob-

lem. Despite the success of cascaded regression for prob-

lems such as face alignment and head pose estimation, there

are several shortcomings arising in the strategies proposed

thus far. Specifically, (a) the regressors are learnt indepen-

dently, (b) the descent directions may cancel one another

out and (c) handcrafted features (e.g., HoGs, SIFT etc.) are

mainly used to drive the cascade, which may be sub-optimal

for the task at hand. In this paper, we propose a combined

and jointly trained convolutional recurrent neural network

architecture that allows the training of an end-to-end to

system that attempts to alleviate the aforementioned draw-

backs. The recurrent module facilitates the joint optimisa-

tion of the regressors by assuming the cascades form a non-

linear dynamical system, in effect fully utilising the infor-

mation between all cascade levels by introducing a memory

unit that shares information across all levels. The convo-

lutional module allows the network to extract features that

are specialised for the task at hand and are experimentally

shown to outperform hand-crafted features. We show that

the application of the proposed architecture for the problem

of face alignment results in a strong improvement over the

current state-of-the-art.

1. Introduction

Non-linear least squares optimisation problems often

arise in computer vision, including but not limited to

Structure-from-Motion [9, 23], rigid and deformable image

alignment [33, 35], optical flow estimation [33, 66, 46, 45],

CNN RNN

Input image

aligned with the mean face

Final shape estimate

Figure 1: Mnemonic Descent Method learns to align a

shape estimate to a facial image1 in an end-to-end manner

using a jointly learnt convolutional recurrent network archi-

tecture.

and estimation of camera parameters for calibration [44].

The application of standard Newton-type methods for re-

trieving the optimal parameters is challenging due to the

highly non-convex nature of the cost functions and the lack

of differentiability of commonly used image operators (such

as HoGs [17], SIFT [32], etc.). Recently, in order to ad-

dress the drawbacks of Newton/Gauss-Newton methods

a set of generic “descent directions” is learnt through the

application of a cascade of regressors [56, 11]. Gener-

ally, these directions are learnt independently per cascade

via simulation. That is, in the case of deformable face

alignment, the ground-truth facial shapes of the training

images are randomly perturbed (according to a fixed vari-

ance). The descent directions are then estimated indepen-

dently and seek to progress from the perturbed shapes to

the ground-truth. In their simplest form, these rules can

be learnt through the application of successive stages of

linear regression, each minimising the average error over

all training samples. The use of regression/learning based-

methods for solving non-linear optimisation problems has a

1Depicted is the muse Mnemosene which was the personification of

memory in Greek mythology. The painting is an interpretation of the muse

by the the father of the Pre-Raphaelite brotherhood Dante Gabriel Rossetti.
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rich history in computer vision, beginning with the first Ac-

tive Appearance Models (AAMs) [13], where average Jaco-

bians were learnt from the training set2. Cascaded regres-

sion methodologies have been also proposed in the recent

works of [20, 11, 4, 49, 37, 26, 50]. However, to the best

of our knowledge, the only work that proposes a generic

framework for solving non-linear least squares is the so-

called Supervised Descent Method (SDM) [56, 57].

Several shortcomings can be identified in the state-of-

the-art cascade methods for deformable face alignment:

• The cascade steps are learnt independently. Each lin-

ear regressor simply learns how to regress from a par-

ticular fixed variance of shape perturbations to the

ground-truth [3]. Thus, correlations between semanti-

cally related image characteristics, such as facial pose,

are not taken into account.

• The result of the optimisation is tightly coupled with

the image features chosen to drive the regression.

Hand-crafted features are not data-driven and thus not

necessarily optimal for the face alignment task. In con-

trast, binary/tree-based features [37, 26, 11, 20] are

data-driven and have shown to be effective for face

alignment. However, these simple pixel intensity dif-

ferences can not be learnt in an end-to-end manner.

