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Abstract

Machine learning algorithms for the analysis of time-

series often depend on the assumption that the utilised data

are temporally aligned. Any temporal discrepancies aris-

ing in the data is certain to lead to ill-generalisable mod-

els, which in turn fail to correctly capture the properties of

the task at hand. The temporal alignment of time-series is

thus a crucial challenge manifesting in a multitude of ap-

plications. Nevertheless, the vast majority of algorithms

oriented towards the temporal alignment of time-series are

applied directly on the observation space, or utilise simple

linear projections. Thus, they fail to capture complex, hier-

archical non-linear representations which may prove to be

beneficial towards the task of temporal alignment, particu-

larly when dealing with multi-modal data (e.g., aligning vi-

sual and acoustic information). To this end, we present the

Deep Canonical Time Warping (DCTW), a method which

automatically learns complex non-linear representations of

multiple time-series, generated such that (i) they are highly

correlated, and (ii) temporally in alignment. By means of

experiments on four real datasets, we show that the repre-

sentations learnt via the proposed DCTW significantly out-

perform state-of-the-art methods in temporal alignment, el-

egantly handling scenarios with highly heterogeneous fea-

tures, such as the temporal alignment of acoustic and visual

features.

1. Introduction

The alignment of multiple data sequences is a commonly

arising problem, raised in multiple fields related to machine

learning, such as signal, speech and audio analysis [29],

computer vision [6], graphics [5] and bio-informatics [1].

Example applications range from the temporal alignment

of facial expressions and motion capture data [37, 38],

to the alignment for human action recognition [34], and

speech [18].

The most prominent temporal alignment method is

Dynamic Time Warping (DTW) [29], which identifies the

optimal warping path that minimises the Euclidean distance

between two time-series. While DTW has found wide

application over the past decades, the application is limited

mainly due to the inherent inability of DTW to handle

observations of different or high dimensionality since it di-

rectly operates on the observation space. Motivated by this

limitation while recognising that this scenario is commonly

encountered in real-world applications (e.g., capturing data

from multiple sensors), in [37] an extension to DTW is

proposed. Coined Canonical Time Warping (CTW), the

method combines Canonical Correlation Analysis (CCA)

and DTW by aligning the two sequences in a common,

latent subspace of reduced dimensionality whereon the two

sequences are maximally correlated. Other extensions of

DTW include the integration of manifold learning, thus

facilitating the alignment of sequences lying on different

manifolds [34, 11] while in [31, 38] constraints are intro-

duced in order to guarantee monotonicity and adaptively

constrain the temporal warping. It should be noted that in

[38], a multi-set variant of CCA is utilised [14] thus en-

abling the temporal alignment of multiple sequences, while

a Gauss-Newton temporal warping method is proposed.

While methods aimed at solving the problem of temporal

alignment have been successful in a wide spectrum of appli-

cations, most of the aforementioned techniques find a single

linear projection for each sequence. While this may suffice

for certain problem classes, in many real world applications

the data are likely to be embedded with more complex, pos-

sibly hierarchical and non-linear structures. A prominent

example lies in the alignment of non-linear acoustic fea-

tures with raw pixels extracted from a video stream (for

instance, in the audiovisual analysis of speech, where the

temporal misalignment is a common problem). The map-

ping between these modalities is deemed highly nonlinear,

and in order to appropriately align them in time this needs

to be taken into account. An approach towards extracting

such complex non-linear transformations is via adopting the

principles associated with the recent revival of deep neural
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network architectural models. Such architectures have been

successfully applied in a multitude of problems, including

feature extraction and dimensionality reduction [16], fea-

ture extraction for object recognition and detection [21, 10],

feature extraction for face recognition [32], acoustic mod-

elling in speech recognition [15], as well as for extracting

non-linear correlated features [2].

Interest to us is also work that has evolved around mul-

timodal learning. Specifically, deep architectures deemed

very promising in several areas, often overcoming by a large

margin traditionally used methods in various emotion and

speech recognition tasks [20, 25], and on robotics applica-

tions with visual and depth data [35].