The success seen by convolutional features for various

computer vision tasks has yet to be realised for face

alignment. In particular, no currently proposed system

trains end-to-end convolutional features.

In this paper, we propose the Mnemonic Descent Method

(MDM) to address the issues above. In particular, MDM

models deformable face alignment as a non-linear dynami-

cal system3. MDM maintains an internal memory unit that

accumulates information extracted from the history of all

past observations of the input space. This has the advan-

tage that descent directions are naturally partitioned accord-

ing to the previously calculated descent directions. This

paradigm maps to a very intuitive justification when ap-

plied to the problem of face alignment. For example, it

seems reasonable that the alignment of any near profile face

from a frontal initialisation will have an extremely similar

sequence of descent directions. This is validated experi-

mentally in Fig. 3. MDM leverages this rich information

and trains an end-to-end face alignment method that learns

2The team led by Prof. Tim Cootes has proposed many variants for

learning descent directions [13, 49, 14, 15]
3The only alignment method that uses a dynamical system, and in par-

ticular a Linear Dynamical System (LDS), to model the shape estimates

during model fitting is [34]. The LDS is used to infer the posterior distri-

bution of the global warp and used in a Constrained Local Model (CLM)

framework. CLMs have not achieved state-of-the-art results in recent chal-

lenges such as the 300-W competition [38, 39], even when trained in a

cascaded regression [4].

a set of data driven features, using a Convolutional Neu-

ral Network (CNN), directly from the images in a cascaded

manner and most importantly uses a Recurrent Neural Net-

work (RNN) to impose a memory constraint on the descent

directions as illustrated in Fig.1. Our work is also motivated

by the success of end-to-end training of convolutional recur-

rent networks for the tasks of image caption generation [12],

scene parsing [36], and image retrieval/annotation genera-

tion [21]. To the best of our knowledge this is the first end-

to-end recurrent convolutional system for deformable object

alignment. In summary, the contributions of this work are:

1. We propose a non-linear cascaded framework for end-

to-end learning of the descent directions of non-linear

functions. These types of functions are widely appli-

cable in computer vision and existing works such as

SDM [56] have shown that descent direction learning

can be highly effective.

2. This is the first work on face alignment where a sin-

gle model is trained end-to-end i.e. from the raw im-

age pixels to the final predictions. We incorporate

problem-specific information in the training procedure

by learning new image features via a CNN.

3. We introduce the concept of memory into descent di-

rection learning. We believe this is highly discrimina-

tive and one of the major strengths of our approach.

4. We improve on the state-of-the-art in face alignment

on the challenging test-set of 300W competition [38,

39] by a large margin.

The remainder of this paper is organised as follows. In

Sec.2, we provide an overview of related work, with partic-

ular emphasis on SDM (Sec.3). Subsequently, in Sec.4, we

introduce the proposed Mnemonic Descent Method (MDM)

and, without loss of generality, describe its application to

face alignment. Finally, in Sec.5, we provide rigorous eval-

uations of our model, in order to demonstrate the advan-

tages of the proposed MDM over the state-of-the-art.

2. Related Work

The area of deformable face alignment constitutes a very

intuitive domain for the application of this work and is thus

chosen as the main application domain for evaluation.

Face alignment has a long and rich history that in-

cludes the introduction of many important works in com-

puter vision such as Active Appearance Models [13, 35, 2],

Constrained Local Models [16, 41] and 3D Morphable

Models [8]. In recent years, the problem of face align-

ment has seen substantial improvement, partially due to

the introduction of large datasets of unconstrained (in-the-

wild) images [6, 29, 65], which have been consistently
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re-annotated [39, 40, 38]. This increase in data variabil-

ity and quantity has expanded the power of discrimina-

tive methods, such as regression based methods. In par-

ticular, many recently successful techniques chain a num-

ber of regressors together sequentially, in what is com-

monly called a cascade. Cascaded regression strategies

constitute a large portion of the most popular facial align-

ment algorithms, as they are highly efficient and generalise

well [56, 37, 11, 10, 3, 26, 31, 64, 57, 50]. The most ef-

ficient cascaded regression methods are those that achieve

regression via boosting of weak learners such as random

ferns [11, 10] or random forests [37, 26]. However, a sem-

inal work in this area which generalises to a multitude of

problems and can efficiently deal with a large battery of

non-linear least squares problems, is that of SDM [56, 57].