In this light, we propose Deep Canonical Time Warp-

ing (DCTW), a novel method aimed towards the alignment

of multiple sequences that discovers complex, hierarchical

representations which are both maximally correlated and

temporally aligned. To the best of our knowledge, this work

presents the first deep approach towards solving the prob-

lem of temporal alignment, which in addition offers very

good scaling when dealing with large amounts of data. In

more detail, our work carries the following contributions:

(i) we extend DTW-based temporal alignment methods to

handle heterogeneous collections of features which may be

connected via non-linear hierarchical mappings, (ii) in the

process, we extend DCCA to (a) handle arbitrary temporal

discrepancies in the observations and (b) cope with multi-

ple (more than two) sequences, while finally (iii) we eval-

uate the proposed DCTW on a multitude of real data sets,

where the performance gain in contrast to other state-of-the-

art methods becomes clear.

The remainder of this paper is organised as follows.

In Sec. 3 we refer to related work on temporal alignment

and canonical correlation analysis. In Sec. 4, we describe

the proposed DCTW. We provide experiments on four real

datasets in Sec.5, while we conclude the paper in Sec.7.

2. Notation

Throughout the paper, matrices are denoted by uppercase

boldface letters (e.g., X,Y), vectors are denoted by lower-

case boldface letters (e.g., x,y), and scalars appear as either

uppercase or lowercase letters.

3. Related Work

3.1. Canonical Correlation Analysis

Canonical Correlation Analysis (CCA) is a shared-space

component analysis method, that given two data matrices

X1,X2 where Xi ∈ R
di×T recovers the loadings W1 ∈

R
d1×d, W2 ∈ R

d2×d that linearly project the data on a

subspace where the linear correlation is maximised. This

can be interpreted as discovering the shared information

conveyed by all the datasets (or views). The correlation

ρ = corr(Y1,Y2) in the projected space Yi = W⊤
i Xi

can be written as

ρ =
E[Y1Y

⊤
2 ]

√

E[Y1Y
⊤
1 Y2Y

⊤
2 ]

(1)

=
W⊤

1 E[X1X
⊤
2 ]W2

√

W⊤
1 E[X1X

⊤
1 ]W1W

⊤
2 E[X2X

⊤
2 ]W2

(2)

=
W⊤

1 Σ12W2
√

W⊤
1 Σ11W1W

⊤
2 Σ22W2

, (3)

where Σij denotes the empirical covariance between data

matrices Xi and Xj
1. There are multiple equivalent opti-

misation problems for discovering the optimal loadings Wi

which maximise Eq. 3 [8]. For instance, CCA can be for-

mulated as a least-squares problem,

argmin
W

1
,W2

‖W⊤
1 X1 −W⊤

2 X2‖2F

subject to: W⊤
1 X1X

⊤
1 W1 = I,

W⊤
2 X2X

⊤
2 W2 = I,

(4)

and equivalently as a trace optimisation problem

argmax
W

1
,W2

tr
(

W⊤
1 X1X

⊤
2 W2

)

subject to W⊤
1 X1X

⊤
1 W1 = I,

W⊤
2 X2X

⊤
2 W2 = I,

(5)

where in both cases we exploit the scale invariance of the

correlation coefficient with respect to the loadings in the

constraints. The solution in both cases is given by the eigen-

vectors corresponding to the d largest eigenvalues of the

generalised eigenvalue problem

Σ12Σ
−1
22 Σ21W1 = Σ11W1Λ. (6)

Note that, an equivalent solution is obtained by resorting

to Singular Value Decomposition (SVD) on the matrix

K = Σ
−1/2
11 Σ12Σ

−1/2
22 [23, 4]. The optimal objective value

of Eq. 5 is then the sum of the largest d singular values

of K, while the optimal loadings are found by setting

W1 = Σ
−1/2
11 Ud and W2 = Σ

−1/2
22 Vd, with Ud and Vd

being the left and right singular vectors of K. Note that

this interpretation is completely analogous to solving the

corresponding generalised eigenvalue problem arising in

Eq. 6 and keeping the top d eigenvectors corresponding to

the largest eigenvalues.

Recently, in order to facilitate the extraction of non-

linear correlated transformations, a methodology inspired

by CCA called Deep CCA (DCCA) [2] was proposed. In

more detail, motivated by the recent success of deep ar-

chitectures, DCCA assumes a network of multiple stacked

1Note that we assume zero-mean data to avoid cluttering the notation.
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layers consisting of nonlinear transformations for each data

set i, with parameters θi = {θ1i , ..., θli}, where l is the

number of layers. Assuming the transformation applied by

the network corresponding to data set i is represented as

fi(Xi; θi), the optimal parameters are found by solving

argmax
θ1,θ2

corr(f1(X1; θ1), f2(X2; θ2)). (7)

Let us assume that in each of the networks, the final layer

has d maximally correlated units in an analogous fash-

ion to the classical CCA 3. In particular, we consider

that X̃i denotes the transformed input data sets, X̃i =
fi(Xi; θi) and that the covariances Σ̃ij are now estimated

on X̃, i.e., Σ̃ij =
1

T−1X̃i(I− 1
T 11

⊤)X̃⊤
i . As described

above for classical CCA (Eq. 5), the optimal objective

value is the sum of the k largest singular values of K =

Σ̃
−1/2
11 Σ̃12Σ̃

−1/2
22 , which is exactly the nuclear norm of K,

‖K‖∗ = trace(
√
KK⊤). Problem 7 now becomes

argmax
θ1,θ2

‖K‖∗ , (8)

which is precisely the loss function that is backpropagated

through the network2[2]. Put simply, the networks are

optimised towards producing features which exhibit high

canonical correlation coefficients.

3.2. Time Warping

Given two data matrices X1 ∈ R
d×T1 , X2 ∈ R

d×T2

Dynamic Time Warping (DTW) aims to eliminate temporal

discrepancies arising in the data by optimising Eq.9,

argmin
∆

1
,∆2

‖X1∆1 −X2∆2‖2F

subject to: ∆1 ∈ {0, 1}T1×T ,

∆2 ∈ {0, 1}T2×T ,

(9)

where ∆1 and ∆2 are binary selection matrices [37] that

encode the alignment path, effectively remapping the the

samples of each sequence to a common temporal scale. Al-

though the number of plausible alignment paths is exponen-

tial with respect to T1T2, by employing dynamic program-

ming, DTW infers the optimal alignment path (in terms of

Eq. 9) in O(T1T2). Finally, the DTW solution satisfies the

boundary, continuity, and monotonicity constraints [29].

The main limitation of DTW lies in the inherent inability

to handle sequences of varying feature dimensionality,

which is commonly the case when examining data acquired

from multiple sensors. Furthermore, DTW is prone to fail-

ure when one or more sequences are perturbed by arbitrary

affine transformations. To this end, the Canonical Time

2Since the nuclear norm is non-differentiable and motivated by [3], in

[2] the subgradient of the nuclear norm is utilised in gradient descent.

Warping (CTW) [37] elegantly combines the least-squares

formulations of DTW (Eq.9) and CCA (Eq.4), thus facilitat-

ing the utilisation of sequences with varying dimensionali-

ties, while simultaneously performing feature selection and

temporal alignment. In more detail, given X1 ∈ R
d1×T1 ,

X2 ∈ R
d2×T2 , the CTW problem is posed as

argmin
W

1
,W2,∆1,∆2

‖W⊤
1 X1∆1 −W⊤

2 X2∆2‖2F

subject to: W⊤
1 X1∆1∆

⊤
1 X

⊤
1 W1 = I,

W⊤
2 X2∆2∆

⊤
2 X

⊤
2 W2 = I,

W⊤
1 X1∆1∆

⊤
2 X

⊤
2 W2 = D,

X1∆11 = X2∆21 = 0,

∆1 ∈ {0, 1}T1×T ,∆2 ∈ {0, 1}T2×T

(10)

where the loadings W1 ∈ R
d×T1 and W2 ∈ R

d×T2 project

the observations onto a reduced dimensionality subspace

where they are maximally linearly correlated, D is a

diagonal matrix and 1 is a vector of all 1’s of appropriate

dimensions. The constraints in Eq. 10, mostly inherited by

CCA, deem the CTW solution translation, rotation, and

scaling invariant. A solution is then subsequently obtained

by alternating between solving CCA (by fixing Xi∆i) and

DTW (by fixing W⊤
i Xi).