SDM was the first work to describe the cascaded regression

problem as a more general learning framework in terms of

optimising non-linear objective functions utilising learnt de-

scent directions from training data. In particular, the regres-

sors at each cascade are assumed to be linear and model av-

erage descent directions in the space of the objective func-

tion. However, the learnt descent directions, despite being

chained in a cascade, are only related to one another via

the variance remaining from the previous cascade. There-

fore, the initial cascade levels are prone to large descent

steps which may not generalise well. This was addressed

in [57] by partitioning the descent directions into cohesive

groups during training. At test time, a partition is chosen

that represents the correct descent direction. For example,

for face alignment this requires an initial estimate of the

shape and the descent directions are partitioned according

to facial pose. However, this implies that [57] is only useful

for tracking scenarios where the previous frame provides

the prior information for selecting the correct partition.

Asthana et al. [3] proposed an incremental learning

framework for SDM type methods which supports the total

independence of each cascade level. They assume that each

cascade is independent and therefore cascade levels can be

learnt in parallel by merely simulating the residual variance

remaining after applying the previous cascade. Although

the independence of each level may be attractive for incre-

mental learning, we propose that descent directions should

be influenced by prior knowledge from previous descent

steps. We propose to model the procedure as a non-linear

dynamical system where a continuous latent state variable

appropriately drives the procedure. In this paper, we show

that it is possible to obtain large improvements when, in-

stead of utilising hand-crafted features, optimal features for

the given problem are learnt in an end-to-end fashion.

Our proposed method is also reminiscent of previously

proposed deep learning methods for face alignment [43, 55,

47, 61, 63, 62]. Sun et al. [47] and Zhou et al. [63] propose

to use independent Convolutional Neural Networks (CNN)

to perform coarse-to-fine shape searching. Zhang et al. [61]

also utilise a coarse-to-fine shape search using first a global

and then a set of local stacked autoencoders. However, each

autoencoder is trained in isolation. Zhang et al. [62] pro-

pose a novel approach that involves incorporating auxiliary

information into the fitting process. Unlike other related

methods, they do not incorporate a cascade of networks but

instead frame the problem as a multi-task learning problem.

Wu et al. [55] use a deep belief network to train a more

flexible shape model, but do not learn any convolutional fea-

tures. Finally, Baoguang Shi et al. [43] propose to jointly

learn a cascade of linear regressors. Although the regres-

sors are updated jointly via back-propagation, [43] uses lin-

ear regressors and employs hand crafted HoG features [17]

rather than learning the features directly from the images.

Also, via close inspection of the results reported in [43], we

found that their joint cascade methodology did not lead to

any improvements in alignment accuracy over cascade re-

gression methods that were trained independently, e.g. 6.32
mean error on the 300W fullset [39, 38] for [37] vs. 6.31
for [43]. In the following section (Sec. 3), we formally in-

troduce the face alignment problem and provide a brief de-

scription of the SDM algorithm.