4. Deep Canonical Time Warping

The goal of Deep Canonical Time Warping (DCTW) is

to discover a hierarchical non-linear representation of the

data sets Xi, i = {1, 2} where the transformed features are

(i) temporally aligned with each other, and (ii) maximally

correlated. To this end, let us consider that fi(Xi; θi) rep-

resents the final layer activations of the corresponding net-

work for dataset Xi. We propose to optimise the following

objective,

argmin
θ1,θ2,∆1

,∆2

‖f1(X1; θ1)∆1 − f2(X2; θ2)∆2‖2F

subject to: f1(X1; θ1)∆1∆
⊤
1 f1(X1; θ1)

⊤ = I,

f2(X2; θ2)∆2∆
⊤
2 f2(X2; θ2)

⊤ = I,

f1(X1; θ1)∆1∆
⊤
2 f2(X2; θ2) = D,

f1(X1; θ1)∆11 = f2(X2; θ2)∆21 = 0,

∆1 ∈ {0, 1}T1×T ,∆2 ∈ {0, 1}T2×T

(11)

where as defined for Eq. 10, D is a diagonal matrix and 1

is an appropriate dimensionality vector of all 1’s. Clearly,

the objective can be solved via alternating optimisation.

Given the activation of the output nodes of each network

i, DTW recovers the optimal warping matrices ∆i which

temporally align them. Nevertheless, the inverse is not

so straight-forward, since we have no closed form solu-

tion for finding the optimal non-linear stacked transforma-
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tion applied by the network. We therefore resort to find-

ing the optimal parameters of each network by utilising

backpropagation. Having discovered the warping matrices

∆i, the problem becomes equivalent to applying a variant

of DCCA in order to infer the maximally correlated non-

linear transformation on the temporally aligned input fea-

tures. This requires that the covariances are reformulated as

Σ̂ij = 1
T−1fi(Xi; θi)∆iCT∆

⊤
j fj(Xj ; θj)

⊤, where CT

is the centring matrix, CT = I − 1
T 11

⊤. By defining

KDCT W = Σ̂
−1/2
11 Σ̂12Σ̂

−1/2
22 , we now have that

corr(f1(X1; θ1)∆1, f2(X2; θ2)∆2) = ‖KDCT W‖∗.
(12)

We optimise this quantity in a gradient-ascent fashion

by utilising the subgradient of Eq. 12 [3], since the gradi-

ent can not be computed analytically. By assuming that

Yi = fi(Xi; θi) for each of network i and USV⊤ =
KDCT W is the singular value decomposition of KDCT W ,

then the subgradient for the last layer is defined as

F(pos) = Σ̂
−1/2
11 UV⊤Σ̂

−1/2
22 Y2∆2CT

F(neg) = Σ̂
−1/2
11 USU⊤Σ̂

−1/2
11 Y1∆1CT

∂ ‖KDCT W‖∗
∂Y1

=
1

T − 1

(

F(pos) − F(neg)
)

. (13)

At this point, it is clear that CTW is a special case of

DCTW. In fact, we arrive at CTW (Sec.3.2) by simply con-

sidering a network with one layer. In this case, by setting

fi(Xi; θi) = W⊤
i Xi, Eq.11 becomes equivalent to Eq.10,

while solving Eq. 12 by means of Singular Value Decom-

position (SVD) on KDCT W provides equivalent loadings to

the ones obtained by CTW via eigenanalysis.

Finally, we note that we can easily extend DCTW to han-

dle multiple (more than 2) data sets, by incorporating a sim-

ilar objective to the Multi-set Canonical Correlation Analy-

sis (MCCA) [14, 26]. In more detail, instead of Eq. 12 we

now optimise

m
∑

i,j=1

corr(fi(Xi; θi)∆i, fj(Xj ; θj)∆j)

=

m
∑

i,j

∥

∥

∥
K

ij
DCT W

∥

∥

∥

∗
. (14)

where m is the number of sequences and K
ij
DCT W =

Σ̂
−1/2
ii Σ̂ijΣ̂

−1/2
jj . The subgradient of Eq. 14 can be com-

puted in a straightforward manner by utilising Eq.13. Note

that by setting ∆i = I, Eq. 14 becomes an objective for

learning transformations for multiple sequences via DCCA

[2]. Finally, we note that any warping method can be used in

place of DTW for inferring the warping matrices ∆i (e.g.,

[38]). DCTW is illustrated in Fig.1.

5. Experiments

In order to assess the performance of DCTW, we per-

form detailed experiments against both linear and non-

linear state-of-the-art temporal alignment algorithms. In

more detail we compare against:

State of the art methods for time warping without a fea-

ture extraction step:

• Dynamic Time Warping (DTW) [29] which finds the

optimal alignment path given that the sequences reside

in the same manifold (as explained in Sec.3.2).

• Iterative Motion Warping (IMW) [17] alternates be-

tween time warping and spatial transformation to align

two sequences.

State-of-the art methods with a linear feature extractor:

• Canonical Time Warping (CTW) [37] as posed in sec-

tion Sec. 3.2, CTW finds the optimal reduced dimen-

sionality subspace such that the sequences are maxi-

mally linearly correlated.

• Generalized Time Warping (GTW) [38] which uses a

combination of CTW and a Gauss-Newton temporal

warping method that parametrises the warping path as

a combination of monotonic functions.

State-of-the-art methods with non-linear feature extraction

process.

• Manifold Time Warping [34] that employs a variation

of Laplacian Eigenmaps to non-linearly transform the

original sequences.

We evaluate the aforementioned techniques on four

different real-world datasets, namely (i) the Weizmann

database Sec. 5.2, where multiple feature sets are aligned ,

(ii) the MMI Facial Expression database Sec.5.3, where we

apply DCTW on the alignment of facial Action Units, (iii)

the XRMB database Sec.5.4 where we align acoustic and ar-

ticulatory recordings, and finally (iv) the CUAVE database

Sec.5.5, where we align visual and auditory utterances.

Evaluation For all experiments, unless stated oth-

erwise, we assess the performance of DCTW utilising

the the alignment error introduced in [38]. Assuming

we have m sequences, each algorithm infers a set of

warping paths Palg =
[

p
alg
1 ,p

alg
2 , . . . ,palg

m

]

, where pi ∈
{

x ∈ N
lalg |1 ≤ x ≤ nm

}

is the alignment path for the ith

sequence with a length lalg. The error is then defined as

Err =
dist(Palg,Pground) + dist(Pground,Palg)

lalg + lground
,

dist
(

P1,P2
)

=

l1
∑

i=1

minl2j=1

∥

∥

∥
p1
(i) − p2

(j)

∥

∥

∥

2
.
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Figure 1: Illustration of the DCTW architecture with two networks, one for each temporal sequence. The model is trained

end-to-end, first performing a spatial transformation of the data samples and then a temporal transformation such as the

temporal sequences are maximally correlated.

5.1. Experimental Setup

In each experiment, we perform unsupervised pretrain-

ing of the deep architecture for each of the available se-

quences in order to speed up the convergence of the opti-

misation procedure. In particular, we initialise the param-

eters of each of the layers using a denoising autoencoder

[33]. We utilise full-batch optimisation with AdaGrad [9]

for training, although similar results are obtained by util-

ising mini-batch stochastic gradient descent optimisation

with a large mini-batch size. In contrast to [2], we utilise

a leaky rectified linear unit with a = 0.03 (LReLU) [22],

where f(x) = max(ax, x) and a is a small positive value.