3. Cascaded Regression

Face alignment is defined as the problem of localising a

set of l sparse fiducial points, li = [xi, yi]
⊤

on an image,

I ∈ R
w×h, of a face. Given an image and an initial esti-

mate of the shape within the image, x(0) = [l1
⊤, . . . , ll

⊤]
⊤

where x
(0) ∈ R

d×1 with d = 2l, face alignment seeks to

recover the ground-truth facial shape x
∗. In the case of

cascaded regression methods such as SDM, the optimisa-

tion from x
(0) to x

∗ is learnt from a large training set of

images by successively learning a series of linear regres-

sors. Most commonly, the regression parameters are opti-

mised based on a set of complex features extracted from

each image around the local area of each of the l fidu-

cial points. We denote the extraction of these features for

fixed sized patches (local square regions) from an image

as φ(Ii;xi) ∈ R
f×1. Since SDM proposes to learn a cas-

cade of regressors, the target variables for regression are ex-

pressed as shape increments, defined by ∆x
(k)
i = x

∗
i −x

(k)
i ,

where k is the current cascade index and, thus, x
(k)
i is the

current shape estimate of the i-th image. Finally, given n

input training images, the design matrix is formulated as

Φ = [φ(I1;x1), . . . , φ(In;xn)] where Φ ∈ R
f×n. The

matrix encapsulating the target shape increments is also de-

noted as ∆X = [∆x1, . . . ,∆xn] where ∆X ∈ R
d×n.

SDM [56] proposes to learn a series of k linear regressions

formulated as

argmin
R(k)

‖∆X
(k) −R

(k)
[

Φ
(k)

1
]

‖2F , (1)
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Figure 2: An illustrative example of MDM for a total of T = 3 time-steps. Initially the network input consists of a partial

image observation, consisting of the patches extracted at the mean face x0. The extracted patches (30× 30) at each time-step

are passed through a subsequent convolutional network fc(·; θc), which in turn produces a representation that is robust to

changes in appearance variation. Based on the current state ht, the mnemonic module (implemented as a recurrent network)

generates a new state ht+1 and a new set of descent directions ∆xt+1 that indicates where the network should focus next.

After a total of T = 3 time-steps, MDM successfully estimates the landmark locations. An important distinction from the

previous work on cascade models [56] is that the weights of the network θ = {θc, θr,x} are shared across time.

where R
(k) ∈ R

d×(f+1) and 1 is an f × 1 vector of

ones that forces the regression matrix to absorb the bias

as its final column. Solving for R
(k) reduces to a sim-

ple linear least squares problem and is given by R
(k) =

∆X
(k)

Φ
(k)† where the bias term is concatenated in the

design matrix as in Eq. 1 and is thus omitted for brevity.

The next cascade step updates the current shape estimate

by x
(k+1)
i = x

∗
i − (x

(k)
i + ∆x

(k)
i ) and then recomputes

the feature matrix using the new shape estimates, Φ(k+1) =

[φ(I1;x
(k+1)
1 ), . . . , φ(In;x

(k+1)
n )].

4. Mnemonic Descent Method

4.1. Feature extraction

Cascaded regression techniques for face alignment be-

gin with a feature extraction stage, where typically a set

of hand-crafted features representing image patches are ex-

tracted (e.g., HoG [17], SIFT [32], etc.). The feature ex-

traction stage is required because the images are captured

under unconstrained settings and so are likely to contain

appearance variations (e.g., in illumination, skin-variations,

occlusions etc.), which in turn generate local minima in

the energy landscape. The aforementioned representations

smooth the landscape in order to minimise the effect of

such variations [2]. We note that MDM is feature agnos-

tic and may be straightforwardly used with any such non-

linear representations. Nevertheless, although conventional

hand-crafted features have proved effective for a multitude

of tasks in computer vision [18, 56], this process can still be

considered sub-optimal given that these representations are

also extracted independently of the task-at-hand. The pro-

posed MDM aims to alleviate this issue by means of pro-

viding an end-to-end training methodology, in effect jointly

discovering both the appropriate non-linear image represen-

tations as well as the optimal landmark locations. The fea-

ture extraction stage is replaced with a convolutional net-

work module which facilitates learning directional filters

leading to the function optimum. Since the training is per-

formed in an end-to-end manner through back-propagation,

we essentially learn filters that are used to convolve the im-

age patches jointly with the fitting process.

As discussed in the previous section, the proposed algo-

rithm has several advantages over other state-of-the-art al-

gorithms. One of the core contributions is the discovery of

the optimal feature representations, since this eliminates the

requirement of utilising hand-crafted features which may be

sub-optimal. In the next sections, we introduce the MDM

algorithm (Sec.4.2) and its end-to-end training in Sec.4.3.
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4.2. Model

The main motivation of the proposed MDM is to facil-

itate smooth convergence by essentially treating the previ-

ously independent cascade steps as time-steps under a non-

linear dynamical system (i.e., modelling dependencies over

iterations). Under this paradigm, we essentially learn a sin-

gle model instead of an independent regressor at each it-

eration, and by preserving a mnemonic module, MDM en-

ables the steps taken at each iteration to be dependent on the

previous ones. Effectively, this discourages pitfalls such as

missing the function optimum by “stepping-over” it. To this

end, we implement the MDM by utilising Recurrent Neu-

ral Networks (RNN), which are well-known to be universal

approximators for non-linear dynamical systems [42, 22].

In essence, RNNs facilitate feedback connections and thus

generate loops and cycles within the network. This en-

ables recurrent networks to account for temporal dependen-

cies arising in the data. In terms of the MDM, this enables

modelling dependencies between the iterations and thus the

descent directions. Whilst RNNs maintain the topology of

feed forward networks (e.g., input, hidden, and output lay-

ers), the feedback connections enable the representation of

the current state of the system which encapsulates the infor-

mation from the previous inputs. The employment of RNNs

has proved highly successful on many applications includ-

ing machine translation [48], speech recognition [25] and

image captioning [53].

In the simplest form, an RNN observes zt corresponding

to the current time-step t, and based on the previous state

ht−1 generates the next hidden state, ht. Eq. 2 is consid-

ered the fundamental equation of a recurrent network (also

known as the step function or the recurrence equation)

h
(t+1) = fr(z

(t),h(t); θr)

h
(t+1) = tanh(Wihz

(t) +Whhh
(t)). (2)

Let us now consider the above in the context of cascaded

regression, and in particular, in the case of face alignment.

The goal of MDM is, given an initial rough estimate of the

minimum of the energy landscape, to produce a series of

descent directions that iteratively lead to the optimum. We

denote this initial estimate as x(0), which for face alignment

is commonly a mean face aligned to the output of a face

detector [60]. At each time-step t, the mnemonic module

partially observes the energy landscape z
(t). Based on this

observation, the internal state of MDM is updated accord-

ingly, by adapting the recurrence expression of Eq.2. Given

a new training sample, the recurrence equation becomes,

h
(t+1) = tanh(Whiφ(z;x

(t)) +Whhh
(t)) (3)

where Whi ∈ R
f×u is the hidden-to-input matrix which is

used to condition the partial observation of the energy land-

scape, Whh ∈ R
u×u the hidden-to-hidden matrix which

30°

15°

-15°

-30°

0°

Figure 3: A t-SNE depiction of the internal states (T = 1)

of MDM when asked to align 2000 randomly selected im-

ages of CMU Multi-PIE [24]. Each colour corresponds to

a cluster of head pose. This visualisation demonstrates that

MDM is effectively partitioning the input data based on the

head pose. Best viewed in colour.

conditions the output of the previous time-step and u cor-

responds to the dimensionality of the internal state of the

recurrent module.

During training, the network updates the current shape

displacements by projecting the hidden state, which corre-

sponds to the mnemonic element of the algorithm, to the

hidden-to-output matrix Who ∈ R
u×d, as

∆x
(t+1) = x

(t) +Whoh
(t). (4)

This estimate essentially constitutes the observation for the

new time-step and translates to the network observing the

local energy landscape around x
(t+1) = x

(t) + ∆x
(t+1).