In our experiments, this function converged faster and pro-

duced better results than the suggested modified cube-root

sigmoid activation function. For all the experiments (ex-

cluding Sec. 5.2 where a smaller network was sufficient)

we utilised a fixed three layer 200–100–100 fully connected

topology, thus reducing the number the number of free hy-

perparameters of the architecture. : This both facilitates

the straight-forward reproducibility of experimental results,

as well as helps towards avoiding overfitting (particularly

since training is unsupervised).

5.2. Real Data I: Alignment of Human Actions un-
der Multiple Feature Sets

In this experiment, we utilise the Weizmann

database [13], containing videos of nine subjects per-

forming one of ten actions (e.g., walking). We adopt the

experimental protocol described in [38], where 3 different

shape features are computed for each sequence, namely

(1) a binary mask, (2) Euclidean distance transform [24],

and (3) the solution of the Poisson equation [12, 38].

Subsequently, we reduce the dimensionality of the frames

to 70–by–35 pixels, while we keep the top 123 principle

components. For all algorithms, the same hyperparameters

as [38] are used. Following [37], [38], 90% of the total

correlation is kept, while we used a topology of two layers

carrying 50 neurons each. Triplets of videos where subjects

are performing the same action where selected, and each

alignment algorithm was evaluated on aligning the three

videos based on the features described above.

pDTW pDDTW pIMW pCTW GTW DCTW
0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

Figure 2: Aligning sequences of subjects performing sim-

ilar actions from the Weizmann database. (left) the three

computed features for each of the sequences (1) binary, (2)

euclidean, (3) poisson solution. (middle) The aligned se-

quences using DCTW. (right) Alignment errors for each of

the six techniques.

The ground truth of the data was approximated by run-

ning DTW on the binary mask images. Thus, the reasoning

behind this experiment is to evaluate whether the methods

manage to find a correlation between the three computed

features, in which case they would find the alignment path

produced by DTW.
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In Fig. 2 we show the alignment error for ten randomly

generated sets of videos. As DTW, DDTW, IMW, and CTW

are only formulated for performing alignment between two

sequences we use their multi-sequence extension as formu-

lated in [39], and we use the prefix p to denote the multise-

quence variant.

We observe that DTW and DDTW fail to align the videos

correctly, while CTW, GTW, and DCTW perform quite bet-

ter. This can be justified by considering that DTW and

DDTW are applied directly on the observation space, while

CTW, GTW and DCTW infer a common subspace of the

three input sequences. The best performing methods are

clearly GTW and DCTW.

5.3. Real Data II: Alignment of Facial Action Units

Next, we evaluate the performance of DCTW on the task

of temporal alignment of facial expressions. We utilise the

MMI Facial Expression Dataset [27] which contains more

than 2900 videos of 75 different subjects, each performing

a particular combination of Action Units (i.e., facial mus-

cle activations). We have selected a subset of the original

dataset which contains videos of subjects which manifest

the same action unit (namely, AU12 which corresponds to

a smile), and for which we have ground truth annotations.

We preprocessed all the images by converting to greyscale

and utilised an off-the-shelf face detector along with a face

alignment procedure [19] in order to crop a bounding box

around the face of each subject. Subsequently, we reduce

the dimensionality of the feature space to 400 components

using whitening PCA, preserving 99% of the energy. We

clarify that the annotations are given for each frame, and de-

scribe the temporal phase of the particular AU at that frame.

Four possible temporal phases of facial action units are de-

fined: neutral when the corresponding facial muscles are in-

active, onset where the muscle is activated, apex when facial

muscle intensity reaches its peak, and offset when the facial

muscle begins to relax, moving towards the neutral state.

Utilising raw pixels, the goal of this experiment lies in

temporally aligning each pair of videos. In the context of

this experiment, this means that the subjects in both videos

exhibit the same temporal phase at the same time. E.g., for

smiles, when subject 1 in video 1 reaches the apex of the

smile, the subject in video 2 does so as well. In order to

quantitatively evaluate the results, we utilise the ratio of cor-

rectly aligned frames within each temporal phase to the total

duration of the temporal phase across the aligned videos.