Note that in this case, the traditional SDM would simply

train an independent regressor, and thus fail to utilise the

previous states of the algorithm. In fact, in our experimen-

tal analysis (c.f. Sec. 5.2) we found, by means of visual-

isation, that the hidden state of the network at the early

stages of the fitting process encapsulates the head pose in-

formation. This can then be utilised in subsequent stages

to partition the energy landscape and thus enable the model

to choose the appropriate descent path to follow. The pro-

cess is then repeated for a predefined number of time-steps

T and is trained by employing Back-propagation Through-

Time (BPTT) [54]. In conclusion, the objective function of

MDM can be thus defined as4

min
θ

‖X∗ −X
(0) +

T−1
∑

t=0

WhoH
(t)‖2F (5)

4We omit the bias terms for brevity of notation.
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where H
(t) = [h

(t)
1 , . . . ,h

(t)
n ] ∈ R

u×n represents the ma-

trix of all states corresponding to each of the n images at

time t, and θ all the parameters of the model.

4.3. Endtoend training for face alignment

In Fig. 2, we illustrate the application of MDM for the

task of face alignment. Given an initial estimate x(0), which

corresponds to the mean face shape, a collection of patches

is extracted and propagated through the convolutional mod-

ule fc(·;x
(0), θc) to obtain the appropriate non-linear fea-

ture representations. The recurrent module, fr(·;h
(0), θr),

then generates the next state h(1) and the process is repeated

for a fixed number of time-steps. We found through ex-

periments on the validation set that unrolling the network

for T = 4 time steps was sufficient for our task. This is

consistent with prior work in cascaded regression where 4

cascade levels are widely deemed sufficient [56]. As the

whole network is differentiable end-to-end, we can employ

BPTT [54] to learn the parameters of the model.

5. Experimental analysis

In order to evaluate the efficacy of the proposed MDM,

we perform rigorous evaluations against the state-of-the-art

methods for face alignment (Sec.5.1) where we find a strong

improvement against the best performing methods of the

300W competition [39, 38]. In Sec. 5.2 we further exam-

ine our model by (i) studying the effect of an increasing

number of time-steps T , (ii) by comparing the outcome of

learning a feature extractor (using convolutional features)

vs. hand-engineered features (dense-SIFT [32, 52]), and

(iii) by visualising the internal state of the fitting process,

which reveals that it encapsulates the head pose informa-

tion which the network can employ to partition the space of

descent directions in subsequent time-steps.

Datasets. To provide a fair comparison against other recent

face alignment methods, we concentrate on the 68-point an-

notations provided by Sagonas et al. [39, 40]. These an-

notations are provided for 3 existing in-the-wild datasets

(LFPW [7], HELEN [30] and AFW [65]) which were orig-

inally annotated using different and incompatible markups.

Sagonas et al. also introduced a new challenging dataset

called IBUG [39], also annotated with the 68-point CMU

MultiPIE markup [24]. Commonly, these annotations are

split into the following subsets: (i) the training set (3148

images) consisting of LFPW training images (811), HELEN

training images (2000) and AFW (337) (ii) the challenging

subset (135) of IBUG (135) (iii) the common subset (554)

of LFPW testing set (224) and HELEN testing set (330) and

(iv) the full set (689) of the union of the common (554) and

challenging subsets (135). We do not consider the original

annotations of LFPW (29-point markup) or HELEN (194-

point markup) as recent works [64, 37, 62] have shown that

these databases have become saturated for the original an-

51-points 68-points

Method AUC Failure (%) AUC Failure (%)

ERT [26] 40.60 13.50 32.35 17.00

PO-CR [50] 47.65 11.70 – –

Chehra [3] 31.12 39.30 – –

Intraface [56] 38.47 19.70 – –

Balt. et al. [5] 37.65 17.17 19.55 38.83

Face++ [63] 53.29 5.33 32.81 13.00

Yan et al. [58] 49.07 8.33 34.97 12.67

CFSS [64] 50.79 7.80 39.81 12.30

MDM 56.34 4.20 45.32 6.80

Table 1: Quantitative results on the test set of the 300W

competition using the AUC (%) and failure rate (calculated

at a threshold of 0.08 of the normalised error).

notations. The above annotations were actually provided as

a training/validation set for the 300W face alignment com-

petition [39, 38], which used another set of images strictly

for evaluation, called 300W test-set5. The 300W test-set

consists of 600 images split into two subsets, indoor and

outdoor, which are said to have been drawn from a similar

distribution as the IBUG dataset.

Evaluation. Unfortunately, there is no consistent way of

reporting errors for face alignment, even with regards to the

common 300W test sets. This is mostly due to variations

in error normalisation. To maintain consistency with the re-

sults of the 300W competition [39] we use their definition of

the interocular distance i.e. the distance between the outer

eye corners. We believe that mean errors, particularly with-

out accompanying standard deviations, are not a very infor-

mative error metric as they can be highly biased by a low

number of very poor fits. Therefore, we provide our evalu-

ation in the form of CED curves, as this is consistent with

the results we received from the authors of [39]. We have

calculated some further statistics from the CED curves such

as the area-under-the-curve (AUC) and the failure rate of

each method (we consider any fitting with a point-to-point

error greater than 0.08 as a failure). We believe that these

are more representative error metrics for the problem of face

alignment. We also note that there is a significant difference

between 68-point and 49/51-point error metrics due to the

inherent difficulty in fitting the boundary points of the face

contour. Therefore, where possible, we present both 68 and

49/51 point errors.

Implementation Details. Unless otherwise specified, our

network topology consists of two convolutional layers for

5Note that the 300W test-set is different than the 300W full set com-

monly used in literature. The former is the test-set used for the 300W

competition, which was hidden during the competition and recently made

publicly available. The latter refers to the common set of LFPW train, HE-

LEN train and AFW, which was the main training set of the 300W compe-

tition. All datasets are available in http://ibug.doc.ic.ac.uk/

resources/facial-point-annotations/
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Figure 4: Quantitative results on the test set of the 300W competition (indoor and outdoor combined) [39] for both 68-point

(left) and 51-point (right) plots. Only the top 3 performing results from the original competition are shown.

the feature extraction. Each layer employs 32 filters, each

with a kernel of 3× 3. Each convolutional layer is followed

by a rectified linear (ReLU) unit and a 2 × 2 max-pooling

operation. We have added a skip-connection and concate-

nated the activations from the central crop of the first convo-

lutional layer with the output of the second pooling layer to

retain more relevant localisation information that we would

otherwise lose from using the max-pooling layers. As a

relatively small number of time steps is required to reach

convergence we found it sufficient to use a vanilla recur-

rent module with a state vector of dimensionality 512 units.

Finally, a linear projection layer is used to produce the de-

scent directions ∆x
(t) at each time-step. We provide an

example implementation and a pretrained MDM model at

http://trigeorgis.com/mdm.

For learning the weights of the network we employ

stochastic optimisation with Adam [28] with the default

hyperparameters, an initial learning rate of 0.001 with ex-

ponential decay of 0.95 every 20 000 iterations, and mini-

batch size of 50 images. We choose the best model accord-

ing to our validation set (300W full set).

For all experiments, our network was trained on the

3148 images of the 300W training set with 68-point markup

and the bounding boxes provided by the 300W competition

were used for training and testing. Training images were

augmented in order to provide extra training data by adding

per-pixel Gaussian noise of σ = 0.5, by mirroring around

the vertical axis, and finally with random in-plane rotations

±15◦ generated from a uniform distribution.