This can be formulated as
|Φ1∩Φ2|
|Φ1∪Φ2|

, where Φ1,2 is the set

of aligned frame indices after warping the initial vector of

annotations using the alignment matrices ∆i found via a

temporal warping technique.

Results are presented in Fig. 4, where we illustrate the

alignment error on 45 pairs of videos across all methods

and action unit temporal phases. Clearly, DTW overper-

forms MW, while CCA based methods such as CTW and

GTW perform better than DTW. It can be seen that the best

performance in all cases is obtained by DCTW, and using

a t-test with the next best method we find that the result is

statistically significant (p < 0.05). This can be justified by

the fact that the non-linear hierarchical structure of DCTW

facilitates the modelling of the complex dynamics straight

from the low-level pixel intensities.

Furthermore, in Fig.3 we illustrate the alignment results

from a pair of videos of the dataset. The first row depicts the

first sequence in the experiment, where for each temporal

phase with duration [ts, te] we plot the frame tc = ⌈ ts+te
2 ⌉.

The second row illustrates the ground truth of the second

video, while the following rows compare the alignment

paths obtained by DCTW, CTW and GTW respectively. By

observing the corresponding images as well as the tempo-

ral phase overlap, it is clear that DCTW achieves the best

alignment.

5.4. Real Data III: Alignment of Acoustic and Ar-
ticulatory Recordings

The third set of experiments involves aligning simultane-

ous acoustic and articulatory recordings from the Wisconsin

X-ray Microbeam Database (XRMB) [36]. The articula-

tory data consist of horizontal and vertical displacements

of eight pellets on the speaker’s lips, tongue, and jaws,

yielding a 16-dimensional vector at each time point. We

utilise the features provided by [2]. The baseline acoustic

features consist of standard 13-dimensional mel-frequency

cepstral coefficients (MFCCs) [7] and their first and sec-

ond derivatives computed every 10ms over a 25ms window.

For the articulatory measurements to match the MFCC rate,

we concatenate them over a 7-frame window, thus obtain-

ing Xart ∈ R
273 and XMFCC ∈ R

112. As the two views

DTW MTW IMW

63.52± 27.06 94.42± 13.20 83.23± 0.11

CTW GTW DCTW

58.92± 28.8 64.06± 5.01 7.19± 1.79

Table 1: Alignment errors obtained on the Wisconsin X-ray

Microbeam Database.

were recorded simultaneously and then manually synchro-

nised [36], we use this correspondence as the ground truth

and then we produce a synthetic misalignment to the se-

quences, producing 10 sequences of 5000 samples. We

warp the auditory features using the alignment path pro-

duced by Pmis(i) = i1.1l0.1
MFCC

for 1 ≤ i ≤ lMFCC where

lMFCC is the number of MFCC samples.

Results are presented in Tab. 1. Note that DCTW out-

performs compared methods by a much larger margin than
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Figure 3: Facial expression alignment of videos S002–005 and S014–009 from the MMI dataset (Sec. 5.3). Depicted frames

for each temporal phase with duration [ts, te] correspond to the middle of each of the temporal phase, tc = ⌈ ts+te
2 ⌉. We also

plot the temporal phases ( neutral, onset, apex, and offset) corresponding to (i) the ground truth alignment and (ii)

compared methods (DCTW, CTW, and GTW). Note that the entire video is included in our supplementary material.

DTWMTW IMW CTW GTWDCTW
0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7

Neutral

DTWMTW IMW CTW GTWDCTW

Onset

DTWMTW IMW CTW GTWDCTW

Apex

DTWMTW IMW CTW GTWDCTW

Offset

DTWMTW IMW CTW GTWDCTW

Mean

Figure 4: Temporal phase detection accuracy as defined by the ratio of correctly aligned frames with respect to the total

duration for each temporal phase – the higher the better.

other experiments here. Nevertheless, this is quite expected:

the features for this experiment are highly heterogeneous

and e.g., in case of MFCCs, non-linear. The multi-layered

non-linear transformations applied by DCTW are indeed

much more suitable for modelling the mapping between

such varying feature sets.