5.1. Comparison with Stateoftheart

We compare against state-of-the-art methods in two sep-

arate experiments. To provide a relatable benchmark, we

evaluated MDM on the full set of 300W. In Fig.6 we provide

comparison CED curves against the state-of-the-art meth-

ods of Project-Out Cascaded Regression (PO-CR) [50],

Coarse-to-fine shape searching (CFSS) [64], Explicit Re-

gression Trees (ERT) [26], Intraface [56, 19], Chehra [3]

and a baseline SDM that we implemented using Menpo [1]

employing dense-SIFT features. All methods were ini-

tialised with the same bounding boxes, as provided by the

300W competition. All methods were chosen due to be-

ing publicly available. ERT was re-trained using the imple-

mentation provided by DLib [27] with the 300W bound-

ing boxes using the 300W training set. We believe that

this experiment demonstrates that the currently available

face alignment datasets are becoming saturated, as there

is little difference between three of the most recently pro-

posed methods (CFSS, PO-CR, and MDM). Historically,

face alignment methods have struggled with not having suf-

ficient training data, and this may have led authors to use

the above test-sets as both validation sets (for hyperparam-

eter tuning) and as evaluation sets.

Our primary experiment was evaluated on the test set of

the 300W competition [39, 38]. Fig. 4 illustrates the 68-

point and 51-point plots of the provided results. The results

show that MDM outperforms the rest of the face alignment

methods for both the 68-point and 51-point error metrics,

setting a new state-of-the-art on the problem of face align-

ment. It should be noted that the participants of the compe-

tition did not have any restrictions on the amount of training

data employed which further illustrates the effectiveness of

our approach.
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Figure 5: Top: Comparison between hand-crafted SIFT fea-

tures vs. end-to-end CNN features tailored for face align-

ment. Bottom: Increasing the number of time-steps de-

creases the average error but stabilises after four iterations.

5.2. Self Evaluations

In this section we performed a number of self evaluation

experiments to explore the behaviour of our model.

Effect of adding time-steps. In Fig. 5 we show the effect

of increasing the number of time-steps for the recurrent net-

work. The mean interocular distance is reported over the

whole of the 300W full set. Here we see that only 4 itera-

tions are necessary before the performance plateaus.

Effect of learning features. In Fig. 5 we study the effect

of learning features using the CNN in comparison to the

SIFT [32] features which are commonly used in many of

the cascaded regression algorithms for face alignment [56,

50, 64]. Fig. 5 provides the CED curve on the 300W full

set and clearly shows that the learnt features are much more

discriminative than the hand-crafted SIFT features.

Partitioning. In Fig.3 we plot a t-SNE [51] visualisation of

the T = 1 internal states of MDM for 2000 randomly se-

lected images from CMU Multi-PIE [24]. The images were

uniformly sampled over a range of out-of-plane head poses

in the range {−30◦,−15◦, 0◦, 15◦, 30◦}. Fig. 3 clearly

shows that MDM is able to partition the space of descent

directions according to the head pose. Previously [57, 59],

partitioning by pose estimates was considered separately

and thus external information was required to perform face

alignment. In contrast, MDM naturally learns this partition-

ing and benefits from improved fitting performance likely

due to the implicit clustering of related semantic attributes

such as head pose.
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Figure 6: Results on the full testing set of the 300W com-

petition, which was used as a validation set (49-points).

6. Conclusions

We presented the Mnemonic Descent Method (MDM), a

non-linear unified model for end-to-end learning of descent

directions of non-linear functions. In contrast to existing

cascaded regression frameworks, MDM is able to model de-

pendencies between iterations of the cascade by introducing

the concept of memory into descent direction learning.

We employ MDM in the area of deformable object align-

ment. We have proposed the first convolutional recurrent ar-

chitecture that is able to be trained in an end-to-end manner

i.e., from the raw image pixel intensities to the final pre-

dictions. By utilising the convolutional module, we have

shown that MDM can learn a set of robust features that

outperform hand-crafted features for face alignment. Ad-

ditionally, the recurrent module appears to leverage past in-

formation, such as head pose in order to partition the space

of descent directions in a data-driven manner. Finally, our

approach outperforms the current state-of-the-art for face

alignment on the challenging test-set of the 300W competi-

tion [39, 38].
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