5.5. Real Data IV: Alignment of Audio and Visual
Streams

In our last (and arguably, most challenging) experiment,

we aim to align the subject’s visual and auditory utterances.

To this end, we use the CUAVE [28] database which con-

tains 36 videos of individuals pronouncing the digits 0 to 9.

In particular, we use the portion of videos containing only

frontal facing speakers pronouncing each digit five times,

and use the same approach as in Sec. 5.4 in order to intro-

duce misalignments between the audio and video streams.

In order to learn the hyperparameters of all employed align-

ment techniques, we leave out 6 videos.

Regarding pre-processing, from each video frame we ex-

tract the region-of-interest (ROI) containing the mouth of

the subject using the landmarks produced via [19]. Each

ROI was then resized to 60 x 80 pixels, while we keep the

top 100 principal components of the original signal. Sub-

sequently, we utilise temporal derivatives over the reduced

vector space. Regarding the audio signal, we compute the
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Figure 5: The alignment results of DCTW for subject #1 of the CUAVE database.

Mel-frequency cepstral coefficients (MFCC) features using

a 25ms window adopting a step size of 10ms between suc-

cessive windows. Finally, we compute the temporal deriva-

tives over the acoustic features (and video frames). To

match the video frame rate, 3 continuous audio frames are

concatenated in a vector. The results show that DCTW out-
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Figure 6: Alignment errors on the task of audio-visual tem-

poral alignment. Note that videos better illustrating the re-

sults are contained in our supplementary material.

performs the rest of the temporal alignment methods by a

large margin. Again, the justification is similar to Sec.5.4:

the highly heterogeneous nature of the acoustic and video

features highlights the significance of deep non-linear ar-

chitectures for the task-at-hand. It should be noted that the

best results obtained for GTW utilise a combination of hy-

perbolic and polynomial basis, which biases the results in

favour of GTW due to the misalignment we introduce. Still,

it is clear that DCTW obtains much better results in terms

of alignment error.

6. Computational details and discussion

Currently the computational cost of aligning a set

of m sequences each of length of Ti samples each is

O(
∑m

i,j TiTj + eig(
∑

i di)), which is bounded by the cost

of performing DTW and secondly the cost of the singular

value decomposition to calculate the derivatives in Eq. 13.

As the decomposition is performed on the last layer of the

network, which is of reduced dimensionality (100 units in

our case) it is very cheap to compute in practise. In contrast

other non-linear warping algorithms [34] require an expen-

sive k-nearest neighbour and an extra eigendecomposition

step or in the case of CTW [37] an eigendecomposition on

the original correlation matrix which becomes much more

expensive when dealing with data of high dimensionality.

It is worthwhile to mention that although in this work we

explored simple network topologies, our cost function can

be optimised regardless of the number of layers or neuron

type (e.g., convolutional). Finally we also note that DCTW

is agnostic to the use of the method for temporally warping

the sequences and other relaxed variants of DTW might be

employed in practise when there is a large number of ob-

servations in each sequence as for example Fast DTW [30]

or GTW [38] as long as it conforms to the alignment con-

strains, i.e., it always minimises the objective function.

7. Conclusions

In this paper, we study the problem of temporal align-

ment of multiple sequences. To the best of our knowledge,

we propose the first temporal alignment method based on

deep architectures, which we dub Deep Canonical Time

Warping (DCTW). DCTW discovers a hierarchical non-

linear feature transformation for multiple sequences, where

(i) all transformed features are temporally aligned, and (ii)

are maximally correlated. By means of various experiments

on four real datasets, the significance of DCTW on multi-

ple applications is highlighted, as the proposed method out-

performs, in many cases by a very large margin, compared

state-of-the-art methods for temporal alignment.
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